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Abstract

We survey the literature on estimating risk preferences using field data—i.e., data

on individuals’real-world economic behavior. We mostly limit our attention to studies

in which risk preferences are the focal object and estimating their structure is the core

enterprise. We motivate shining a spotlight on this literature with an example that

highlights why knowledge about the structure of risk preference matters for applied

work in economics. To further set the stage, we provide a detailed review of a number

of models of risk preferences– including both expected utility (EU) theory and non-

EU models– that have been estimated using field data, and we discuss issues related

to identification and estimation of such models using field data. We then survey the

literature, giving separate treatment to research that uses individual-level data (e.g.,

property insurance data) and research that uses aggregate data (e.g., betting market

data). We conclude by discussing work at the frontier of the literature and directions

for future research.
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1 Introduction

Risk preferences are integral to modern economics. They are the primary focus of the lit-

erature on decision making under uncertainty. They play a central role in insurance and

financial economics. The topics of risk sharing and insurance are prominent in develop-

ment, health, labor, and public economics, particularly in the study of incentives and social

insurance programs. And risk preferences are a major driver in models of consumption,

investment, and asset pricing in macroeconomics.

The vast majority of the literature uses expected utility (EU) theory to model risk prefer-

ences, and much of the literature is theoretical in nature, deriving qualitative predictions in

different environments. At the same time, there is a large empirical literature that estimates

risk preferences, both EU and non-EU models, using data from a variety of settings. Early

studies in the empirical literature on risk preferences focus on the EU model and rely on data

from laboratory experiments (e.g., Preston and Baratta 1948; Yaari 1965); for early reviews,

see Camerer (1995) and Starmer (2000). Laboratory experiments generated many insights

about risk preferences, and most notably demonstrated both substantial heterogeneity in

risk preferences and substantial deviations from EU theory. However, the limitations com-

monly associated with the laboratory setting motivated economists to look for suitable data

from field settings. By field setting, we mean an environment in which people’s real-world

economic behavior is observable.1

As a result, there is a relatively small (but growing) literature that takes on the diffi cult

task of estimating risk preferences using field data. Our goal in this paper is to review and

assess this literature. We mostly limit our attention to studies in which risk preferences

are the focal object and estimating their structure is the core enterprise. In particular, we

generally exclude papers that estimate a structural model of risk preferences as an incidental

matter and treat the risk preference parameters as nuisance parameters and not as the

parameters of main interest. Although there are many excellent papers in this category

which make important contributions to numerous fields of economics, they are beyond the

scope of this review.2

We begin in Section 2 with a motivating example designed to address the question of why

economists should care about the structure of risk preferences. More and more, economists

are engaging in analyses that investigate the quantitative impact of a change in the underly-

1By comparison, laboratory experiments have two major advantages. First, the researcher has precise
control over the choice sets that subjects face, and thus can design those choice sets to be maximally
informative. Second, the researcher can elicit multiple choices from each subject, and thus in principle could
estimate risk preferences at the individual level.

2As we explain below, however, we discuss a handful of papers that, although they fall into this cateogy,
make valuable contributions to the methodology of estimating risk preference using field data.
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ing economic environment (e.g., a legal reform). In such analyses, risk preferences are often

a required input, even if only as a nuisance parameter in a broader model. Our example

highlights two reasons why the specification of risk preferences matters. First, many quanti-

tative analyses attempt to make out-of-sample predictions for behavior based on the broader

model. We demonstrate in our example how different assumptions about risk preferences

can lead to very different out-of-sample predictions for behavior. Second, many quantitative

analyses attempt to reach welfare conclusions. Again, we demonstrate in our example how

different assumptions about risk preferences can lead to very different welfare conclusions.

In Section 3, we provide a detailed review of several models of risk preferences that have

been estimated or otherwise studied using field data. We begin with EU theory, and proceed

to describe several non-EU models that were originally motivated by experimental evidence

but which have subsequently been studied using field data, including rank-dependent ex-

pected utility (RDEU) and cumulative prospect theory (CPT). We then provide a discussion

of identification, and in particular describe what types of data are needed to estimate and

distinguish the various models.

In Section 4, we discuss research that estimates risk preferences, and sometimes hetero-

geneity in risk preferences, using individual-level data. We begin with an overview of the

general approach used throughout this literature. Next, we describe in detail research that

estimates risk preferences using data on property insurance choices. We then briefly discuss

studies that use data from television game shows. However, we limit the depth of our cov-

erage, because, although these studies focus on estimating risk preferences, television game

shows fall outside our definition of a field setting.3 Lastly, we review a handful of recent pa-

pers that analyze data on health insurance choices. We again limit the depth of our coverage,

but for a different reason. Health insurance is an important field context, but the papers

that use health insurance data do not focus on estimating risk preferences. We believe this

is because estimating risk preferences using health insurance data is especially challenging.

Nevertheless, we highlight a few recent papers that address some of these challenges and

whose contributions could facilitate future work that focuses on estimating risk preferences.

In Section 5, we turn to research that estimates risk preferences, and sometimes hetero-

geneity in risk preferences, using market-level, or aggregate data. Once again, we begin with

an overview of the general approach of the literature, highlighting how the use of aggregate

data naturally requires a stronger set of assumptions in order to identify risk preferences.

Next, we describe in detail research that estimates risk preferences using data on betting

3This is because factors other than their risk preferences and beliefs influence agents’ decisions in a
game show. For example, the entertainment value, the length of the game, the TV studio environment, the
interaction with the game host, and the influence of the audience.
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markets, specifically data on betting in pari-mutuel horse races. We then discuss a select

assortment of papers that use macroeconomic data to estimate risk preferences, including

data on consumption and investment (asset returns) and on labor supply, or that combine

aggregate and individual consumption data to study risk sharing behavior.

Finally, in Section 6 we discuss a number of directions for future research. An under-

researched issue is the extent to which risk preferences are stable across contexts. We review

the few studies that use field data to investigate this issue, and we highlight the questions

left open by these studies. Relatedly, we also discuss the possibility of combining data from

laboratory and field contexts in order to paint a more complete picture of risk preferences–

and also to gain insight on the question of whether experimental results can be directly

applied to make field predictions. Next, we describe the recent literature on using surveys

to directly measure risk perceptions, and we discuss the extent to which survey data might

be usefully combined with field data to identify and estimate risk preferences under weaker

assumptions. Finally, we discuss the importance of various "mental accounting," by which we

mean assumptions about how agents translate a complex field context into a set of concrete

lotteries to be evaluated. We encourage future research to pay more careful attention to such

assumptions.

2 Motivating Example

In this section, we present a stylized example designed in part to motivate why economists

should care about the structure of risk preferences and in part to illustrate some of the

challenges that economists face in identifying and estimating risk preferences using field data.

The setting of our example is a hypothetical insurance market. Initially, we make a number

of strong assumptions– about the setting and the data– that in turn make identification

and estimation straightforward. We then revisit those strong assumptions to highlight some

of the identification and estimation challenges that economists face in more realistic field

settings.

Imagine that there is a continuum of households of measure one who each face the

possibility of a loss L that occurs with probability µ. Both L and µ are the same across

households, and their values are known. To fix ideas, let L = 10, 000 and µ = 0.05. There

is insurance available to the households– full insurance at a price p. Moreover, there is

suffi cient exogenous price variation (e.g., over time or across various identical subsets of the

households, see Einav, Finkelstein, and Cullen (2010) for an example) to non-parametrically

identify the market demand function for full insurance, QF (p), which returns the fraction of

households willing to purchase full insurance at price p. Panel (a) of Figure 1 depicts one

3
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Figure 1: Demand for insurance and underlying risk preferences

such demand function, namely QF (p) = 2−0.001p.4 It is a typical demand function– as the

insurance gets cheaper, the fraction of households willing to purchase it gets larger. It also

reflects aversion to risk– households demand insurance at actuarially unfair prices.

2.1 Out-of-Sample Predictions

We first illustrate how the underlying structure of risk preferences can matter for making

out-of-sample predictions. Consider a regulatory proposal to require all insurance policies

to carry a deductible D < L. In order to assess this proposal, we need to know how the

demand for insurance would respond to the introduction of the deductible D. The demand

function for full insurance QF (p)– which we observe– provides, by itself, limited information

about the market demand function for deductible insurance, QD(p). However, if we know

the underlying model that generates QF (p), we can use that model to construct QD(p).

4More precisely, QF (p) =

 1 if p < 1000
2− 0.001p if 1000 ≤ p ≤ 2000
0 if p > 2000

.
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Assume for the moment that the underlying model is EU. In addition, assume that (i)

the utility function exhibits constant absolute risk aversion (CARA), specifically u(y) =

− exp(−ry)/r, where r is the coeffi cient of absolute risk aversion, and (ii) the slope of the

demand function QD(p) arises from heterogeneity in r. Given these assumptions, we can

recover the population distribution of r, denoted FEU , from the market demand function

QF (p). Observe that a household’s willingness to pay for full insurance is the z such that5

exp(rz) = µ exp(rL) + (1− µ). (1)

Equation (1) defines rF (z)– the coeffi cient of absolute risk aversion of a household with will-

ingness to pay z for full insurance. A household purchases full insurance when rF (z) > rF (p),

and hence the demand for full insurance satisfies QF (p) = 1 − FEU(rF (p)). It follows that,

given QF (p), we can recover FEU . Panel (b) of Figure 1 displays the FEU that corresponds

to the QF (p) depicted in panel (a).

Given FEU , it is straightforward to construct the demand for deductible insurance QD(p).

A household’s willingness to pay for deductible insurance is the z such that

µ exp(r(z +D)) + (1− µ) exp(rz) = µ exp(rL) + (1− µ). (2)

Equation (2) defines rD(z)– the coeffi cient of absolute risk aversion of a household with

willingness to pay z for deductible insurance. A household purchases deductible insurance

when rD(z) > rD(p), and hence the demand for deductible insurance is QD
EU(p) = 1 −

FEU(rD(p)). Panel (a) of Figure 1 depicts theQD
EU(p) that corresponds to theQF (p) depicted

in panel (a), assuming D = 2, 500. Because deductible insurance provides less coverage than

full insurance, naturally QD
EU(p) < QF (p).

Making a different assumption about the underlying model, however, can lead to differ-

ent predictions about the level of demand for deductible insurance. Suppose, for example,

that the underlying model is the probability distortion (PD) model featured in Barseghyan,

Molinari, O’Donoghue, and Teitelbaum (2013b). The PD model posits that households, in-

stead of weighting outcomes by their objective probabilities, weight outcomes using distorted

probabilities.6 Under the PD model (and maintaining the additional assumptions specified

above), a household’s willingness to pay for full insurance is the z such that

exp(rz) = Ω(µ) exp(rL) + (1− Ω(µ)), (3)

5For an arbitrary utility function, z is defined implicitly by u(w − z) = µu(w − L) + (1− µ)u(w), where
w is the household’s status quo wealth.

6In the settting of our example, such probability distortion can emerge from several prominent alternative
models of choice under risk. See Section 3 for further discussion.
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where Ω(µ) 6= µ is the weight on the loss outcome. Suppose that Ω(µ) = Ω̄ > µ is the

same across households, and that Ω̄ is known. Given Ω̄, we can proceed as before to use

the known demand for full insurance QF (p) to construct the counterfactual demand for

deductible insurance QD
Ω (p).

Let FΩ denote the distribution of r given the PDmodel with loss weight Ω̄. We can recover

FΩ from the demand for full insurance, QF (p) = 1 − FΩ(rFΩ(p)), where rFΩ(z) is defined by

equation (3) with Ω(µ) = Ω̄. Panel (b) of Figure 1 displays the FΩ that corresponds to the

QF (p) depicted in panel (a), assuming Ω̄ = 0.10. Given FΩ, we can construct the demand

for deductible insurance, QD
Ω (p) = 1− FΩ(rDΩ (p)), where rDΩ (z) is defined by

Ω̄ exp(r(z +D)) + (1− Ω̄) exp(rz) = Ω̄ exp(rL) + (1− Ω̄),

the equation that implicitly defines a household’s willingness to pay z for deductible insur-

ance. Panel (c) of Figure 1 depicts the QD
Ω (p) that corresponds to the QF (p) depicted in

panel (a), assuming D = 2, 500 and Ω̄ = 0.10. Observe that QD
Ω (p) < QD

EU(p).

In short, we see that the two models generate different predictions for the level of demand

for deductible insurance. In particular, the EU model predicts a higher level of demand

than the PD model. The intuition for this difference follows the nature of concave utility.

Under both models, a concave utility function implies that the concern for reducing risk is

stronger the more risk one bears.7 Moreover, this effect becomes stronger as the concavity

of the utility function increases (i.e., as r gets larger). For a given (observed) demand for

actuarially unfair full insurance, the concavity of the utility function is greater under the EU

model than under the PD model with Ω(µ) > µ,8 thus the implied demand for deductible

insurance is greater under EU.

2.2 Welfare Analysis

The underlying structure of risk preferences can matter for welfare analysis, even when the

analysis does not entail making out-of-sample predictions. In an important paper, Einav,

Finkelstein, and Cullen (2010) propose an approach to empirical welfare analysis in insurance

markets that does not require specifying or estimating the underlying structure of house-

holds’risk preferences. Instead, their approach– which takes the characteristics of insurance

7Take our example: although the deductible insurance provides 75 percent of the coverage of full insurance,
under both modes a household’s willingness to pay for the deductible insurance is greater than 75 percent
of the willingness to pay for full insurance (see 1).

8Intuitively, this is because under the EU model a household’s aversion to risk (which generates its
insurance demand) is driven solely by the concavity of its utility function, whereas under the PD model a
household’s aversion to risk is driven also by the overweighting of its distortion function.
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contracts as given but allows their prices to be determined endogenously– imposes certain

"reduced-form" restrictions on households, firms, and the marketplace. It then relies on

exogenous price variation to estimate the market demand and cost functions and uses the

estimates to conduct welfare analysis of regulatory interventions that change the prices of

existing contracts. (The authors acknowledge that their approach cannot be used to analyze

interventions that introduce contracts not observed in the data.)

This type of welfare analysis is valid provided that the demand function is a suffi cient

statistic for consumer welfare. Yet, this is not the case for all possible underlying risk

preference structures. Perhaps the cleanest example of when the demand function is not

a suffi cient statistic for consumer welfare, is a PD model in which Ω(µ) represents risk

misperceptions (i.e., incorrect subjective beliefs) rather than rank-dependent probability

weighting or some other deviation from EU.9 In this case, the demand for insurance is

generated by the EU model with the misperceived probability Ω(µ); however, consumer

welfare arguably should be evaluated using the EU model with the true probability µ.

2.3 Identification and Estimation Challenges

We conclude this section by highlighting several challenges that economists confront when

estimating risk preferences in the field. We list them below and return to them from time

to time in the rest of the paper.

Identification Our stylized example assumes that the weight Ω̄ is known. In the field this

would not be the case; instead, it would be necessary to estimate Ω̄. The challenge would

be to collect data that would allow for separate identification of Ω̄ and the distribution of

r. For instance, the "data" in our stylized example is not suffi cient to separately identify Ω̄

and the distribution of r. After all, Figure 1 illustrates two combinations of a value of Ω̄ and

a distribution of r that are equally consistent with the observed demand for full insurance

depicted in Figure 1 (namely, (i) Ω̄ = 0.05 and FEU and (ii) Ω̄ = 0.10 and FΩ). Indeed, there

are an infinite number of combinations that are consistent with the data in our example.

Thus, a major challenge that economists face when estimating risk preferences in the field

is collecting data that allow for joint identification under plausible restrictions on the model

of the various underlying sources of aversion to risk. We discuss this problem in Section 3.6.

Risk heterogeneity Our stylized example assumes that every household faces the same

magnitude and probability of loss. In field contexts, however, this would not be the case.

9See Section 3.
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Indeed, the large literature on adverse selection is entirely premised on the idea that different

households (even with identical observable characteristics) face different risks. Accounting

for such risk heterogeneity creates a major challenge to estimating risk preferences. In

some instances, access to observable household characteristics permits one to estimate how

households’ risks depend on those observables. In addition, more sophisticated analyses

also permit (and estimate the degree of) unobserved heterogeneity in the risks that different

households face – we return to this idea in Section 4.1.2.

Exogenous price variation Our stylized example assumes that the data contain suffi cient

exogenous price variation to non-parametrically identify the market demand function for full

insurance. However, a recurring theme throughout the literature is the diffi culty of collecting

data with suffi cient price variation that is plausibly exogenous to households’risk preferences.

Indeed, as we evidence in this review, the literature on estimating risk preferences using field

data got off to a slow start due in part to a paucity of "good" data. This literature has been

picking up steam in recent years due in part to economists collecting better data.

Preference heterogeneity This is an important issue that is intertwined with identifica-

tion. In reality, no field data are "ideal," implying that most models are identified up to one

or more strong assumptions about the structure of unobserved heterogeneity in risk pref-

erences. These assumptions may constrain the dimensionality of unobserved heterogeneity

(e.g., allowing for unobserved heterogeneity either in the curvature of the utility function

or in the shape of the probability distortion function, but not in both), or may impose

parametric structure on its distribution. We discuss these matters in Section 3.6.3.

Risk preferences versus subjective beliefs Our stylized example also illustrates the

importance of being able to distinguish probability distortions that arise because of subjective

beliefs (i.e., risk misperceptions) from those that arise because of the underlying structure

of risk preferences (e.g., rank-dependent probability weighting). We discuss this problem

in Section 3.6.2. More broadly, the nature of subjective beliefs and their relation to the

objective probabilities is the subject of an expanding literature that focuses on elicitation of

probabilistic expectations. We discuss this literature in Section 6.3.

3 Models of Risk Preferences

To estimate models of risk preferences, one must understand those models well, both the

general structure of a particular model and the possible parametric restrictions that one

8



might use for that model (along with the limitations of each parametric restriction). Hence,

in this section we describe in detail several models of risk preferences. We begin by reviewing

the standard EU model, and then we move on to introduce several alternative models. Our

goal is not to provide an exhaustive list but rather to focus on models of risk preferences

that have been prominent in the literature that uses field data to estimate risk preferences.10

We start by introducing notation that we use throughout this section.

Definition 1. Let X ≡ (x1, µ1;x2, µ2; ...;xN , µN) denote a lottery which yields outcome xn
with probability µn, where

∑N
n=1 µn = 1.

Models of risk preferences describe how a household chooses among lotteries of this form,

where we often use X to denote a choice set.11 Throughout, we express lottery outcomes

in terms of increments added to (or subtracted from) the household’s prior wealth w. In

other words, if outcome xn is realized, then the household will have final wealth w + xn.

The probabilities should be taken to be a household’s subjective beliefs. In particular, the

models below describe how a household’s subjective beliefs impact its choices. The models

are silent on the source of those subjective beliefs – we return to this issue in Section 4.1.1.

We illustrate the different models by describing each theory’s predictions in two examples:

Example 1. What is a household’s willingness to pay for full insurance against the possibility
of losing L with probability µ? In other words, what is the z that makes the household

indifferent between the lottery (−z, 1) and the lottery (−L, µ; 0, 1− µ)?

Example 2. What is a household’s willingness to pay for an asset that pays out x1 with

probability µ1, x2 with probability µ2, and x3 with probability µ3? In other words, what is

the z that makes the household indifferent between the lottery (0, 1) and the lottery (−z +

x1, µ1;−z + x2, µ2;−z + x3, µ3)?

3.1 Expected Utility (EU)

Under expected utility (EU), given a choice set X , a household will choose the option X ∈ X
that maximizes

EU(X) ≡
N∑
n=1

µnu(w + xn),

10Experimental analyses of risk preferences often consider a broader set of models. Indeed, the experimental
approach permits one to identify more nuanced features of risk preferences because one is able to design the
data in the needed way. One might worry, however, that the more nuanced the behavior one seeks to identify
in an experiment, the less valid it is to extrapolate from the artificial experimental environment.
11Note that different lotteries could of course have a different number of outcomes – that is, N could

differ across lotteries.
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Panel 1: Utility functions

CARA u(y) =

{
−1
r

exp(−ry) for any r 6= 0,
y for r = 0.

CRRA u(y) =

{
1

1−ρy
1−ρ for any ρ 6= 1,

ln y for ρ = 1.

HARA u(y) =


γ

1−γ

(
η + y

γ

)1−γ
for any γ 6= 1,

γ ln
(
η + y

γ

)
for γ = 1.

NTD ũ(y) = y − r
2
y2.

Panel 2: Probability weighting functions
Karmarkar (1978) π(µ) = µγ

µγ+(1−µ)γ
.

Tversky and Kahneman (1992) π(µ) = µγ

[µγ+(1−µ)γ ]1/γ
.

Lattimore, Baker, and Witte (1992) π(µ) = δµγ

δµγ+(1−µ)γ
.

Prelec (1998) π(µ) = exp(−(− ln p)α).

Panel 3: Value function

Tversky and Kahneman (1992) v(y) =

{
yα for y ≥ 0, α ∈ (0, 1),

−λ (−y)β for y < 0, β ∈ (0, 1), λ > 1.

Table 1: Functional forms used in this article

where u is a utility function that maps final wealth onto the real line. Hence, in our two

examples:

Example 1 (Under EU). A household’s willingness to pay for full insurance against the

possibility of losing L with probability µ is the z such that

u(w − z) = µu(w − L) + (1− µ)u(w).

Example 2 (Under EU). A household’s willingness to pay for an asset that pays out x1 with

probability µ1, x2 with probability µ2, and x3 with probability µ3 is the z such that

u(w) = µ1u(w − z + x1) + µ2u(w − z + x2) + µ3u(w − z + x3).

Under EU, a household’s attitude towards risk is fully captured by its utility function u

(and its prior wealth). In broad terms, a household will be risk averse if u is concave, risk

loving if u is convex, and risk neutral if u is linear. More narrowly, we can derive a local

measure of absolute or relative risk aversion (or risk lovingness) that characterizes how a

household will react locally to choices between lotteries – e.g., in Example 1, a household
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with higher risk aversion will have a higher willingness to pay for full insurance.

Hence, when one estimates an EU model, the main object to estimate is the utility func-

tion u. As we shall see, occasionally researchers have taken a non-parametric approach to

estimating u, but most often they assume a specific parametric functional form for u. Per-

haps the most common functional forms are the Constant Absolute Risk Aversion (CARA),

the Constant Relative Risk Aversion (CRRA), and the Hyperbolic Absolute Risk Aversion

(HARA) families, reported in Panel 1 of Table 1.

When one uses the CARA family, one estimates the parameter r, which is the coeffi cient

of absolute risk aversion (higher r means more risk averse). The CARA family has the

advantage that it implies a household’s prior wealth w, which frequently is unobserved,

is irrelevant to the household’s decisions. However, the CARA family has a drawback.

Economists typically believe that households exhibit decreasing absolute risk aversion –

that is, as a household becomes wealthier, it becomes less averse to risk.

When one uses the CRRA family, one estimates the parameter ρ, which is the coeffi cient

of relative risk aversion (higher ρ means more risk averse). The CRRA family has the

advantage of implying decreasing absolute risk aversion (among those who are risk averse).

However, the CRRA family has the major drawback that it requires prior wealth w as an

input. Hence, when researchers use the CRRA family and do not observe prior wealth, they

typically either posit some reasonable value for prior wealth (and check robustness for other

values), or proxy for wealth using some aspect of the data (e.g., home value).

Finally, when one uses the HARA family, one estimates the parameters η and γ, which

together determine the degree of absolute risk aversion r(y) = (η+y/γ)−1. The HARA family

has the property that it nests the CARA and CRRA families as special cases, respectively

γ → +∞ yielding CARA, and η = 0 yielding CRRA.12

A third technique is to use an approximation approach (see Cohen and Einav (2007);

Barseghyan, Prince, and Teitelbaum (2011); Barseghyan, Molinari, O’Donoghue, and Teitel-

baum (2013b)). Specifically, if one takes a second-order Taylor approximation of the utility

function around prior wealth w and then normalizes by marginal utility evaluated at prior

wealth w, one gets

ũ(∆) ≡ u(w + ∆)

u′(w)
− u(w)

u′(w)
∼= ∆− r

2
∆2, (4)

where r ≡ −u′′(w)/u′(w) is local absolute risk aversion. This approximation is accurate

when the third- and higher-order derivatives of the utility function u are negligible, at least

relative to the increments to wealth that are relevant in a particular application. As such,

12Some researchers (e.g., Cicchetti and Dubin (1994) and Jullien and Salanié (2000)) assume a simpler
HARA specification u(y) = (η + y)γ . This simplification necessitates limiting γ to lie in the interval (0, 1].
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we label this approach the Negligible Third Derivative (NTD) approach.

The NTD family is convenient to work with because it does not require prior wealth

as an input. However, one must be careful to assess whether the approximation method

is appropriate for the particular application under consideration. This will depend on the

magnitude of the increments to wealth relative to the estimated degree of risk aversion.13

3.2 Rank-Dependent Expected Utility (RDEU)

Rank-dependent expected utility (RDEU) emerged from a tradition in psychology of relaxing

the feature of EU that outcomes are weighted by their probabilities. In other words, we

replace the expected utility equation with

V (X) ≡
N∑
n=1

ωnu(w + xn)

where ωn is a decision weight associated with outcome xn and may not be equal to a person’s

belief µn. The original idea was proposed by Edwards (1955, 1962) and popularized in

Kahneman and Tversky’s 1979 prospect theory, which assumes ωn = π(µn). In other words,

there is an increasing function π – often labelled a probability weighting function – that

transforms each probability into a decision weight (still normalizing that π(0) = 0 and

π(1) = 1). With this formulation, however, for any π(µ) 6= µ it is possible to construct

examples in which the theory predicts violations of stochastic dominance – i.e., that people

would choose a lottery over another that stochastically dominates it. The source of such

predictions is that, unlike under EU, when evaluating lotteries, the weights need not sum to

one.14

Quiggin (1982) proposed a rank-dependent model to solve this problem. Under the rank-

dependent approach, when evaluating a lottery X ≡ (x1, µ1;x2, µ2; ...;xN , µN), a household

first ranks the outcomes from best to worst. Specifically, if the outcomes are ordered such

that x1 < x2 < .... < xN , then the weight on outcome n is

ωn =


π(µ1) for n = 1,

π
(∑n

j=1 µj

)
− π

(∑n−1
j=1 µj

)
for n ∈ {2, ..., N − 1},

1− π
(∑n−1

j=1 µj

)
for n = N,

13One obvious concern is that utility must be increasing, which for risk-averse individuals (with r > 0)
holds only for ∆ < 1/r.
14For instance, if π(1/3) > 1/3, then there exists ȳ > 0 such that the model predicts a person would choose

the lottery (x, 1/3;x− y, 1/3;x− 2y, 1/3) over the lottery (x, 1) for all y ∈ (0, ȳ).
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where again π is a probability weighting function. With this approach, when evaluating a

lottery, the weights sum to one by construction, and there are no violations of stochastic

dominance.

For our two examples, RDEU generates the following equations:

Example 1 (Under RDEU). A household’s willingness to pay for full insurance against the
possibility of losing L with probability µ is the z such that:

u(w − z) = π(µ)u(w − L) + (1− π(µ))u(w).

Example 2 (Under RDEU). A household’s the willingness to pay for an asset that pays out
x1 with probability µ1, x2 with probability µ2, and x3 with probability µ3 is the z such that

u(w) = π(µ1)u(w − z + x1) + (π(µ2 + µ1)− π(µ1))u(w − z + x2)

+ (1− π(µ2 + µ1))u(w − z + x3)

The implications of RDEU of course depend on the specific probability weighting function

that is used. The literature – in large part based on experimental results – has emphasized

an inverse-S-shaped probability weighting function: For small µ, π(µ) is concave and has

π(µ) > µ, while for large µ, π(µ) is convex and has π(µ) < µ. Figure 2 depicts a stylized

version of such a function, where this particular version has an inflection point at µ = 1/2

and is symmetric around µ = 1/2.15

To understand the implications of RDEU, consider the implications of the probability

weighting function in Figure 2 for Examples 1 and 2. For binary lotteries, as in Example 1,

there will be overweighting of low probability events (events with µ < 1/2) and underweight-

ing of high probability events (events with µ > 1/2). Hence, in Example 1, if the probability

of a loss µ < 1/2, then the weight π(µ) on the loss will be greater than the probability, and

thus probability weighting generates a source of risk aversion. In contrast, if the probability

of a loss µ > 1/2, then the weight π(µ) on the loss will be less than the probability, and thus

probability weighting generates a source of risk seeking.

For lotteries with more than two outcomes, such as Example 2, an inverse-S-shaped

probability weighting function instead generates overweighting of extreme outcomes and

underweighting of intermediate outcomes – and importantly two outcomes that are equally

likely need not have the same decision weights. For instance, consider Example 2 when

µ1 = µ2 = µ3 = 1/3. Given the probability weighting function in Figure 2, the extreme

outcomes of x1 and x3 will both be overweighted (i.e., π(1/3) > 1/3 and 1− π(2/3) > 1/3),

15Figure 2 is consistent with the Karmarkar (1978) functional form reported in Table 1, with γ = 1/2.
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Figure 2: Symmetric probability weighting function.

while the intermediate outcome x2 is underweighted (i.e., π(2/3)− π(1/3) < 1/3).

Beyond the general inverse-S shape, a number of parametrized functional forms have

been proposed in the literature on probability weighting. Some prominent functional forms

are reported in Table 1-Panel 2.16

Whereas Figure 2 presents the Karmarkar form for γ = 1/2, Figure 3 presents estimated

versions of the other three forms.17 Note two features in Figure 3. First, unlike in Figure

2, the functions are not symmetric around µ = 1/2, but rather they typically cross the 45-

degree line at µ < 1/2. We return to the importance of this feature in a moment. Second, the

functions exhibit excess steepness near µ = 0 and µ = 1 – in the sense of π′(µ) >> 1. In fact,

in their original discussion of probability weighting, Kahneman and Tversky (1979) instead

suggested that probability weighting is discontinuous at the endpoints, reflecting a notion

that as the probability of an event gets small enough, people ignore that possible event. The

16To be precise, Lattimore, Baker, and Witte (1992) propose the functional form

π(µi|µ−i) =
δµγi

δµγi +
∑
j 6=i µ

γ
j

, i = 1, ..., N,

with µ−i denoting the entries of the probability vector µ other than µi. For N = 2, the above expression
coincides with what appears in Table 1, and this functional form (used also in the case of N > 2) is commonly
referred to in the literature as the Lattimore, Baker, and Witte’s form.
17Figure 3 closely parallels Figure 1 from Prelec (1998). As in that figure, we use α = .65 for the Prelec

function, and we use γ = .61 for the Tversky and Kahneman (1992) function. For the Lattimore, Baker,
and Witte (1992), we use δ = .77 and γ = .44, which are estimates from Gonzalez and Wu (1999).
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Figure 3: Assymetric probability weighting functions.

subsequent literature seems to have introduced the excess steepness near µ = 0 and µ = 1

to eliminate this discontinuity. However, it is unclear how much evidence there is for this

excess steepness. As we shall see, in field applications, it is important to assess whether and

how low-probability events are incorporated into household’s decision calculations.

In the RDEU model outlined above, the probability-weighting function is first applied to

the worst outcome, and then successively applied to better and better outcomes – which

we refer to as RDEU from the bottom. Some analyses do the reverse, so the probability

weighting function is first applied to the best outcome, and then successively applied to

worse and worse outcomes – which we refer to as RDEU from the top. Formally, if the

outcomes are again ordered such that x1 < x2 < .... < xN , then, under RDEU from the top,

the weight on outcome n is

ωn =


π(µN) for n = N,

π
(∑N

j=n µj

)
− π

(∑N
j=n+1 µj

)
for n ∈ {2, ..., N − 1},

1− π
(∑N

j=n+1 µj

)
for n = 1.

In principle, whether one applies RDEU from the bottom versus from the top does not

necessarily add a dimension along which the model can be misspecified. In particular, if we

use πT in RDEU from the top and πB in RDEU from the bottom, the two forms yield identical

predictions as long as these functions are symmetric, in the sense that πB(µ) = 1−πT (1−µ)
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for all µ. Similarly, if one estimates an RDEU model with a non-parametric approach to π, it

is not important which version one uses. However, if one uses a parametric functional form

that does not satisfy the symmetry property, the direction along which RDEU is applied

yields an additional dimension along which the model can be misspecified. For instance,

suppose we use the Prelec (1998) functional form in Example 1 with µ = .4. Under RDEU

from the bottom, because π(.4) < 0.4 we would underweight the loss event, whereas under

RDEU from the top, because 1− π(.6) > 0.4 we would overweight the loss event.

In field applications, both variants have been used. Typically, the version used depends

on which outcome is more “focal” in a particular application. For insurance applications,

where the loss event arguably is the focal event, researchers most often use RDEU from

the bottom. For gambling applications, where the win event arguably is the focal event,

researchers most often use RDEU from the top.

3.3 Cumulative Prospect Theory (CPT)

Kahneman and Tversky (1979) “prospect theory”has two key features: probability weighting

and loss aversion. As discussed above, probability weighting derived from an older tradition

in psychology, and is fully incorporated into RDEU. Loss aversion represents a second de-

parture from the standard expected utility model: Instead of there being a utility function

u defined over final wealth, there is a value function v defined over gains and losses relative

to some reference point.

Tversky and Kahneman (1992) propose an improved version of their theory, labelled

“cumulative prospect theory”(CPT). CPT requires as an input a reference outcome s, and

each outcome is coded as a gain or loss relative to this reference outcome.18 Consider a

lottery X ≡ (x1, µ1; ...;xN , µN) and a reference point s, and suppose x1 < ... < xn̄−1 ≤ s <

xn̄ < ... < xN . Under CPT, this lottery is evaluated as

V (X; r) ≡
N∑
n=1

ωn v(xn − s)

18The discussion in the text will focus on a reference outcome expressed in increments to wealth, and
thus the comparison is x to s. One could equivalently use a reference outcome expressed in final wealth, in
which case the comparison would be (w+ x) to s – i.e., the value function v(x− s) would be replaced with
v((w + x)− s).
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where the weight on outcome xn is

ωn =


π−(µ1) for n = 1

π−
(∑n

j=1 µj

)
− π−

(∑n−1
j=1 µj

)
for n ∈ {2, ..., n̄− 1}

π+
(∑N

j=n µj

)
− π+

(∑N
j=n+1 µj

)
for n ∈ {n̄, ..., N − 1}.

π+(µN) for n = N.

In this formulation, π− and π+ are probability-weighting functions applied to the loss and

gain events, respectively. Thus, the theory permits differential weighting for gains and

losses.19 Of course, this differential weighting creates the potential for violations of stochastic

dominance.

The value function v is assumed to have three key properties: (i) it has v(0) = 0 and

assigns positive value to gains and negative value to losses, (ii) it is concave over gains and

convex over losses (often labelled “diminishing sensitivity”), and (iii) it is steeper in the loss

domain than in the gain domain (often labelled “loss aversion”).

For our two examples, CPT with a reference point s = 0 generates the following equations:

Example 1 (Under CPT). A household’s willingness to pay for full insurance against the
possibility of losing L with probability µ is the z such that:

v(−z) = π−(µ)v(−L).

Example 2 (Under CPT). A household’s willingness to pay for an asset that pays out x1

with probability µ1, x2 with probability µ2, and x3 with probability µ3, where x1 < s < x2 < x3

is the z such that20

v(0) = π−(µ1)v(−z + x1) +
(
π+(µ3 + µ2)− π+(µ3)

)
u(w − z + x2)

+ π+(µ3)u(w − z + x3).

In order to estimate a CPTmodel, one often needs functional form assumptions (although

occasionally researchers have attempted more non-parametric approaches). In terms of the

probability-weighting functions π− and π+, the literature which estimates CPT has used the

same functional forms as the RDEU literature – indeed, the Tversky and Kahneman (1992)

form reported above was suggested as part of CPT. The value function proposed by Tversky

and Kahneman (1992) is reported in Table 1, Panel 3. In that specification, α ∈ (0, 1) and

β ∈ (0, 1) generate diminishing sensitivity in both the gain and loss domains, respectively.

19If π+(µ) = 1− π−(1− µ), then the distinction between π− and π+ is irrelevant.
20Here we use π+ to weigh the second event because we are assuming that z is such that x2 − z ≥ 0.
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The parameter λ > 1 reflects loss aversion, as it implies the negative value generated by a

loss tends to be larger in magnitude than the positive value generated by an equal sized gain.

Based on their experimental data, Tversky and Kahneman (1992) suggest that λ = 2.25,

α = β = 0.88, and for probability weighting as reported in Table 1, Panel 2, γ− = 0.69 and

γ+ = 0.61.

When applying CPT, researchers must specify a reference point, and typically this is

done using some external intuitive argument. For instance, in experiments it is typically

argued that the reference point should be zero or experimentally endowed wealth.21 In field

applications, researchers argue for a natural reference point given that application (e.g., in

his recent analysis of tax evasion Rees-Jones (2014) argues that a zero balance due is a

natural reference point). This extra “degree of freedom”in CPT is often seen as a limitation

by some and it has led to attempts to tie down the reference point, which we review in the

following sections.

3.4 Koszegi-Rabin Loss Aversion

Kőszegi and Rabin (2006, 2007) proposed a form of “rational expectations” loss aversion

wherein gains and losses are defined relative to expectations about outcomes – that is, the

reference point is taken to be one’s expectations about outcomes. Moreover, because such

expectations could involve uncertainty about future outcomes, they extend the model of loss

aversion to use a reference lottery instead of a reference outcome.

Specifically, under Kőszegi-Rabin (KR) loss aversion, the utility from choosing lottery

X ≡ (xn, µn)Nn=1 given a reference lottery X̃ ≡ (x̃m, µ̃m)Mm=1 is

V (X|X̃) ≡
N∑
n=1

M∑
m=1

µnµ̃m [u(xn) + v(xn|x̃m)] .

The function u represents standard “intrinsic”utility defined over final wealth, just as in EU.

The function v represents “gain-loss”utility that results from experiencing gains or losses

relative to the reference lottery. Gain-loss utility depends on how a realized outcome xn is

compared to all possible outcomes that could have occurred in the reference lottery. For the

value function, KR use

v(y|ỹ) =

{
η [u(y)− u(ỹ)] if u(y) > u(ỹ)

ηλ [u(y)− u(ỹ)] if u(y) ≤ u(ỹ)
.

21For the latter, if subjects are initially given $Z before making choices, it is sometimes argued that the
reference point should be $Z.
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In this formulation, the magnitude of gain-loss utility is determined by the intrinsic utility

gain or utility loss relative to consuming the reference point. Moreover, gain-loss utility takes

a two-part linear form, where η ≥ 0 captures the importance of gain-loss utility relative to

intrinsic utility and λ ≥ 1 captures loss aversion. The model reduces to expected utility

when η = 0 or λ = 1.

KR propose that the reference lottery equals recent expectations about outcomes– i.e.,

if a household expects to face lottery X̃, then its reference lottery becomes X̃. However,

because situations vary in terms of when a household deliberates about its choices and when

it commits to its choices, KR offer multiple solution concepts for the determination of the

reference lottery. Here, we focus on two solution concepts that are perhaps most relevant

for field data:

Definition 2 (KR-PPE). Given a choice set X , a lottery X ∈ X is a personal equilibrium if
for all X ′ ∈ X , V (X|X) ≥ V (X ′|X), and it is a preferred personal equilibrium if there does

not exist another X ′ ∈ X such that X ′ is a personal equilibrium and V (X ′|X ′) > V (X|X).

Definition 3 (KR-CPE). Given a choice set X , a lottery X ∈ X is a choice-acclimating

personal equilibrium if for all X ′ ∈ X , V (X|X) ≥ V (X ′|X ′).

KR suggest that PPE is appropriate when, faced with a choice set X , a person thinks
about the choice situation, decides on a planned choice X ∈ X , and then makes that choice
shortly before the uncertainty is resolved. An option X is a personal equilibrium if, when

a person plans on that option and thus that option determines her reference lottery, it is

indeed optimal to make that choice. Among the set of personal equilibria, the PPE is the

personal equilibrium that yields the highest “utility”. In terms of field contexts, then, PPE

is an appropriate solution concept when a person is able to think about a choice situation

for some duration and then make a choice shortly before the uncertainty is revealed. Among

those that we discuss in Sections 4 and 5, the field context which perhaps fits this scenario

is betting on horse races.

The idea behind CPE is that, when faced with a choice set X , a person commits to
a choice well in advance of the resolution of uncertainty. By the time the uncertainty is

resolved, the person will have become accustomed to its choice and hence expect the lottery

induced by its choice. Hence, the person chooses the lottery that yields the largest utility

conditional on that lottery being the reference lottery. Field contexts that have the feature

of committing to a choice well in advance of the resolution of uncertainty are property and

health insurance.

To illustrate these solution concepts, consider the implications in Example 1:22

22These equations are derived in Appendix 1. Because the equations get quite complex, we do not present
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Example 1 (Under KR loss aversion with PPE). A household’s willingness to pay for full
insurance against the possibility of losing L with probability µ is the z such that:

u(w − z) =

(
µ(1 + ηλ)

1 + µηλ+ (1− µ)η

)
u(w − L)

+

(
1− µ(1 + ηλ)

1 + µηλ+ (1− µ)η

)
u(w).

Example 1 (Under KR loss aversion with CPE). A household’s willingness to pay for full
insurance against the possibility of losing L with probability µ is the z such that:

u(w − z) = µ [1 + η(λ− 1)(1− µ)]u(w − L)

+ [1− µ [1 + η(λ− 1)(1− µ)]]u(w).

When estimating the KR model, one needs to estimate the parameters η and λ along

with the utility function u(y). Because the latter is meant to be standard utility over final

wealth as used in EU, any of the functional forms for u(y) in Table 1 might be used.

Finally, there are two further points with regard to CPE. First, note that in Example 1

the parameters η and λ always appear as a product η(λ−1). In fact, under CPE this always

holds, and thus the model really has only one parameter Λ = η(λ − 1). Second, CPE can

sometimes yields strange predictions. For instance, one might naturally think that, ceteris

paribus, if the probability µ of a loss increases, the willingness to pay z for full insurance

should also increase. However, if Λ > 1, one can show that for µ close enough to one, the

willingness to pay declines with µ. The intuition for this result is that, under CPE, a person

has a strong aversion to risk. Hence, because intermediate probabilities (close to 1/2) involve

more risk that probabilities close to one, the person is willing to pay more for full insurance

(even though the expected loss is smaller).23

3.5 Disappointment Aversion

Models of “disappointment aversion” also assume that people’s choices are influenced by

their expectations. The concept of disappointment aversion was proposed by Bell (1985)

and further developed by Loomes and Sugden (1986) and Gul (1991). The basic idea is that

a person is disappointed (or elated) if the realized outcome of a lottery is worse (or better)

than “expected”.

the equations for Example 2, although we do present those equations in Appendix 1.
23In fact, one can also show that, for any Λ > 0, under CPE a person can choose a dominated lottery.

The intuition is much the same: the aversion to risk can be so strong that the person would rather choose a
certain outcome over a risky lottery that dominates that certain outcome.
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Bell (1985) proposes a variant of disappointment aversion in which disappointment is

determined from a comparison of one’s realized utility to one’s expected utility, and the

person accounts for expected disappointment when making a choice. Formally, a lottery

X ≡ (xn, µn)Nn=1 is evaluated as

V (X) =

N∑
n=1

µnu(xn)− β
N∑
n=1

µn

[
I

(
u(xn) <

N∑
n′=1

µn′u(xn′)

)(
N∑

n′=1

µn′u(xn′)− u(xn)

)]

where I is an indicator function. In this formulation, the first term is the standard expected

utility of lottery X. The second term reflects the expected disutility from disappointment

that arises when the realized utility from an outcome is less than the standard expected

utility of the lottery. The parameter β captures the magnitude of disappointment aversion,

where the model reduces the expected utility for β = 0.24

Gul (1991) proposes another variant of disappointment aversion in which disappointment

is determined from a comparison of one’s realized outcome to one’s certainty equivalent for

the lottery. Formally, a lottery X ≡ (xn, µn)Nn=1 is evaluated as V (x) = u(z) such that

u(z) =
N∑
n=1

µnu(xn)− β
N∑
n=1

µn [I (u(xn) < u(z)) (u(z)− u(xn))]

where again I is an indicator function, and z represents one’s certainty equivalent for lottery

X.

To illustrate these solution concepts, consider the implications in Example 1:25

Example 1 (Under Bell disappointment aversion). A household’s willingness to pay for full
insurance against the possibility of losing L with probability µ is the z such that:

u(w − z) = µ [1 + β(1− µ)]u(w − L)

+ [1− µ [1 + β(1− µ)]]u(w).

Example 1 (Under Gul disappointment aversion). A household’s willingness to pay for full

24Bell (1985) further assumes that (i) u(x) = x and (ii) a person might also experience utility from elation
when the realized outcome is larger than the expected utility. Even with the latter, however, his model
reduces to the model in the text where β represents the difference between the marginal disutility from
disappointment and the marginal utility from elation. Loomes and Sugden (1986) also use this formulation,
except they study non-linear disappointment.
25These equations are derived in Appendix 1. Because the equations get quite complex, we do not present

the equations for Example 2, although we do present those equations in Appendix 1.
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Model WTP
EU µu(w − d− z) + (1− µ)u(w − z) = µu(w − L) + (1− µ)u(w)
RDEU π(µ)u(w − d− z) + (1− π(µ))u(w − z) = π(µ)u(w − L) + (1− π(µ))u(w)
CPT π−(µ)v(−d− z) + π−(1− µ)v(−z) = π−(µ)v(−L)
KR (CPE) {µu(w − d− z) + (1− µ)u(w − z) = {µu(w − L) + (1− µ)u(w)

−Λ(1− µ)µ[u(w − z)− u(w − d− z)]} −Λ(1− µ)µ[u(w)− u(w − L)]}
Bell {µ [1 + β(1− µ)]u(w − d− z) = {µ [1 + β(1− µ)]u(w − L)

+ [1− µ [1 + β(1− µ)]]u(w − z)} + [1− µ [1 + β(1− µ)]]u(w)}
Gul

{(
(1+β)µ
1+βµ

)
u(w − d− z) =

{(
(1+β)µ
1+βµ

)
u(w − L)

+
(

1− (1+β)µ
1+βµ

)
u(w − z)

}
+
(

1− (1+β)µ
1+βµ

)
u(w)

}
Table 2: Willingness to pay (z) for insurance with deductible d, against the possibility of
losing L with probability µ.

insurance against the possibility of losing L with probability µ is the z such that:

u(w − z) =

(
(1 + β)µ

1 + βµ

)
u(w − L)

+

(
1− (1 + β)µ

1 + βµ

)
u(w).

When Bell disappointment aversion is applied to binary lotteries, the model is equivalent

to the KR-CPE model – e.g., in Example 1, the equation that determines z is identical,

where β replaces η(λ− 1). Gul disappointment aversion yields a slightly different equation,

though the structure is still quite similar. In contrast, for lotteries with more than two

outcomes, while Bell disappointment aversion and Gul disappointment aversion are still

structured similarly, their structure is qualitatively different from the KR model. For details,

see Appendix 1.

When estimating models of disappointment aversion, one needs to estimate the parameter

β along with the utility function u(y). Because the latter is again meant to be standard utility

over final wealth as used in EU, any of the functional forms for u(y) in Table 1 might be

used.

3.6 Model Predictions and Identification

Our goal in this section is to develop intuition for the type of data that may yield point

identification of the model’s parameters. We consider an idealized scenario, in which a re-

searcher has data that allow her to learn households’willingness to pay for different lotteries,
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and show what one can infer about risk preferences in this scenario. To aid our discussion,

we use the framework in Example 1, in which households incur a loss L with probability

µ. In Table 2 we report the households’willingness to pay for an insurance policy with a

deductible d ≥ 0, implied by each of the models presented in the previous sections; that is,

we report the equation that one needs to solve to obtain the value z such that

(w − z, 1− µ ; w − z − d, µ) ∼ (w, 1− µ ; w − L, µ).

Of course, z is a function of d and µ.

With the value z(d, µ) in hand, we examine whether point identification of the parameter

vector characterizing the model can be achieved. Point identification requires that only one

value of that vector is concordant with the joint distribution of the observable variables.

When we consider models that encompass several features leading to aversion to risk (e.g.,

curvature of the utility function, and probability distortion function), a minimum require-

ment towards identification of the parameters characterizing each of these features, is that

when these parameters take distinct values, they lead to distinct model predictions. In our

setting, perhaps the most transparent way to illustrate how the model’s predictions change

with the parameters’values is to show how the implied willingness to pay for insurance (or

for financial assets) changes.

3.6.1 Expected Utility

Table 2 reports an equation that implicitly defines households’willingness to pay for de-

ductible insurance against a loss L that may occur with probability µ. Suppose we observe

one specific deductible-probability combination denoted (d0, µ0), and the associated willing-

ness to pay, which in turn solves

u(w − z(d0, µ0)− d0)− u(w − L)

u(w)− u(w − z(d0, µ0))
=

1− µ0

µ0

.

In order to learn risk preferences, much of the literature assumes a parametric functional form

for u(w), e.g., CARA, CRRA, or NTD, with a single parameter capturing the magnitude

of risk aversion. These functional forms all fall in a class of utility functions that satisfy

Assumption 1 below.

Denote by u(x;φ) the parametric utility function, where x is a final wealth state and φ

is a taste parameter. Assume that u is continuous in both x > 0 and φ ∈ R, and that φ = 0

if and only if u(x;φ) = x.
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Assumption 1. (i) u(x;φ) is increasing in x, and for any x0 > x1 > x2, the ratio R ≡
[u(x1;φ)− u(x2;φ)] / [u(x0;φ)− u(x1;φ)] is strictly increasing in φ.

(ii) limφ→∞R =∞ and limφ→−∞R = 0.26

Assumption 1 naturally associates φ with the magnitude of an individual’s risk aversion.

In particular, Assumption 1 holds if and only if for any x0 > x1 > x2 and µ ∈ (0, 1), there

exists a φ̄ such that (x0, 1 − µ;x2, µ) � (x1, 1) for φ ∈ [0, φ̄), (x0, 1 − µ;x2, µ) ∼ (x1, 1) for

φ = φ̄, and (x0, 1 − µ;x2, µ) ≺ (x1, 1) for φ > φ̄. In words, whenever a person compares

a binary risky lottery to a certain amount in the support of the risky lottery, the person

chooses the riskier lottery if her risk aversion (φ) is small enough (risk loving enough), and

she chooses the less risky lottery if her risk aversion is high enough.

Under EU, for any u(x; ·) satisfying Assumption 1, each φ implies a unique z(d0, µ0),

and in particular, the larger is φ (the more risk averse the agent is) the larger is z(d0, µ0)

(the more the agent is willing to pay for insurance). Hence, under EU with a parametric

functional form for u, observation of individuals’willingness to pay associated with a single

combination (d0, µ0) yields point identification of φ.

The literature most often assumes a parametric functional form for u, not only when

estimating EU but also when estimating alternative models (as we discuss below). As we

have seen, this assumption dramatically simplifies identification, but it is a strong restriction.

It would be desirable to be able to trace out the utility function nonparametrically over the

relevant support. However, this would also require strong assumptions about the nature of

heterogeneity across people and information about their wealth (we return to this discussion

in Section 5.2.1).

3.6.2 Rank Dependent Expected Utility

We next consider model predictions under RDEU. From the second line in Table 2, we obtain

that under RDEU,
u(w − z(d, µ)− d)− u(w − L)

u(w)− u(w − z(d, µ))
=

1− π(µ)

π(µ)
.

Suppose we observe the households’willingness to pay associated with a specific combina-

tion (d0, µ0). In this case, model predictions depend on both the utility function u and the

decision weight π(µ0) ≡ π0.27 As a result, observing willingness to pay for insurance with

26The limit assumption is made merely to guarantee interior solutions in any formal results below. In
practice, this assumption is unlikely to be important. NTD does not satisfy this assumptions, but Result 1
goes through for NTD as well.
27The discussion here assumes a fixed µ0, and thus focuses on identifying π evaluated at µ0. In order to

identify the entire function π(·) on a given range of values for µ, one needs to observe willingness to pay for
insurance at all probabilities of loss over the range of µ.
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deductible d0 does not suffi ce to point identify both π0 and u, even when the utility func-

tion is parametrically specified. In particular, even in the parametric case, there is a set of

(φ, π0) pairs consistent with willingness to pay z(d0, µ0). Indeed, if we define π̄0(φ|z(d0, µ0))

to be the required π0 as a function of φ that generates willingness to pay z(d0, µ0), we can

rearrange the equality above to derive

π̄0(φ|z(d0, µ0)) =
u(w;φ)− u(w − z(d0, µ0);φ)

[u(w;φ)− u(w − z(d0, µ0);φ)] + [u(w − z(d0, µ0)− d0;φ)− u(w − L;φ)]
.

For any u that satisfies Assumption 1, π̄0(φ|z(d0, µ0)) is decreasing in φ (as depicted in Figure

4). Intuitively, both an increased risk aversion and an increased decision weight on the loss

state, imply an increased willingness to pay for insurance. Hence, for a fixed willingness to

pay, as risk aversion increases, the decision weight on the loss state must decline in order to

keep the willingness to pay unchanged.

In order to separately point identify φ and π, we therefore need to observe richer data.

In the insurance example, for instance, it would suffi ce to also observe the willingness to pay

for an insurance with a different deductible d1, denoted z(d1, µ0). This willingness to pay

yields another set of (φ, π0) pairs, which can be represented by the curve π̄0(φ|z(d1, µ0)). As

we establish in Result 1 below, these two curves cross at only one point, yielding a unique

(φ, π0) pair consistent with individuals’willingness to pay for each insurance plan.

Result 1. If u(x;φ) satisfies Assumption 1, then for any 0 ≤ d0 < d1 < L there exists a

unique φ̄ such that

(i) π̄0(φ̄|z(d0, µ0)) = π̄0(φ̄|z(d1, µ0)),

(ii) π̄0(φ|z(d0, µ0)) < π̄0(φ|z(d1, µ0)) for all φ < φ̄, and π̄0(φ|z(d0, µ0)) > π̄0(φ|z(d1, µ0)) for

all φ > φ̄.

Proof : First note that, because u is increasing in x, z(d0, µ0) > z(d1, µ0) while z(d0, µ0) +

d0 < z(d1, µ0) + d1 (otherwise the individual would violate dominance). Define A(φ) ≡
u(w;φ) − u(w − z(d0, µ0);φ), B(φ) ≡ u(w − z(d0, µ0) − d;φ) − u(w − L;φ), A′(φ) ≡
u(w;φ)−u(w−z(d1, µ0);φ), and B′(φ) ≡ u(w−z(d1, µ0)−d′;φ)−u(w−L;φ), in which case

π̄0(φ|z(d0, µ0)) = A(φ)/ [A(φ) +B(φ)] and π̄0(φ|z(d1, µ0)) = A′(φ)/ [A′(φ) +B′(φ)]. Hence

π̄0(φ|z(d0, µ0)) ≷ π̄0(φ|z(d1, µ0)) ⇐⇒ A(φ)
A(φ)+B(φ)

≷ A′(φ)
A′(φ)+B′(φ)

⇐⇒ B′(φ)
B(φ)

≷ A′(φ)
A(φ)

.

Assumption 1 yields thatA′(φ)/A(φ) is a strictly decreasing function of φ, where limφ→∞
A′(φ)
A(φ)

= 0 and limφ→−∞
A′(φ)
A(φ)

= 1. Analogously, Assumption 1 yields that B′(φ)/B(φ) is a strictly
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Figure 4: Identification in the RDEU model

increasing function of φ, where limφ→∞
B′(φ)
B(φ)

= 1 and limφ→−∞
B′(φ)
B(φ)

= 0. The result follows.

�

Figure 4 illustrates this result. The key intuition behind this result is that, for standard

risk aversion (φ), the concern for reducing risk is stronger the more risk one bears, and so, for

instance, the willingness to pay for full insurance is less than double the willingness to pay

to eliminate half the risk (in our example, for d = L/2). Moreover, the larger one’s standard

risk aversion is, the stronger this asymmetry will be. Hence, the ratio of the willingness to

pay to reduce some of the risk relative to the willingness to pay to reduce more of the risk

serves to identify how much standard risk aversion is present. This intuition can be applied

in other contexts as well.

We reiterate, however, that Result 1 relies on having a parametric specification for the

utility function. Similar considerations as in the previous section apply a fortiori here, if one

endeavors to trace out the utility function nonparametrically.

3.6.3 EU and RDEU with Heterogeneity in Preferences

The discussion above abstracts from unobserved heterogeneity in risk preferences. The pres-

ence of such heterogeneity implies that observationally equivalent people facing the same

choice set, may make different choices (a feature that occurs in virtually any dataset). How

can one point identify risk preferences in this case? Intuitively, in the presence of unobserved

heterogeneity, the researcher needs to be able to observe how households in the population

choose different options when facing a fixed menu. Variation in the choice menu can then

be used to identify risk preferences and unobserved heterogeneity.
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To illustrate, consider an EU model, with a parametric utility function u(x;φ) that

satisfies Assumption 1. Suppose that in our insurance example the choice set consists of

three options for one’s deductible, dA > dB > dC , with respective premiums pA < pB < pC .

Suppose that this menu partitions the support of φ, so that there exist φAB and φBC with

φBC > φAB, such that individuals with φ < φAB choose deductible dA, individuals with

φ ∈ (φAB, φBC) choose deductible dB, and individuals with φ > φBC choose deductible dc.

If we then let F denote the cumulative distribution function of φ, the model predicts that a

fraction F (φAB) chooses deductible dA, a fraction F (φBC)− F (φAB) chooses deductible dB,

and a fraction 1−F (φBC) chooses deductible dC . In other words, a menu composed of three

choices identifies the value of F (·) at most at two points. If there is variation in choice sets
conditional on observed characteristics, F can be uncovered from the data. We return to

discussing this strategy in Section 5.2.2.

If instead we consider an RDEU model, there are potentially two sources of unobserved

heterogeneity (in standard risk aversion, and in the decision weight π). In principle, a

similar approach to what was delineated for the EU model might be applied. However,

to date, point identification of multidimensional heterogeneity in risk preferences has relied

upon parametric assumptions about their joint distribution. It remains a question for future

research, to find a field setting and the proper set of assumptions to obtain nonparametric

identification. We return to this discussion in Section 6.1.

3.6.4 Distinguishing More Complex Models

Finally, we discuss identification of more complex models, that include several features gen-

erating aversion to risk. For example, this could be a model that includes Koszegi-Rabin

loss aversion (KR) or disappointment aversion (DA), as well as probability weighting and/or

concave utility function. We organize our discussion in two parts: first we consider domains

in which households or individuals only make choices over binary lotteries. Then we consider

domains in which households or individuals make choices over lotteries with more than two

outcomes.

If the data contains only households choices over binary lotteries X ≡ (x1, µ;x2, 1 − µ),

with x1 < x2, then all models considered here (except for KR-PPE) can be reduced to one

in which households choose the lottery that maximizes

U(X) = Ω(µ)u(w + x1) + (1− Ω(µ))u(w + x2), (5)

where Ω(µ) is a generic probability distortion function, as labeled in Barseghyan, Molinari,

O’Donoghue, and Teitelbaum (2013b). As reflected in our presentation of Example 1 for the
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various models that we consider in the previous sections, the function Ω(µ) may take one of

the following forms:

Under RDEU: Ω(µ) = π(µ),

Under KR-CPE: Ω(µ) = µ(1 + Λ(1− µ)),

Under Bell-DA: Ω(µ) = µ(1 + β(1− µ)),

Under Gul-DA: Ω(µ) = (1 + β)µ/(1 + βµ).

Hence, even if one has data that allows for nonparametric point identification of Ω(µ),

the underlying models can be distinguished only to the extent that they impose different

restrictions on Ω(µ). Clearly, KR-CPE and Bell-DA cannot be distinguished from each other.

Each of KR-CPE/Bell-DA and Gul-DA impose strong parametric assumptions, and so does

RDEU if a parametric functional form is assumed for π(µ) (e.g., any of those in Table 1).

With these parametric assumptions, the models can be tested to find which best fits the data.

However, a more flexible approach would allow for nonparametric probability weighting. If

either loss aversion or disappointment aversion are also allowed for, identification of the

resulting Ω(µ) function would not allow one to disentangle these sources of aversion to

risk. For example, KR-CPE and RDEU together yield Ω(µ) = π(µ)(1 + Λ(1 − π(µ))), and

similarly for RDEU together with Bell-DA or with Gul-DA, so that π(µ) and Λ (or β) cannot

be separately identified.

Hence, with binary lotteries, without relying strongly on functional form assumptions,

the best one can do is to focus on identification and estimation of Ω(µ). Potential exceptions

are represented by models that feature CPT or KR-PPE. Under CPT, U(X) does not take

the form in equation (5), because there is an exogenous reference point and utility varies

with whether outcomes are above or below that reference point. Hence, one can potentially

separately identify the CPT component of the model by studying how behavior changes

as outcomes move above and below the reference point (or, alternatively, by studying how

behavior changes as the reference point changes). Under KR-PPE, one cannot define a U(X)

independently of the other lotteries in the choice set. Hence, one can potentially separately

identify the KR-PPE component of the model by studying how behavior changes as the

choice set varies. Of course, one needs data with the right type of variation to pursue either

of these approaches. At this time, we are not aware of any empirical work that attempts to

distinguish CPT or KR-PPE from RDEU.

A key maintained assumption in the literature is that households subjective beliefs µ

coincide with objective expectations (e.g., "objective" claim probabilities), which in turn

the econometrician can estimate. However this assumption may fail in a given application.

In that case, when µ is assumed to equal objective expectations, the estimated Ω(µ) function
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captures a mappingΨ from the estimated objective probabilities to subjective beliefs, thereby

yielding another possible source of probability distortions. In turn, this implies that under

the assumption that households’behavior is governed by RDEU, for example, the estimated

Ω(µ) function would not necessarily correspond to π(µ), but to (π ◦Ψ)(µ).

When data contains lotteries with more than two outcomes, more refined inference is

possible. For example, as pointed out in Barseghyan, Molinari, O’Donoghue, and Teitelbaum

(2013a), for lotteries with more than two outcomes, a model with RDEU only, and a model

with subjective beliefs only, as formalized by the mapping Ψ, generate different predictions.

Intuitively, under the mapping Ψ alone, the weight on a particular event is independent

of the magnitude of the outcome associated with that event. In contrast, under RDEU

alone, the magnitude of the outcome associated with an event impacts the rank-ordering

of outcomes, and thereby can influence the weight. In addition, KR-CPE and RDEU may

generate predictions that are different predictions from those under either Bell-DA or Gul-

DA. Under either KR-CPE or RDEU, the decision weight assigned to an event depends

only on the rank-order of the outcome associated with that event. In contrast, under either

model of DA, the decision weight assigned to an event depends on whether the outcome is

above or below the relevant benchmark that determines disappointment– i.e., the expected

utility of the lottery under Bell-DA, or the certainty equivalent under Gul-DA. Hence,

variation in outcomes that does not change the rank-order but does change the magnitudes

of intermediate outcomes can be used to distinguish these classes of models.

However, KR-CPE and RDEU cannot be separately identified even with choice data

on lotteries with more than two outcomes. Indeed, one can show that, for lotteries with

any number of outcomes, the combination of KR-CPE and RDEU reduces to an equivalent

RDEUmodel using effective probability weighting Ω(µ) = π(µ)(1+Λ(1−π(µ))) applied from

the same direction as in the original RDEU model. Hence, it is never possible to separately

identify KR-CPE and RDEU.28

We conclude with two important and related implications of this discussion. First,

for models that purport to estimate an RDEU model, the estimated probability weight-

ing functions might in fact reflect a combination of probability weighting and some other

phenomenon– e.g., KR-CPE, Bell-DA, or Gul-DA. Second, given this fact, it would seem

valuable to take a nonparametric approach to estimating RDEU models, as opposed to re-

stricting attention to the functional forms in Table 1. As we summarize in Section 4.2, the

more recent literature has taken a first step in this direction.

28Masatlioglu and Raymond (2014) make a similar point using a decision theoretic approach.
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4 Estimation with Individual-Level Data

In this section, we describe research that estimates risk preferences using individual-level

data. We begin by discussing the general approach that is broadly used in all of these

papers. We then review how that approach has been applied in several different domains:

(i) property insurance, (ii) health insurance, and (iii) game shows.

4.1 The General Approach

Estimating risk preferences from individual data typically requires three main steps:

Step 1: Identify a field context in which economic agents make choices between options that

involve risk and for which the researcher can obtain data on both the agents’choice

sets and the agents’choices.

Step 2: Translate the (typically) rich field choice environment into a choice between a well

defined set of lotteries (as formalized in Definition 1) – so that each model of risk

preferences defined in Section 3 makes a prediction for which option should be chosen

as a function of the taste parameters.

Step 3: Enrich the basic models of risk preferences with some form of “noise,” because in

practice observationally equivalent agents facing identical choice sets are observed to

make different choices.

The following subsections describe Steps 2 and 3 in some detail, along with issues that

arise in each. It is within these steps that the methodological toolkits of economics need

to be applied. Step 1 requires the researcher to (i) identify field contexts that are likely

to best reveal risk preferences, and (ii) be able to obtain the corresponding data. As we

review below, the existing work using individual-level data has focused on some of the field

contexts traditionally emphasized by the theoretical literature (e.g., insurance), for which

researchers have been able to obtain suffi ciently rich datasets. As more data sets become

available, and as economists develop a better understanding of how to approach estimation

of risk preferences, we expect the general approach described in this section to be applied

more broadly.

4.1.1 Translation into Lotteries

Virtually any field choice environment involves a rich context and does not present itself in

the form of lotteries to which one can immediately apply a model of risk preferences. Hence,
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to begin the analysis, one needs to first make a series of assumptions that permits translating

the rich field context into a choice between a well defined set of lotteries.

Consideration Sets. To begin this translation, one needs to make an assumption

about what exactly is the set of options under consideration – i.e., the consideration set.

In some cases, this appears straightforward. For instance, in papers which study people’s

deductible choices for property insurance, a natural assumption is that the consideration

set includes each of the possible deductibles. Even here, however, assumptions are being

made – e.g., in some cases, there are available deductibles that are very rarely chosen, and

so one might wonder whether people are actually even considering these possibilities, and

one might assume these deductibles are not part of the choice set. Also, most analyses get

data from one company, and thus one cannot observe options that a household might have

considered purchasing from another insurance company. We return in Section 6.4 to discuss

when assumptions about the consideration set are likely to be important, and when they are

not.

Outcomes. A closely related assumption the researcher needs to make, concerns the set
of possible outcomes that might occur. In most field contexts, each option is associated with

many possible outcomes. Returning to the example of deductible choices, during the policy

period an individual might incur zero losses, one loss, two losses, three losses, and so forth.

However, the researcher often restricts the set of possible outcomes. For example, some

analyses reviewed below in the context of property insurance assume that households focus

only on the possibilities of either zero or one loss, and they ignore the (small probability

event) of multiple losses during a single policy period. We return in Section 6.4 to discuss

when assumptions about the set of possible outcomes are likely to be important, and when

they are not.

Subjective Beliefs. A particularly important step in the translation from the field

context to a set of lotteries, concerns what one assumes about agents’ subjective beliefs

about the likelihood of the possible outcomes. In some field contexts, there exist clear

objective probabilities for outcomes – e.g., in games of chance such as state-run lotteries or

casino roulette. In most field contexts, however, objective probabilities either do not exist or

are very hard to assess. For such situations, an ideal approach would be to simultaneously

estimate both the household’s beliefs and preferences. As we shall see in Section 6.3, however,

this presents a fundamental identification problem. Hence, the most common approach to

date has been to assume “rational expectations,”in the sense that agents’subjective beliefs

correspond to objective probabilities (often, but not always, as reflected in past outcomes).

The researcher then estimates probabilities over outcomes based on realized outcomes, and

then takes these estimated probabilities as “data,”in the sense that they are treated as an
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observed input when estimating preferences.29

Moral Hazard. A final important assumption concerns whether beliefs over outcomes
depend on one’s choices – e.g., whether there is moral hazard in an insurance context. In

fact, most analyses that estimate risk preferences assume there is no moral hazard, although

a few directly study it. We discuss moral hazard more in Section 4.1.3.

Before moving on to Step 3, it is worth comparing the issues raised in this section,

to experimental analyses. A major advantage of the experimental context is that it offers

significantly more control over the translation from the observed choice context to choices

between a well defined set of lotteries. This is because the experimenter fully defines the

choice set, the set of possible outcomes associated with each choice set, and the probabilities

over outcomes.

4.1.2 Introducing “Noise”

Once Step 2 is carried out, for each agent the researcher observes a choice set X and the

agent’s optimal choice X∗ ∈ X. In addition, upon making some assumptions on beliefs,

the researcher often proceeds as if she has data that reveal individuals’subjective beliefs,

here denoted µ. Each model of risk preferences from Section 3 generates a utility function

V (X,µ, θ), where θ denotes a set of taste parameters (this set differs, depending on the

model). And each model of risk preferences generically predicts a unique optimal choice for

any specific beliefs µ and taste parameters θ. In virtually any data set, however, observation-

ally equivalent agents facing identical choice sets are observed to make different choices.30

Hence, one must enrich the basic models of risk preferences with some form of “noise”. There

are three main approaches used in the literature (and some analyses incorporate two or even

all three) to accomplish this.

First, and perhaps most common, one can apply random utility (McFadden (1974)).

Here, one assumes that agents choose the option X ∈ X that maximizes “total utility”

W (X,µ, θ) ≡ V (X,µ, θ) + ε(X), where ε(X) is an idiosyncratic noise term that makes the

agent more or less likely to choose option X relative to what the agent’s risk preferences

V (X,µ, θ) would predict. Then one specifies a joint distribution for the ε(X)’s for all X ∈ X,

and the random utility model predicts a probability distribution over the set of possible

options. Typically, the ε(X)’s are assumed to be iid with a type-1 extreme value distribution

with scale parameter σ,31 in which case the predicted probability of choosing option X∗ ∈ X

29In most cases, estimation error in this stage is not accounted for when reporting standard errors for the
estimates of preferences.
30Indeed, in experiments it is not uncommon for individual subjects to make different choices when pre-

sented the same choice situation more than once.
31The scale parameter σ is a monotone transformation of the variance of ε(X), and thus a larger σ means
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is

Pr(X∗|θ, σ) =
exp(V (X∗, µ, θ)/σ)∑
X∈X exp(V (X,µ, θ)/σ)

.

Second, one can assume unobserved heterogeneity in preferences. Here, one posits that

agents choose the option X ∈ X that maximizes their risk preferences as reflected by

V (X,µ, θ). However, one further assumes that there is unobserved (to the researcher) het-

erogeneity in preferences, and thus the researcher will observe different choices even among

observationally equivalent agents facing identical choice sets. One then specifies a distribu-

tion for θ, and the model predicts a probability distribution over the set of possible outcomes.

In particular, if Θ(X∗) is the set of θ such that X∗ is the optimal choice, and if F (θ) reflects

the distribution of θ, then the predicted probability of choosing option X∗ ∈ X is

Pr(X∗|θ, F ) =

∫
θ∈Θ(X∗)

dF (θ).

Third, one can assume unobserved heterogeneity in beliefs. Here, one again posits that

agents choose the option X ∈ X that maximizes their risk preferences as reflected by

V (X,µ, θ). However, one relaxes the assumption that subjective beliefs µ are “data”, and

instead assumes that there is unobserved (to the researcher) heterogeneity in beliefs. One

then specifies a distribution for µ – typically where average beliefs correspond to objective

probabilities, but there is a distribution around that average – and the model predicts a

probability distribution over the set of possible outcomes. In particular, if µ(X∗) is the set

of µ such that X∗ is the optimal choice, and if G(µ) reflects the distribution of µ, then the

predicted probability of choosing option X∗ ∈ X is

Pr(X∗|θ,G) =

∫
µ∈µ(X∗)

dG(µ).

Once one enriches the model by incorporating one or more of these approaches, one

then estimates the parameters – both the taste parameters and the noise parameters – by

making the predicted distribution of choices “match”the empirically observed distribution

of choices (using MLE, MCMC, or some other econometric technique).

Two final comments about the three approaches above. First, in principle, the noise could

reflect either permanent differences across economic agents or random variation within each

agent across different choice situations. In cross-sectional data, one could never distinguish

one from the other, but if one observes multiple choices from each agent, one can start to

larger variance. In general, one must either normalize the scale of the utility function u(w) or the scale of
the choice noise σ. The literature typically uses parametrizations of u that normalize its scale (see the three
examples in Section 3), and thus σ is typically estimated.
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tease these apart. In Section 6.1, we discuss in detail the extent to which economic agents

exhibit stable risk preferences vs. risk preferences that change from choice to choice. Second,

returning again to the comparison with the experimental setting, we note that while the latter

permits great control over the issues raised in Step 2, experimental analyses must deal with

“noise”– especially random utility or unobserved heterogeneity in risk preferences – just

as much as field analyses do.

4.1.3 Moral Hazard and Adverse Selection

Much of the literature estimating risk preferences using individual-level data focuses on the

insurance context. In this domain, economists have long discussed the problems of moral

hazard and adverse selection, and thus we comment on these issues here.

In the context of insurance, moral hazard refers to the idea that individuals who have

more insurance coverage will have less incentive to take care, and thus are more likely to

incur a loss – in other words, people’s risk is endogenous to their choices. Such endogenous

risk – which in principle could arise in other environments as well – can create problems

in two ways for estimation of risk preferences. First, because it is hard to account for it,

many analyses assume that it does not exist. For such analyses, if in fact moral hazard does

exist, then estimates of risk preferences can be distorted. Second, if moral hazard exists,

then there must be a reason why behavior is changing – e.g., in the insurance context, the

fact that people take less care when they have more coverage presumably reflects that they

get some form of utility from taking less care. If so, then this feature of preferences should

be incorporated into the analysis.

Concerning adverse selection, in the insurance context this refers to the idea that indi-

viduals who bear more risk (which is not observable or cannot be priced) are more likely to

purchase higher insurance coverage. As such, it is worth highlighting that adverse selection

is a problem for the insurance company. However, it is not of concern for a researcher trying

to estimate risk preferences insofar as unobserved heterogeneity in risk is taken into account,

even if this unobserved heterogeneity is correlated with unobserved heterogeneity in risk

preferences.32

For many of the property insurance domains, moral hazard appears to play a small

role (for a recent review of the literature, see Cohen and Siegelman (2010)). Most stud-

ies that test for the presence of asymmetric information in auto insurance markets using

cross-sectional data do not find evidence of a positive correlation between risk and cover-

age (Chiappori 1999; Chiappori and Salanié 2000; Chiappori, Jullien, Salanié, and Salanié

32For a leading example, see Cohen and Einav (2007), which is discussed in detail in the next Section.
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2006; Dionne, Gouriéroux, and Vanasse 1999, 2001).33 These studies have been interpreted

as casting doubt on the presence of moral hazard (Cohen 2005), at least in auto insurance.

Recently, a handful of papers separately test for moral hazard in longitudinal auto insur-

ance data using a dynamic approach pioneered by Abbring, Chiappori, and Pinquet (2003)

and Abbring, Chiappori, Heckman, and Pinquet (2003). Abbring, Chiappori, and Pinquet

(2003) find no evidence of moral hazard in French auto insurance data. Israel (2004) reports

a small, but statistically significant moral hazard effect for drivers in Illinois. Ceccarini

(2007), Dionne, Michaud, and Dahchour (2007), Abbring, Chiappori, and Zavadil (2008),

and Pinquet, Dionne, Vanasse, and Mathieu (2008) present stronger evidence of moral haz-

ard using auto insurance data from Italy, France, the Netherlands, and Quebec, respectively.

Each of the foregoing papers, however, identifies a moral hazard effect with respect to either

liability coverage or a composite coverage that confounds liability coverage with other cover-

ages. None of them identifies or quantifies the separate moral hazard effect (if any) directly

attributable to collision and comprehensive auto coverages.34

There is a significant body of work assessing the presence of asymmetric information in

other markets, in particular the health and life insurance markets. Cardon and Hendel (2001)

estimate a structural model of health insurance and health care choices using individual-level

data. They find no evidence of informational asymmetries. Cawley and Philipson (1999) look

for the presence of asymmetric information in term life insurance markets, using measures

for both actual and self reported risk. They too find no evidence of asymmetric information.

More recent work has found increasing evidence for informational asymmetries. As in the

prior two works, Finkelstein and Poterba (2004) find no informational asymmetries in the

U.K. annuity market based only on annuity amounts or “insurance payout”. However, they

find informational asymmetries for other annuity characteristics, e.g. payout timing and

whether an estate is guaranteed payment. Further, in long-term care insurance, Finkelstein

and McGarry (2006) find evidence for multiple dimensions of private information, which

can separately lead to moral hazard, adverse or advantageous selection. Thus, focusing on

the failure to reject a positive correlation between insurance coverage and risk occurrence

ignore the fact that these selection forces may “cancel” each other out. The findings of

Fang, Keane, and Silverman (2008) support the notion of advantageous selection in Medigap

33We are aware of two exceptions: Puelz and Snow (1994) and Cohen (2005). Recent work criticizes the
methodology of Puelz and Snow (1994) and suggests that their results are spurious (Chiappori 1999; Dionne,
Gouriéroux, and Vanasse 1999). Cohen (2005) presents mixed evidence of asymmetric information. She finds
that a positive coverage-accident correlation exists for new customers with more than three years of driving
experience, but not for new customers with fewer than three years of driving experience. To our knowledge,
there are no studies that test for asymmetric information in home insurance.
34These are the auto coverages that have been used to date, to estimate risk preferences with property

insurance data

35



insurance. Bajari, Dalton, Hong, and Khwaja (2014), using semi-parametric methods, report

significant moral hazard/adverse selection in a recent (2002 - 2004) data from a large self-

insured U.S. employer. He (2009) finds evidence of asymmetric information in life insurance

markets in a sample of potential new buyers. Bundorf, Levin, and Mahoney (2012) calculate

that asymmetric information between consumers and the risk-adjustment software used by

health insurance providers, lowers annual welfare by a $35—$100 per enrollee in data from

small employers. Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) find evidence of

moral hazard in individuals’choices of health insurance plans.

We conclude with raising one more issue closely related to unobserved heterogeneity.

If there is unobserved heterogeneity in risk preferences, then the researcher needs to be

confident that the choice sets faced by the agents are independent of those risk preferences.

In particular, risk preferences are estimated by investigating how agents react to changes in

choice sets, and thus our estimates would be biased if a change in choice sets were correlated

with a change in risk preferences.35 In principle, there is a natural reason to be very worried

about this issue. In the insurance context, for instance, if an insurance company can easily

get a sense of a person’s risk preferences, the company might be able to increase profits by

adjusting the insurance pricing in reaction to those preferences. In practice, most insurance

pricing is not done in this way – often due to heavy regulation – and thus this issue is

perhaps less of a problem.

4.2 Property Insurance Data

Insurance choices are a natural domain in which to estimate risk preferences. Surprisingly,

due to diffi culties in obtaining data prior to the 2000s (when firms were not equally willing as

they are today to share their data) there are relatively few papers which use individual-level

insurance data to carry out this task.

The first paper to use individual-level data on insurance choices to estimate risk pref-

erences is Cicchetti and Dubin (1994). They analyze data from Mountain Bell on roughly

10,000 residential telephone customers in Colorado in 1990. The choice of interest is whether

customers purchased inside-wire insurance. This insurance cost roughly $0.45 per month,

and protected against telephone-wire problems inside one’s residence. Without the insur-

ance, in the event of a problem, the household would need to pay the service cost to fix the

problem, which averaged about $55. The probability of experiencing a problem was roughly

0.5% (see below), and thus the expected benefit of the insurance was roughly $0.275. Hence,

35One may think of this problem as "adverse selection for the researcher." We avoid this terminology as
it may cause confusion with respect to the typical use of the terms adverse selection in economics.
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purchasing this insurance for $0.45 is a clear sign of aversion to risk. Cicchetti and Dubin

set out to get a more precise understanding of this aversion to risk.

In order to translate the field context into the domain of preferences (a choice between

lotteries, as discussed in Section 4.1), Cicchetti and Dubin assume that households effectively

choose between the following two (incremental) lotteries:

(−p, 1) vs. (−R, µ; 0, 1− µ)

The first lottery is that associated with the choice to purchase the insurance, where p

is the premium charged for the insurance. The second lottery is that associated with the

choice not to insure, where µ is the probability of experiencing a problem within any given

month, and R is the expected service cost in the event of a problem.36 The authors estimate

µ using data on historical (1982-1986) trouble calls, where they divide the data into nine

zones, and then they take the observed ratio of trouble calls to customers in each zone to be

the probability of a problem for customers in that zone. Then, in their empirical analysis,

they treat p, R, and µ as data.

Cicchetti and Dubin then estimate an EU model with a HARA utility specification. For

prior wealth – a required input in the HARA specification – they use a measure of monthly

income generated from census data. They also allow the curvature of the utility function to

depend on a household’s average monthly bill.37 In addition to estimating an EU model, they

also estimate an RDEU model with a parametrized form of overweighting of probabilities

(the one in Lattimore, Baker, and Witte (1992)).

They estimate these models using MLE, where they use a McFadden (1974) random util-

ity specification to account for observationally equivalent households making heterogeneous

choices. From their estimates, Cicchetti and Dubin conclude that “the overall pattern of

results is remarkably consistent with expected utility theory”(p. 183). In particular, they

find virtually no evidence of overweighting of probabilities – i.e., RDEU does no better than

EU – and moreover 78 percent of households have an estimated utility function consistent

with EU. Finally, they note that, for the average household, the estimated degree of absolute

risk aversion is relatively small and yields a willingness to pay for the insurance virtually

identical to the expected benefit from the insurance.

The Cicchetti and Dubin paper has a number of limitations. Perhaps most important

36This formulation implicitly assumes that households expect at most one problem in any given month.
As we mentioned in Section 4.1, this type of assumption is common in the literature.
37They motivate this assumption based on a reduced-form finding that household’s with larger average

monthly bills are more likely to purchase inside-wire insurance. While this assumption will capture that fea-
ture in their structural estimation of risk preferences, it is not clear that there is a good primitive justification
for it.
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is a data limitation: their data contain very little variation in p, R, and µ.38 Hence, their

estimation primarily identifies the impact of monthly income and average monthly bill on

the (local) degree of absolute risk aversion. Moreover, as we discussed in Section 3.6, the

limited variation in p, R, and µ in their data creates a major impediment to separately

identifying both utility curvature and probability weighting, and thus their RDEU estimates

depend heavily on their functional-form assumptions for utility and probability weighting.

As such, one should be cautious in interpreting their estimates for the degree of probability

overweighting. Finally, upon closer look, it is not so clear that EU fares so well. For

the 22 percent of households with an estimated utility function inconsistent with EU, the

inconsistency is in the form of a decreasing utility function (i.e., less is better), which is clearly

counterfactual. In addition, among the 78 percent of households with an estimated utility

function consistent with EU, nearly half of them (37 percent of all households) are estimated

to be risk loving. Finally, in addition to permitting choices to depend on risk preferences,

Cicchetti and Dubin also permit an idiosyncratic direct preference for the insurance (perhaps

due to a belief that households with insurance will get priority service relative to households

without insurance). In the estimated model, this direct preference is estimated to be quite

large and appears to be the main factor explaining the choice to purchase insurance for many

households. Despite these limitations, the Cicchetti and Dubin paper was the first of its kind

in the domain of insurance, and inspired later papers that were able to work with better

data and more sophisticated models.

A key contribution in this direction is given by Cohen and Einav (2007), which pro-

vides a much more sophisticated analysis, although the authors limit themselves to the

EU framework. They use individual-level data from an insurance provider in Israel, and

analyze deductible choices among households who purchased one particular form of auto

insurance (similar to comprehensive automobile insurance in the United States). In their

data, all households have purchased the insurance, and the choice of interest is which of

four deductible options they chose. The data contain the full menu of premium-deductible

combinations offered to each household, along with that household’s chosen deductible. In

addition, they observe actual claims made by these households during the policy year.

Since virtually all households (98.9 percent) chose one of the two lowest deductibles,

Cohen and Einav limit attention to the choice between those two.39 Hence, they translate

the field context into the domain of preferences – i.e., into a choice between lotteries – by

38The paper seems to suggest that, in the estimation, a single value of p and R is used for all households.
While there is some variation in µ across the nine zones, its range of [0.32%, 0.74%] is very tight.
39Cohen and Einav do not drop households which chose one of the two high deductibles, but rather

they proceed as if those households had chosen the highest remaining deductible. For virtually all of these
households, this assumption is consistent with the estimated model.
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assuming that households were effectively choosing between the following two (incremental)

lotteries:

(−pl − dl, µ;−pl, 1− µ) vs. (−ph − dh, µ;−ph, 1− µ)

The first lottery is that associated with the choice of the lower deductible, and the second

lottery is that associated with the choice of the higher deductible. For each choice k ∈ {l, h},
pk is the premium charged for the insurance, dk is the deductible that must be paid by the

household in the event of a loss, and µ is the probability of experiencing a loss during the

policy period. The insurance is typically priced such that lower deductibles are actuarially

unfair – i.e., a risk neutral household would choose the higher deductible dh, and dl would

be optimal if the household is risk averse enough.40

This formulation reflects three simplifying assumptions. First, it assumes that a house-

hold’s claim probability µ is independent of its deductible choice – i.e., that there is no

moral hazard with respect to the deductible choice. Second, it assumes that every possible

loss is larger than the larger deductible dh. Cohen and Einav explicitly discuss these assump-

tions, and argue that they are supported in their data. The third simplifying assumption

is that households ignore the possibility of incurring more than one claim during the policy

period. This assumption is more implicit and follows from their explicit assumption that

households make decisions while considering a policy period that is infinitesimally small. But

since multiple claims are rare (in their data, only 2.70 percent of households experience more

than one claim over the one-year policy period), this assumption is probably not restrictive

(as we discussed in Section 4.1, similar assumptions are made in subsequent analyses).41

Cohen and Einav then estimate an EU model with an NTD specification for the utility

function.42 Importantly, they permit both observed heterogeneity (i.e., depending on house-

hold observables) and unobserved heterogeneity in both the degree of (absolute) risk aversion

r and the likelihood of a claim µ. Indeed, the main goal of their analysis is to assess (i) the

extent of such heterogeneity, (ii) the relative importance of heterogeneity in risk vs. in risk

preferences, and (iii) the correlation between the unobserved elements of the heterogeneity.

Formally, they assume that claims are determined by a Poisson process with Poisson claim

40Under their benchmark estimates of claim rates, this is true for 98.7 percent of households (p. 752)).
41Although Cohen and Einav’s approach effectively assumes that households ignore the possibility of mul-

tiple claims during the policy period, their estimation still uses the full distribution of number of claims over
the policy period, because this distribution is needed to identify the variance and correlations of unobserved
heterogeneity in risk (as we discuss below).
42In fact, their utility equation is slightly different from the one in Section 3 because they consider a policy

period that is infinitesimally small.
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rate λ, and they assume that r and λ have a bivariate lognormal distribution with(
lnλi

ln ri

)
∼iid N

([
x′iβλ

x′iβr

]
,

[
σ2
λ ρσλσr

ρσλσr σ2
r

])
.

In the above expression, σ2
λ is the variance of λ, σ

2
r is the variance of r, and ρ is their

correlation.

Because they permit such unobserved heterogeneity, Cohen and Einav do not introduce

any other source of heterogeneity in choices – i.e., unobserved heterogeneity in risk prefer-

ences and in risk account for all heterogeneity in choices among observationally equivalent

households.

Cohen and Einav estimate this model using an MCMC approach. The data contain

several key features that permit them to parametrically identify the unobserved heterogeneity

in risk preferences and in risk. First, they observe the full distribution of (the number of)

household claims over the course of the one-year policy period. This distribution permits

them to directly estimate the mean and variance of risk (for a fixed set of observables) without

any reference to premium-deductible menus or to choices.43 Second, different households in

the data are offered different menus of (pl, dl) vs. (ph, dh).44 Seeing how households respond

to different menus (while knowing the mean and variance of risk) permits identification of

the mean and variance of risk aversion. Finally, seeing how these responses differ between

households with different claims experiences (i.e., households with a different number of

actual claims experienced during the one-year policy period) permits identification of the

correlation between the unobserved components of risk and risk preferences.

Cohen and Einav’s estimation yields several interesting conclusions. First, in terms of the

degree of risk aversion, mean risk aversion is quite large (r = 0.0019), but in fact the distri-

bution is quite skewed and the median is more reasonable (r = 0.0000073). In other words,

in the estimated model, the roughly 18 percent of households that choose the low deductible

are primarily explained by very high risk aversion. Second, they find more unobserved het-

erogeneity in risk aversion than in risk, and moreover, given their estimates, the unobserved

heterogeneity in risk preferences is more important for profits and pricing. Finally, they

find a strong positive correlation between unobserved heterogeneity in risk preferences and

unobserved heterogeneity in risk. This is driven by the fact that as the observed number

43Note that if they only observed whether or not households made any claims, they could only estimate
the mean claim rate. The variance of claim rates is identified by comparing the likelihood of at least one
claim to the likelihoods of at least two or more claims.
44This variation is not purely idiosyncratic. For instance, for two-thirds of households, the menu satisfies

dh = 0.5ph, dl = 0.3ph, and pl = 1.06ph, where the variation across households comes entirely from variation
in ph. But there is some additional variation, which Cohen and Einav discuss in some detail.
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of claims increases, the proportion of households that choose the low deductible increases

rapidly. They are cautious in concluding too much from this positive correlation, because

the unobservables which drive a correlation between risk aversion and risk might be very

context specific.

Sydnor (2010) uses similar data to also study the implications of EU for insurance de-

ductible choices. However, he does not pursue an estimation of preferences, but rather a

calibration approach in the spirit of Rabin (2000). Nonetheless, this paper is instructive for

those who want to estimate risk preferences using insurance data. Sydnor uses individual-

level data from a large home insurance company, from which he obtained a random sample

of 50,000 home insurance policyholders in a single state in a single year. At this company,

each policyholder must choose one of four deductibles – $1000, $500, $250, or $100 – where

a lower deductible implies a higher premium. Much like Cohen and Einav (2007), Sydnor

observes the full menu of premium-deductible combinations offered to each household, along

with that household’s chosen deductible. In addition, he observes actual claims made by

these households during the policy year, from which he can derive claim rates.

Sydnor translates this field context into the domain of preferences exactly as in Cohen

and Einav (2007), by assuming that households are effectively choosing between four lotteries

of the form:

(−pd − d, µ;−pd, 1− µ)

where pd is the premium charged for the insurance, d is the deductible that must be paid by

the household in the event of a loss, and µ is the probability of experiencing a loss during

the policy period. This formulation reflects the same three simplifying assumptions as in

Cohen and Einav (2007).

In his main analysis, Sydnor considers an EU model with CRRA utility, and he calibrates

the degree of relative risk aversion (ρ) that households would need to have to explain their

choices. More precisely, for the 6268 customers who were new at the sample firm in the

sample year – and who thus are more likely to have actively chosen their deductible – he

focuses on the 3791 customers who chose either the $500 or the $250 deductible.45 Choosing

a deductible smaller than the maximum ($1000) reveals an aversion to risk, and Sydnor

calibrates for each household a lower bound on how risk averse that household must be.

In his baseline calibration, he assigns to each household a claim rate equal to the average

claim rate among those who chose that deductible, and he assumes a prior wealth of $1

million. He demonstrates that, for the vast majority of the households that chose deductibles

smaller than $1000, this specification implies implausibly large risk aversion. He further

45Because only 3 of the 6268 new customers choose the $100 deductible, he does not analyze that group.
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demonstrates that this finding is robust to assuming a variety of values for prior wealth and to

assigning to each household a fitted claim rate (in much the same way as described below for

Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013b)). Based on these calibrations,

Sydnor concludes that EU is not a good explanation of people’s deductible choices, and

he then discusses several potential alternative explanations, including risk misperceptions,

probability weighting, and Koszegi-Rabin loss aversion.

Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013b, BMOT henceforth) use sim-

ilar data to estimate a probability distortion model (as described in Section 3). In other

words, they consider a model that, in the insurance-deductible context, nests EU, RDEU,

KR loss aversion, and risk misperceptions, and they investigate which combination best ex-

plains the variation in the data.46 Their data come from a large insurance company that

sells multiple lines of coverage. The full dataset comprises yearly information on more than

400,000 households who held auto or home policies between 1998 and 2006. For their main

analysis, BMOT use a core dataset of 4170 households who were new customers at the firm

in 2005 or 2006 and who purchased both home and auto insurance. The authors focus on

households’initial choices. In this group, every household made a deductible choice for three

coverages: home all perils insurance, auto collision insurance, and auto comprehensive insur-

ance.47 For each choice, the data contain the full menu of premium-deductible combinations

offered to each household, along with that household’s chosen deductible.48 In addition, the

data contain the history of claims for the full dataset.

The translation of the field domain into the domain of lotteries is exactly as in Cohen

and Einav (2007) and Sydnor (2010), except that BMOT make one further assumption:

they assume that households bracket the three choices narrowly in the sense that, while each

household has fixed risk preferences that apply to all three choices, the household treats these

choices as three independent decisions of the form studied by Cohen and Einav (2007) and

46As discussed in Section 3.6, BMOT can only identify an overall probability distortion, and cannot break
it down into these possible underlying forces. Nonetheless, this approach identifies the extent to which these
underlying forces together might help better explain deductible choices (relative to EU).
47Auto collision coverage pays for damage to the insured vehicle caused by a collision with another vehicle

or object, without regard to fault. Auto comprehensive coverage pays for damage to the insured vehicle from
all other causes (e.g., theft, fire, flood, windstorm, glass breakage, vandalism, or hitting or being hit by an
animal or by falling or flying objects), without regard to fault. Home all perils coverage pays for damage to
the insured home from all causes (e.g., fire, windstorm, hail, tornado, vandalism, or smoke damage), except
those that are specifically excluded (e.g., flood, earthquake, or war).
48The available deductible options were the same for all households. For home, the options were 100, 250,

500, 1000, 2500, and 5000; for collision, the options were 100, 200, 250, 500, and 1000; and for comprehensive,
the options were 50, 100, 200, 250, 500, and 1000. In order to make it plausible that every potential claim
is larger than the largest deductible,BMOT exclude the two highest deductibles in home (chosen by only
1.6 percent of households); households that chose such deductibles are kept in the analysis and treated as if
they chose a 1000 deductible (this approach is analogous to that in Cohen and Einav (2007)).
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Sydnor (2010). It is worth highlighting that the assumption of narrow bracketing is in fact

implicit in Cohen and Einav (2007) and in Sydnor (2010), in the sense that they assume that

people have risk preferences that apply to their single observed deductible choice without

reference to all the other risk choices that households are making.49

BMOT estimate a probability distortion model. Applied to the context of choosing de-

ductibles, the utility from choosing deductible d is

Ω(µ)u(w − pd − d) + (1− Ω(µ))u(w − pd),

where µ is the (objective) probability of a claim, u is a utility function, and Ω is a probability

distortion function. As a preliminary step, BMOT use the full sample and the full history of

claims to estimate, for each coverage, a Poisson panel regression with random effects. They

then use the output from these claim-rate regressions to assign to each household a fitted

probability of incurring a loss (µ) on each coverage. In the estimation of preferences, these

claim probabilities are treated as data.50

In their benchmark analysis, BMOT estimate a model of homogeneous preferences, i.e.,

where all households have the same utility function u and the same probability distortion

function Ω. They assume a NTD specification for u (see Table 1), but they take a non-

parametric approach to Ω. Specifically, they consider three nonparametric approaches: (i)

a Chebyshev polynomial expansion of ln Ω(µ), (ii) a Chebyshev polynomial expansion of

Ω(µ), and (iii) a cubic spline. All three approaches yield the same conclusion: While there

is statistically significant curvature in u and statistically significant probability distortions,

economically the lion’s share of households’observed aversion to risk is attributed to prob-

ability distortions. This result represents a more convincing demonstration than Sydnor

(2010) of the limitations of EU in explaining deductible choices. Whereas Sydnor (2010)

merely provides calibration arguments against EU based on the required curvature of the

utility function being “too large”, BMOT find that a model with large probability distortions

better explains the data without imposing any restrictions on the magnitude of curvature in

the utility function. BMOT compare special cases of models yielding probability distortions,

including KR loss aversion and Gul disappointment aversion (see Section 3 for details on

these models), with the nonparametric estimate of Ω(µ), to assess whether these models are
49In their benchmark estimation, the only advantage (relative to Cohen and Einav (2007)) of having three

choices per household is that it yields increased variation in claim probabilities and prices represented in the
data. When BMOT incorporate observed and unobserved heterogeneity into the analysis, this feature will
then add a restriction that each household must have the same risk preferences across all three coverages.
50They demonstrate that the main results are robust to instead assigning to each household a fitted

distribution of claim probabilities for each coverage. As such, the approach in BMOT is roughly equivalent
to that in Cohen and Einav (2007), except that they do not permit the unobserved heterogeneity in risk to
be correlated with the unobserved heterogeneity in risk preferences.
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consistent with the empirical evidence. The results show that neither KR loss aversion alone

nor Gul disappointment aversion alone can explain the estimated probability distortions,

thereby suggesting a key role for probability weighting in individuals’deductible choices.

BMOT next expand their analysis to incorporate both observed and unobserved hetero-

geneity in both the curvature of the utility function and in the magnitude of the probability

distortions. When allowing for unobserved heterogeneity, BMOT’s econometric model takes

the form of a mixed logit (with parametric assumptions on the distribution of the unobserved

heterogeneity terms), which they estimate via MCMC. The mean estimated probability dis-

tortions in a model that allows for observed heterogeneity only, for unobserved heterogeneity

only, or for both, are nearly identical to each other and to the estimated probability distor-

tions in a model with homogeneous preferences. Hence, whether BMOT assume preferences

are homogeneous or allow for observed or unobserved heterogeneity, their main message is

the same: large probability distortions characterized by substantial overweighting of claim

probabilities and only mild insensitivity to probability changes. By contrast, the estimated

degree of standard risk aversion is somewhat sensitive to the modeling approach. With ob-

served heterogeneity only, the mean fitted value of r is 0.00073, slightly higher than in their

model with homogeneous preferences (in which r = 0.00064). Allowing for unobserved het-

erogeneity leads to an additional increase to r = 0.00156, and allowing for both observed and

unobserved heterogeneity further increases the estimate to r = 0.00147. The variance esti-

mates for the unobserved heterogeneity terms suggest a substantial presence of unobserved

heterogeneity (though smaller than in Cohen and Einav (2007)); unobserved heterogeneity

in r and in probability distortions are estimated to be negatively correlated.

4.3 Game Shows

Several papers estimate risk preferences using data from television game shows. Game

shows provide an attractive setting for estimating both EU and non-EU models. This is

because contestants "are presented with well-defined choices where the stakes are real and

sizeable, and the tasks are repeated in the same manner from contestant to contestant"

(Andersen, Harrison, Lau, and Rutström 2008, p. 361). Field settings rarely have such

desirable characteristics, and in fact a game show does not meet our definition of a field

setting (a setting in which we observe individuals’real-world economic behavior). Rather,

a game show is really a "controlled natural experiment" (ibid.) conducted in a peculiar

environment that raises concerns about ecological and external validity, observer bias, and

selection bias.51 For this reason, we provide below only a brief discussion of the pioneers of

51Indeed, concerns about observer and selection bias would seem to be greater in game shows than in
controlled laboratory experiments.
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the literature and references to a selection of subsequent studies.

The pioneers of the game show literature include Gertner (1993), who uses data from

"Card Sharks," Metrick (1995), who uses data from "Jeopardy!," and Beetsma and Schotman

(2001), who use data from the Dutch show "Lingo."

Gertner (1993) assumes that Card Sharks contestants are expected utility maximizers

with CARA utility and pursues two methods for estimating the lower bound on the coeffi -

cients of absolute risk aversion r. First, Gertner looks solely at the contestants’bets in the

final round of the game and obtains a lower bound on each contestant’s r by assuming that

a contestant who wagers her entire stake is risk neutral and a contestant who wagers the

minimum amount (half of her stake) wishes to bet exactly that. He reports an average lower

bound of 0.000310. Second, Gertner looks at the contestants’bets in all rounds and com-

pares the sample distribution of outcomes with the distribution of outcomes if a contestant

plays the optimal strategy for a risk-neutral contestant. By revealed preference, an "average"

contestant prefers the former distribution to the latter, and so the degree of absolute risk

aversion that would make a contestant indifferent between the two distributions provides an

estimate of the average lower bound on r. Under this method, Gertner reports an average

lower bound of 0.0000711.52

Metrick (1995) also models Jeopardy! contestants as expected utility maximizers with

CARA utility. In the pertinent part of the paper, Metrick looks only at the bets of the leaders

in the final round of "runaway" games, i.e., games in which the leader is so far ahead entering

the final round that she can guarantee a win by betting a suffi ciently small amount. From the

first-order necessary condition of the leader’s utility maximization problem, Metrick derives

an expression for the leader’s subjective probability of answering correctly given her bet and

coeffi cient of absolute risk aversion r. This expression is exactly the form of a logit regression.

He then obtains an ML estimate of r for the "representative" contestant (i.e., he obtains

the r that maximizes the likelihood of the observed sample of bets and correct/incorrect

answers). He reports a statistically insignificant point estimate of 0.000066.53

Beetsma and Schotman (2001) consider expected utility maximization with both CRRA

and CARA utility functions. They analyze the decision at the start of a round in the

52In the second part of the paper, Gertner presents evidence that contestants’bets are inconsistent with
expected utility maximization. More specifically, he find that contestants’bets exhibit sensitivity to accumu-
lated winnings in the current round (stakes) but not to accumulated winnings in previous rounds (wealth).
53In another part of the paper, Metrick looks at the bets of the first and second place contestants enterting

the final round of games in which these contestants can mostly ignore the actions of the third contestant.
In this part, however, Metrick does not focus on estimating the contestants’ risk preferences. Rather,
he focuses on testing whether the contestants play "empirical-best-responses," i.e., best-responses to the
empirical frequency of strategies played by their opponents in his sample of similar games. He finds that
while first-place contestants generally play empirical-best-responses, second-place contestants do not.
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Lingo finals to stop or continue play of the game. They first show that, under fairly weak

conditions, the stop/play decision amounts to a choice between receiving the current stake x

with certainty and a lottery in which they receive 2x with probability p and a with probability

1 − p, where a represents the option value of coming back in the next show.54 They then
specify a probit model for the stop/play decision and estimate the degree of risk aversion.

For the CRRA specification, they estimate coeffi cients of relative risk aversion ranging from

0.42 (assuming zero wealth) to 6.99 (assuming wealth of 50,000 Dutch guilders) to 13.08

(assuming wealth of 100,000 Dutch guilders). For the CARA specification, they estimate a

coeffi cient of absolute risk aversion of 0.12 (which, assuming wealth of 50,000 Dutch guilders,

implies a degree of relative risk aversion of 6.0).

Most of the subsequent papers in the game show literature use data from the U.S. and

international versions of "Deal or No Deal." For surveys, see Andersen, Harrison, Lau, and

Rutström (2008), Post, van den Assem, Baltussen, and Thaler (2008), and Hartley, Lanot,

and Walker (2014). Two exceptions are Fullenkamp, Tenorio, and Battalio (2003), who use

data from "Hoosier Millionaire," and Hartley, Lanot, and Walker (2014), who use data from

"WhoWants to be a Millionaire?" Like the pioneering studies, many of the subsequent papers

work with EU models with CRRA and/or CARA utility (e.g., Fullenkamp, Tenorio, and

Battalio 2003; Andersen, Harrison, Lau, and Rutström 2008; Deck, Lee, and Reyes 2008;

Conte, Moffatt, Botti, Di Cagno, and D’Ippoliti 2012; Hartley, Lanot, and Walker 2014).

Others go beyond EU and consider RDEU, prospect theory, or other non-EU models (e.g.,

Botti and Conte 2008; Post, van den Assem, Baltussen, and Thaler 2008; Mulino, Scheelings,

Brooks, and Faff 2009; De Roos and Sarafidis 2010; Bombardini and Trebbi 2012).

4.4 Health Insurance Data

Recently, a growing empirical literature has made use of structural models of decision making

under uncertainty to answer a variety of important questions about health insurance markets.

These include, inter alia, the welfare cost of inertia and imperfect information in health

insurance and the implications of adverse selection and moral hazard in these markets.

However, the health insurance field context has not been used for estimation of risk pref-

erences as the object of fundamental interest. We suspect the reason is that estimation of

risk preferences when using health insurance choices is more challenging than it is when

using property insurance choices for at least three reasons. First, the set of outcomes as-

sociated with each lottery is significantly more complex; for example, health expenses have

(essentially) a continuous distribution. Second, individuals may care about more than mere

54Under the rules of the game, if contestants lose they can come back in the next show unless the current
show is their third.
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monetary costs of care; for example, the quality of their life is differentially impacted by

different health outcomes. The researcher then either needs to model the utility from each

possible health status directly, or to monetize health status. Third, moral hazard is likely

to be a larger concern in this context. In particular, if individuals’choices of health insur-

ance plans are subject to selection on moral hazard, this selection cannot be ignored in the

estimation of preferences.

Even when the ultimate target of the analysis is not estimation of risk preferences, the

literature studying health insurance choices needs to contend with the diffi culties listed

above. One approach has been to not model directly individuals’risk aversion and simplify

the problem by posing a reduced form equation for individuals’valuation of health insurance

plans; see for example Starc (2014). Another approach has been to exogenously impose risk

preferences, as opposed to estimating risk preferences within a larger model. See for example

Einav, Finkelstein, and Schrimpf (2010), who use external data to calibrate the values for

risk aversion (as well as other parameters that would only be identified via functional form

assumptions in their model).

Because of this, we substantially limit the depth of our coverage of this literature. Never-

theless, we highlight a few recent papers that address some of these challenges and estimate a

fully specified expected utility model with CARA preferences. In certain cases, these papers

also allow for preference heterogeneity across individuals. We expect that these contributions

could facilitate future work that focuses on estimating risk preferences.

Handel (2013) leverages a major change to insurance provision that occurred at a large

firm to quantify the welfare cost of consumer inertia in health insurance markets,55 and to

study policies that could mitigate this inertia. In order to make progress on this important

question, Handel assumes away two of the challenges listed above: he assumes that there

is no moral hazard and that individuals base their choice of insurance plan only on the

monetary costs of each option. However, Handel uses a very careful approach to account for

complex lotteries over outcomes.

Handel observes households choosing among three "preferred provider organization"

(PPO) plans, denoted PPO250, PPO500 and PP01200. These PPO plans differ among each

other in their premiums and cost sharing characteristics (e.g., deductible, coinsurance, and

out-of-pocket maximums). These characteristics in turn determine the mapping from total

medical expenditures to employee out-of-pocket expenditures.

The households in the sample are observed making insurance plan choices at multiple

points in time. Specifically, at time t = 0 they are observed making an "active" choice,

because the company changed the plans offered (their premiums and cost sharing character-

55Within the welfare analysis, the author also considers the effects of adverse selection.
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istics) and the individuals had to choose a plan among the new offerings. At times t = 1 and

t = 2 individuals are observed making (potentially) "passive" choices, in the sense that they

may simply continue with the plan chosen at time t = 0 without reassessing their options. Of

notice is the fact that over time, the PPO250 (the plan which yields the more comprehensive

coverage) becomes substantially more expensive, while the PPO500 (a plan which yields a

lower coverage) becomes substantially less expensive; Figure 2 in Handel (2013) illustrates

this fact. As such, choices that were optimal at time t = 0 need not be optimal at times

t = 1, 2.

Handel’s interest is in quantifying the effect of the inertia displayed by individuals who

do not change their plan over time. To achieve this goal, he sets up a random utility model

of insurance choice, similar to the one in BMOT described above. One important difference

is that, in the case of health insurance, the lottery is defined over out of pocket expenditures,

rather than over binary outcomes. The distribution of out of pocket expenditures is assumed

known by the households. In practice, it is estimated using medical predictive software,

household characteristics, and ex-post claim realizations. Specifically, for each individual

and open enrollment period, the author uses the past year of diagnoses, drugs, and expenses,

along with age and gender, to predict mean total medical expenditures for the upcoming year

using the Johns Hopkins ACG Case-Mix software package. He then incorporates medically

relevant metrics such as type and duration of specific conditions, as well as comorbidities.

This is done for four distinct types of expenditures: (i) pharmacy; (ii) mental health; (iii)

physician offi ce visit; and (iv) hospital, outpatient, and all other. Individuals are then

grouped into cells determined by the mean predicted future utilization. For each expenditure

type and risk cell, Handel estimates a spending distribution for the upcoming year based on

ex-post observed cost realizations, combining the marginal distributions across expenditure

categories into joint distributions using empirical correlations and copula methods. He then

maps individual total expense projections into the family out-of-pocket expense projections,

taking into account family-level plan characteristics. This yields the distribution of out of

pocket expenditures to be used in the choice model.

The effect of inertia is modelled as an additive "consumption" term which is positive for

the chosen option in the previous year, yielding

c0 = w0 − pp0 − oe0,

c1 = w1 − pp1 − oe1 + η1(IC1 = IC0),

where ct denotes consumption, wt denotes wealth, ppt denotes price of insurance, oet denotes

out-of-pocket expenditure, each at time t ∈ {0, 1}, ICt denotes insurance plan chosen at
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time t ∈ {0, 1}, and 1(̇·) is the indicator function of the event in parenthesis. In addition, for
households with a very high medical expenditure risk, the consumption equation includes an

additional dummy variable that puts additional weight on the most comprehensive choice,

P250, to capture the idea that essentially all of these households have chosen P250.

The so specified consumption enters a CARA utility function, which in turn households

use to evaluate the three PPO options (by integrating it against the distribution of out of

pocket expenditure). Then households choose the one that delivers the highest expected

utility.

The coeffi cient of risk aversion r is modeled as a random coeffi cient (following a Normal

distribution with mean specified as a linear function of observable characteristics), while the

coeffi cient of inertia η is modeled as a linear function of family status and demographics.

The resulting econometrics model is a mixed logit and is estimated via MCMC. Unobserved

heterogeneity in risk, however, is not allowed for.

The estimates of the coeffi cient of absolute risk aversion are similar in magnitude to the

ones in BMOT, and they lie in [1.9, 3.25] · 10−4. The intercept in the inertia function η, is

estimated to be large in magnitude with values of $1,729 for single employees and of $2,480

for employees who cover at least one dependent. An employee who enrolls in a flexible

spending account (FSA) is estimated to forgo $551 less due to inertia than one who does

not. Because inertia is linked to multiple dimensions of observable heterogeneity, Handel

also reports the estimated mean and variance of inertia: The mean total money left on the

table per employee due to inertia is $2,032 with a standard deviation of $446.

A natural extension of Handel’s model is to study additional frictions that may affect

an individual’s choice of insurance plans. For example, Handel and Kolstad (2015) study

the effect of information frictions and hassle costs, measured via a survey administered to

individuals for whom health insurance information is available. The survey elicits individuals’

information about available medical providers/treatments and perceived time and hassle

costs to learn the characteristics of a high deductible health insurance plan (which is cheaper

than the other options). The additional friction measures appear to be important predictors

of choices and to significantly decrease risk preference estimates.

Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) address the diffi culties associated

with evaluation of outcomes in the health insurance context, as well as the presence of moral

hazard. In particular, moral hazard and its impact on selection, is the key object of interest

in that paper.

The authors begin their analysis with the key observation that households’utilization rate

of medical services may depend significantly on the characteristics of their health insurance

coverage. They propose the following simple model, which builds on the original model in
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Cardon and Hendel (2001). Each period is divided into two sub-periods. In the second sub-

period, households take insurance coverage as given, and their utility function is assumed

separable in health and money

u(m;λ, ω) = h(m− λ;ω) + y(m),

where m is the monetary value of the health care utilization chosen, λ is the monetary value

of the health shock, y(m) is the residual income, which is decreasing in m at a rate that

depends on the health insurance coverage, and ω is a parameter that captures households’

responsiveness to the price of medical utilization.

The authors assume that h(m− λ;ω) = m− λ− 1
2ω

(m− λ)2 and that, under insurance

contract j, the marginal cost of health care is cj (i.e., y′(m) = −cj). It follows that the
optimal amount of utilization is

m∗j(λ) = λ+ ω(1− cj). (6)

While these assumptions are quite strong, they play a key role in keeping the model tractable.

In particular, through equation (6) the authors assure that the health shock contributes to

utilization additively separably from the contribution of moral hazard.

Denoting by Fλ(·) the distribution of the health shock, the authors aim at identifying

Fλ(·) and ω. To argue that these functionals are point identified, the authors rely heavily on
(i) the fact that incremental utilization, which is observed, does not depend on risk aversion,

but on ω; and (ii) that the data contains a plausibly exogenous change in the entire menu

of health coverage options. First, the authors consider a counter-factual (but ideal) data

setting in which one observes each household’s entire distribution of medical expenditure for

two different coverages (denoted I and II), call them GI
i (m) and GII

i (m). Assuming that

the distribution of observed health shocks Fλ(·) is the same under both coverages, using the
fact that expenditure should equal λ + ω(1 − cj), and denoting by EGki (m) the expected

value of utilization under distribution Gk
i (m), k ∈ {I, II}, it immediately follows that the

difference
(
EGIi (m)− EGIIi (m)

)
/(cI−cII) uncovers the parameter ω. The distribution Fi,λ(·)

for each individual i can also be learned. This is because the authors observe a panel

data. If individuals within this panel are observed for a suffi ciently long period under the

different coverages, and if Fi,λ(·) is time invariant, then Fi,λ(·) can be learned recalling that
λit = mit − ωi(1− ct), with t denoting time period.
Risk aversion is introduced in the analysis by monetizing the second period utility

u(m∗j(λ);λ, ω) and using this object as the argument of a CARA utility function with coef-
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ficient of risk aversion r. Hence, the expected utility from coverage j in this model is

EUω
j = −1

r

∫
exp(−u(m∗j(λ);λ, ω))dFλ(λ).

An individual specific coeffi cient of standard risk aversion ri can then be identified if indi-

viduals face a continuous option set.

The authors argue that the data they have comes suffi ciently close to this ideal scenario.

Specifically, their data hails from Alcoa, Inc., a large multinational producer of aluminum and

related products, and it comprises health insurance choices and medical care utilization of

their United States—based workers (and their dependents). The analysis in this paper focuses

mostly on data from the years 2003 and 2004. The data is very rich, documenting health

insurance options and choices, claim information, demographic characteristics of households,

etc., as well as a summary proxy of individuals health care utilization based on predictive

medical software.

For this paper, the distinctive feature of the data is that in 2004, Alcoa introduced a new

set of health insurance PPO options, which were phased in gradually to different employees

based on their union affi liation, since new benefits could only be introduced when an existing

union contract expired. The staggered timing in the transition from one set of insurance

options to another provides a plausibly exogenous source of variation in coverage (mimicking

the possibility of observing distributions GI
i (m) and GII

i (m) from the ideal scenario) which

is, as discussed above, the key to identification. Prior to 2004 there were three PPO options

under the old benefits and five entirely different PPO options under the new benefits. Hence

workers were forced to make an active choice.

In practice, to estimate the model the authors impose a parametric structure on the dis-

tribution function Fλ(·) and on the form of unobserved heterogeneity. Because of the model’s
fairly complex structure, estimation is carried out via MCMC. The estimation exercise yields

an average coeffi cient of absolute risk aversion of 1.9 · 10−3, with a large standard deviation

of 2 · 10−3. The average value for ω is about $1,300 which corresponds to one third of the

average health risk (about $4,340) per employee-year. In other words, on average, moving

from no insurance to full insurance will cause an increase in medical utilization of $1,300.

The authors interpret the parameter ω as (a measure of) moral hazard. In essence, ω

maps the change in health insurance coverage into a change in utilization rate. And just like

in the textbook version of adverse selection, ceteris paribus individuals with higher moral

hazard (higher ω) will have higher willingness to pay for insurance and will be more costly

to insure.
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5 Estimation with Aggregate Data

In this section, we describe research that estimates risk preferences using aggregate data.

We begin by discussing the general approach that is broadly used in all of these papers. We

then review how that approach has been applied in several different domains: (i) betting

markets, and (ii) consumption, asset returns and labor supply data.

5.1 The General Approach

Estimating risk preferences from aggregate data requires steps that are similar to the ones

faced when working with individual-level data, as well as some steps that are different.

Step 1: Identify a field context in which economic agents make choices between options that

involve risk, and for which the researcher can obtain data on both the choice set faced

in aggregate by the agents, and the agents aggregate choices.

Step 2: Translate the (typically) rich field choice environment into a choice between a well

defined set of lotteries (as formalized in Definition 1). Several of the considerations

presented in Section 4.1.1 continue to apply. In particular, while the set of possible

outcomes might be clear in some contexts, e.g., betting markets, assumptions are going

to be imposed in others, e.g. when the analysis is based on consumption, asset returns

and labor supply data. In addition, subjective beliefs (of the representative agent) play

the same role and pose the same challenges when working with aggregate data, as they

do in the case of individual-level data. On the other hand, moral hazard is unlikely to

be a concern in these contexts.

Step 3: Determine if and to what extent the representative agent assumption which is appro-

priate in the specific context, can be weakened. The main departures entail allowing

for either heterogeneity in beliefs or for heterogeneity in risk preferences. Due to the

limitations of aggregate data, it seems unlikely that both dimensions of heterogeneity

can be allowed for, see Section 5.2.2 below.

5.2 Betting Markets

At the center of the literature that estimates risk preferences with aggregate data are studies

that use data on betting markets, and in particular those that use data on betting in pari-

mutuel horse races. In a pari-mutuel horse race, the total amount wagered, the "betting

pool," net of a house take, is distributed among the winning bettors in proportion to their

individual bets. Specifically, suppose that there are n horses, i = 1, ..., n, in each race,
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and denote by τ the house take. Then the net return on a one dollar bet on horse i, or

equivalently the "odds" on horse i, is given by

Ri =
1− τ
si
− 1, (7)

where si is the "share" of the betting pool wagered on horse i. The house take is computed

using the fact that the betting shares must sum to one:

1− τ =

(
n∑
i=1

1

1 +Ri

)−1

. (8)

The betting shares are then computed using equation 7:

si =
(1− τ)

(1 +Ri)
. (9)

Typically, researchers working in this field context have access to data that collect, for each

race, an observed vector of odds R = (R1, ..., Rn) and the identity of the winning horse.

The conceptual framework behind the estimation of preferences from such data is as

follows. The underlying primitives of a race are the house take τ , and a vector of probabilities

p ≡ (p1, . . . , pn)� 0, where pi the probability that horse i wins the race. Bettors’preferences

determine which horse they bet on, where the equilibrium market shares s = (s1, ..., sn)

determine the equilibrium odds R according to equation (7), and the market shares must be

consistent with bettors maximizing their preferences given the probabilities p and the odds

R. Importantly, given observed odds R, one can immediately derive the market shares s

and the house take τ using equations (9) and (8) respectively. Hence, the literature typically

takes R, s, and τ to be observed, whereas p and preferences are unobserved. The papers

that we review in this section differ in terms of the estimation approach adopted and the

nature of preferences considered.

5.2.1 Representative Agent Framework

The bulk of the studies that use pari-mutuel horse race data, the first wave of which considers

only EU preferences, adopt a representative agent framework. The key implication of there

being a representative agent is that, for each race, the equilibrium market shares s and odds

R must be such that the representative agent is indifferent between betting on all horses.

In an early paper, Griffi th (1949) uses data on a sample of 1,386 U.S. horse races to study

the risk perceptions of the racetrack crowd. Griffi th groups horses by odds and effectively

compares, at each odds group, (i) the reciprocal odds after correction for the house take (i.e.,
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s/(1−s)), which he takes as expressing the representative bettor’s subjective win probability,
with (ii) the empirical frequency of winners, which he takes as the objective win probability.

He finds that the corrected reciprocal odds exceed the frequency of winners at short odds

(less than 5.1-to-1), while the reverse holds at long odds. From this he concludes that there is

a systematic undervaluation of the chances of (and underbetting on) short-odded horses and

overvaluation of the chances of (and overbetting on) long-odded horses. This phenomenon

has come to be known as the favorite-longshot bias. Griffi th (1961) reports similar findings

in a follow-up study in which he turns attention from win bets to "show" bets.

McGlothlin (1956) repeats and extends Griffi th’s study using data from 9,248 California

horse races. Like Griffi th, McGlothlin groups horses by odds. He then calculates the expected

value of a one dollar win bet at each odds group and examines how it varies across odds

groups. In calculating the expected value of the bet, McGlothlin (like Griffi th) treats the

empirical frequency of winners as the objective win probability. He finds that the bet’s

expected value is positive at short odds and negative at long odds, with the crossing point

located between 3.5-to-1 and 5.5-to-1, in agreement with Griffi th’s prior findings. What is

more, McGlothlin finds the same patterns when he breaks down the data by the position of

the race in the daily program (first race, second race, etc.). At the same time, he finds that

both the average win bet and the proportion of win bets (relative to higher probability place

and show bets) increase as the racing day proceeds. From this he concludes that the data are

inconsistent with the EU model. In particular, he argues that if the subjective evaluation

of low probability-high stakes bets increases over a series of races, EU would predict a

concomitant intensification of the pattern of positive EV at short odds and negative EV at

long odds, contra to the data which displays a stable pattern over the racing day.

Weitzman (1965) analyzes data from over 12,000 New York horse races to estimate the

utility function of the representative bettor (the "average man at the race track," or "Av-

mart"). Like Griffi th and McGlothlin, Weitzman first groups horses by odds and treats the

empirical frequency of winners p̂j at each odds group j as the objective win probability,

yielding 257 data points {p̂j, Rj}257
j=1. He then uses these data points to estimate by weighted

least squares a relationship between p̂ and R. In the estimation, he tests several function

forms and concludes that the most appropriate function is the "corrected" hyperbolic form,

p̂ = A/R + B log(1 + R)/R , which yields a remarkable fit (R2 = 0.9852, although he does

not account for the fact that p̂ was estimated in the first stage). Weitzman argues that this

curve represents Avmart’s indifference map between lotteries (probability-returns pairs), as

Avmart is assumed to place his bets to maximize his expected utility. Weitzman then uses

this indifference map to recover the shape of Avmart’s utility function, which appears convex

(increasing marginal utility) in the range of his data, suggesting a region of local risk loving
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similar to that proposed by Markowitz (1952).

The first wave of papers culminates with Ali (1977). Ali uses data on more than 20,000

New York harness races to revisit the relationship between subjective and objective win

probabilities. Unlike his predecessors, Ali does not group horses according to their odds.

Instead, he groups horses according to the order statistics of their odds. That is, horses

are grouped according to "favorites"– the horse with the lowest odds in a race is the first

favorite, the horse with the next lowest odds is the second favorite, and so forth. As the vast

majority of races in his sample have at most eight horses, Ali carries out his analysis under

the assumption that there are no more than eight horses in a race.

Let the h-th favorite in a race be called horse h, h = 1, . . . 8, and let there be N races

indexed by k = 1, . . . N . Similar to his predecessors, Ali estimates the subjective win proba-

bility for horse h by s̄h =
∑N

k=1 shk/N , where shk is the (observed) share of win bets placed

on horse h in race k. He estimates the objective win probability by the empirical frequency

of wins by horse h over all races, p̂h =
∑N

k=1 yhk/N , where yhk = 1 if horse h wins race

k equals zero otherwise. Ali then uses these estimates to document the existence of the

favorite-longshot bias. He finds that every subjective win probability, except for that of

the first favorite, exceeds the corresponding objective win probability, and moreover that

the difference increases (when expressed as a ratio (s̄h − p̂h)/SE(p̂h), with SE(·) denoting
the standard error of the estimator in parenthesis) as the horse becomes less favorite. Ali

also uses these estimates to recover the utility function of the representative bettor. It is

remarkably similar to the one estimated by Weitzman.

In addition to reporting these empirical findings, Ali makes two important theoretical

points. First, he observes that the utility function of the representative bettor is inconsistent

with the EU hypothesis when the betting opportunity set is expanded to include parlay,

martingale and other compound bets (a point that is leveraged by Snowberg and Wolfers

(2010); see below). Second, he proves that the favorite-longshot bias can be explained with

bettors that are risk neutral EU maximizers but have heterogeneous risk perceptions (a point

that is developed by Gandhi and Serrano-Padial (2014); see below).

The second wave of papers that use pari-mutuel horse race data consider EU and non-

EU preferences. Jullien and Salanié (2000) use data from more than 34,000 horse races in

Britain ("in which bets are placed with a bookmaker who offers odds on all horses," p. 506),

to estimate EU, RDEU, and CPT models. Critically, Jullien and Salanié assume that bettors

do not spread their bets among horses, that every horse is bet on by at least one bettor, and

that all bettors bet the same amount a in all circumstances. They posit a representative

bettor whose behavior corresponds to the aggregate behavior of the crowd at the track and

assume the bettor’s subjective win probabilities correspond to the objective win probabilities
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(p1, ..., pn). After placing a one dollar bet on horse i, the bettor receives R dollars if the horse

wins, which happens with probability pi, and loses one dollar if the horse does not win, which

happens with probability 1− pi.

The representative bettor’s risk preferences are parametrized through a vector θ which

depends on the model considered (e.g., EU, RDEU, etc.), and for each model Jullien and

Salanié derive its implication for what the equilibrium probability pi of winning the race

for each horse i = 1, ..., n should be as a function of R and θ. Recognizing this relationship

between objective win probabilities, on the one hand, and returns and model parameters,

on the other, is a key contribution of this paper. The parameters are then estimated using a

standard maximum likelihood procedure for multinomial models based on which horse won

the race.

Jullien and Salanié begin by estimating EU models. Because they assume that bettors

do not spread their bets among horses and that every horse is bet on by at least one bettor,

the equilibrium value of betting a on each horse must be the same.56 Hence,

piu(M + aRi, θ) + (1− pi)u(M − a, θ) = W for all i = 1, ..., n,

where W is a placeholder for the value of betting a on horse i, and M is the bettor’s initial

wealth. Solving this equation for pi and then using the fact that
∑n

i=1 pi = 1 to learn W ,

they obtain

pi =
[u(M + aRi, θ)− u(M − a, θ)]−1∑n
j=1 [u(M + aRj, θ)− u(M − a, θ)]−1 .

Assume that horses are numbered across races, so that horse 1 always wins. Then in-

dexing all races by k = 1, ..., N, Jullien and Salanié obtain the log-likelihood for the sample

as

LN(θ) =
∑N

k=1 log p1(RN , θ)

EU
=
∑N

k=1 log
[u(M + aR1k, θ)− u(M − a, θ)]−1∑n
j=1 [u(M + aRj, θ)− u(M − a, θ)]−1 ,

where R1k are the odds of the horse that won race k, and p1 is the objective win probability

for the horse implied by the specific EU model. Intuitively, this estimation approach relies on

the fact that, in equilibrium, there is a one-to-one mapping from risk preference parameters

56Jullien and Salanié formalize risk preferences through a functional V (F ), such that if F1, F2 are two
risky distributions, bettors will prefer F2 to F1 if and only if V (F2) ≥ V (F1). They show that if V (·) is
a continuous functional in F and satisfies first order stochastic dominance, the set of equalities among the
values of betting on each horse uniquely define pi as a function of all Ri’s and θ.
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to the win probability of a horse, given the odds on the horse. Hence, maximum likelihood

estimation will find the value of θ that makes the model implied win probabilities as close

as possible to the empirical win frequencies observed in the data.

Estimation of the EU model with a CARA utility function (for which clearly only θa is

identified) yields an estimate of θ̂a = −0.055, thereby indicating that bettors are risk loving

(a result which was not "obvious" ex ante, because the authors do not model the decision

to bet). Similar results are obtained with a HARA utility function.

Jullien and Salanié next estimate various RDEU models. With RDEU, the value of

betting a on horse i is

π(pi, θ)u(M + aRi, θ) + (1− π(pi, θ))u(M − a, θ),

and must be equal across all horses in equilibrium. Hence one can solve for π(pi, θ), and

using again the adding up constraint
∑n

i=1 pi = 1, obtain an implicit formula for pi as a

function of R and θ based on the inverse function of π(·, θ). Specific functional forms for
π(·, θ) considered in the paper include those proposed by Lattimore, Baker, and Witte (1992)
and Prelec (1998). The estimation results indicate that the Lattimore, Baker, and Witte

(1992) model do not fit the data better (in the sense of value of the likelihood function)

than the EU model, that the estimate θ̂a is essentially unaffected, and that the estimated

coeffi cient for the power function is very close to one. Estimation of the Prelec (1998) model

yields a better fit to the data and suggests rejection of EU in favor of RDEU. However, the

estimated weighting function is quite close to the diagonal.

Finally, Jullien and Salanié estimate CPT models. With CPT, using M as a reference

point and assuming that u(0) = 0 with u(·) a continuous increasing function, the value of
betting a on horse i is

π+(pi, θ)u(aRi, θ) + π−(1− pi, θ)u(−a, θ),

and again must be equal across all horses in equilibrium. The authors then solve numerically

for pi, i = 1, ..., n, using the same logic as in the previous cases. In the estimation of the

model, the π+ and π− functions take the parametric forms proposed by Lattimore, Baker,

and Witte (1992). Power functions are considered as well. In each case, the results show

that the estimate θ̂a is not far from what is obtained for the EU model, that the probability

weighting function for gains is slightly convex but not significantly so, but that the probability

weighting function for losses is highly and significantly concave, leading to a clear rejection

of EU.
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Snowberg and Wolfers (2010) revisit the favorite-long shot bias to investigate whether

it is driven by risk love (increasing marginal utility) or by risk misperceptions (probability

distortions). The fundamental insight used for identification is that while both an EU model

and an RDEU model can be parametrized to explain bettors’choices in one part of their

choice set (betting on which horse wins the race), each of the models so parametrized will have

a different implication for the bettors’decisions over a wider choice set, including compound

bets in the exacta, quinella, or trifecta pools.57 Snowberg and Wolfers’data is ideally suited

to pursue this identification strategy, because their data include information on every horse

race run in North America from 1992 to 2001, including for each race the finishing position of

each horse that started in the race, the win odds on each horse, and the payoffs for win bets

and compound bets (exactas, quinellas, and trifectas). Because only data on equilibrium

prices (odds, denoted Oi) is available, the authors resort to a representative agent model.

The analysis proceeds in three steps. First, Snowberg and Wolfers’use the race results

to estimate the objective win probability pi for each horse, and then treat these estimates as

data, along with the win odds on each horse which are observed. Although the authors do

not discuss this step detail, it appears that they follow the approach of Griffi th, McGlothlin,

and Weitzman and group horses according to their win odds.

Next, Snowberg and Wolfers separately fit the EU model and the risk misperceptions

model to the win data via nonparametric smoothing,58 leveraging the fact that in equilibrium

bettors must be indifferent between betting on each horse to win. For the EU model, the

authors assume that bettors have perfect knowledge of the win odds on each horse, and that

each bettor bets on one horse only. They normalize utility to zero if the bet is lost and to

one if the bettor chooses not to bet. Then in equilibrium

piu(Oi) = 1⇒ pi =
1

u(Oi)
, i = 1, ..., n. (10)

The results indicate that "a risk-loving utility function is required to rationalize the bettor

accepting lower average returns on long shots, even as they are riskier bets" (p. 729). The

results also indicate that a CARA utility function fits the data reasonably well. For the risk

misperception model, the authors assume that bettors have a linear utility function, and

57An exacta is a bet on both which horse will come first and which will come second. A quinella is a bet
on two horses to come first and second in either order. A trifecta is a bet on which horse will come in first,
which second, and which third.
58In the EU model, the authors can nonparametrically estimated the utility function because they assume

that all bettors have the same wealth, in addition to the other assumptions specified below.
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they normalize utility to zero if the bettor chooses not to bet. Then in equilibrium

π(pi)Oi + (1− π(pi))(−1) = 0⇒ π(pi) =
1

Oi + 1
. (11)

The results indicate a risk misperception function π that maps tiny win probabilities into

moderate win probabilities, "similarly to some of the features of the decision weights in

prospect theory (Kahneman and Tversky (1979))" (p. 731). The results also indicate that

a one-parameter probability weighting function as in Prelec (1998) fits the data reasonably

well.

Without restrictive parametric assumptions, the EU model and the risk misperceptions

model are each just-identified, and so each yields identical predictions for the pricing of win

bets. In the third step, therefore, Snowberg and Wolfers turn to compound bets in order

to compare the EU and risk misperceptions models. For an exacta bet, in which the bettor

wagers that horse A will come first and horse B will come second, the EUmodel (via equation

10) yields

pApB|Au(EAB) = 1⇒ EAB = u−1(u(OA)u(OB|A)),

where EAB denotes the odds of horse A winning and horse B being second, and pB|A de-

notes the probability that B is second given that A wins. On the other hand, the risk

misperceptions model (via equation 11) yields

π(pA)π(pB|A)(EAB + 1) = 1⇒ EAB = (OA + 1)(OB|A + 1)− 1.

The authors use data on odds OA and (estimated) odds OB|A, to infer implied odds EAB
for each model (in the EU model, the utility function needs to be estimated from data on

win bets). The odds OB|A are not directly observable, and therefore they are inferred via

pB|A, assuming that bettors believe in conditional independence (i.e., the race for second is

considered as a "race within the race"), using the formulae:59 pB|A = pB
1−pA ⇒ OB|A = u−1

(
1−pA
pB

)
for the EU model;

π(pB|A) = π(pB)
1−π(pA)

⇒ OB|A = 1−π(pA)
π(pB)

− 1 for the risk misperceptions model.

They then compare models, by computing the mean absolute prediction error between the

59Snowberg and Wolfers discuss the possibility that instead of assessing the likelihood first that horse A
wins, and then that horse B comes in second, bettors might directly assess the likelihood of the first and
second combination, hence considering π(pApB|A) and therefore reducing compound lotteries into their equiv-
alent simple lotteries form. However, this would yield a pricing rule for the misperception class equivalent
to that of the EU class.
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prices of exacta bets observed in the data, and the prices implied by the values of EAB
predicted by each model (via the formula: price = 1/(odds + 1)). They find that the

risk misperceptions model is six percentage points closer to the actual prices of exactas.

While this is not a formal statistical test, the authors conclude that their "results are more

consistent with the favorite-long shot bias being driven by misperceptions rather than by

risk love" (p. 744). Robustness of the results to the assumption of conditional independence

is checked by using nonparametric estimates of pA|B, obtained using data on races in which

a horse with odds OB came in second, when a horse with odds OA won the race.

5.2.2 Heterogeneity in Beliefs and Preferences

Two recent papers (Gandhi and Serrano-Padial (2014) and Chiappori, Salanié, Salanié, and

Gandhi (2012)) investigate the extent to which one can use aggregate data on horse races

to estimate heterogeneity in beliefs and heterogeneity in preferences. The key idea in both

is that, instead of assuming a representative bettor who is indifferent between betting on

all horses in a race, it is assumed that heterogeneous bettors partition themselves across

the horses in a race based on either their beliefs or their preferences. If one can observe

how bettors partition themselves across races with different characteristics, one can draw

inference on the distribution of heterogeneity.

Gandhi and Serrano-Padial (2014) are motivated by the favorite long-shot bias, and the

idea that belief heterogeneity could drive it (as suggested by (Ali 1977, Theorem 2)). In the

first part of their paper, they build a formal model of risk-neutral agents with heterogeneous

beliefs– specifically, beliefs that are on average correct but with heterogeneity around that

average– and prove that such a model would generate a favorite long-shot bias. Here, we

focus on the latter part of the paper, where they estimate the extent of belief heterogeneity.

The basic structure of their model is as follows. As above, a race consists of a house take

τ and a vector of probabilities p ≡ (p1, . . . , pn)� 0, where pi is the probability that horse i

wins the race. Bettor t holds beliefs πt ≡ (π1t, . . . , πnt), where beliefs are heterogeneous and

thus some bettors have πt 6= p. To put some structure on the nature of belief heterogeneity,

Gandhi and Serrano-Padial (2014) define νit = log(p1/π1t) − log(pt/πit), and focus on the

population distribution of νt = (ν1t, . . . , νnt), which they denote by P (νt; θ) with θ a vector of

parameters to be estimated. They assume that P (νt; θ) is continuous, and in the estimation

they further assume that belief heterogeneity is “idiosyncratic”in the sense that E(νt) = 0

and E(νit|ν−it) = 0 for any ν−it.

Given this structure, bettors partition themselves across horses to generate equilibrium

market shares s = (s1, ..., sn) and resulting odds R = (R1, ..., Rn). Assuming that bettors
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are risk-neutral, in equilibrium each bettor t will bet on the horse with the largest πitRi, and

the result of all bettors behaving in this way must yield the equilibrium shares s.60

Gandhi and Serrano-Padial (2014) have the key insight that, again with risk-neutral

bettors, this market is isomorphic to a discrete-choice horizontally differentiated products

market of the form studied by Berry, Levinsohn, and Pakes (1995) and Berry, Gandhi, and

Haile (2013) (see the paper for details).61 Applying results from that literature, for any

continuous P (νt; θ), one can translate any observed odds R into a unique vector of model-

implied underlying probabilities p∗(θ). One can then set up a likelihood function exactly as

in Jullien and Salanié (2000) – numbering horses such that the winning horse is horse 1,

and denoting races by k = 1, ..., N , the log-likelihood for the sample is

LN(θ) =
∑N

k=1 log p∗1(θ).

The authors estimate this model using a sample of more than 176,000 pari-mutuel races

that were collected from North-American tracks over 2003-2006, consisting of more than

1,400,000 horse starts.62 With risk-neutral bettors, the only object to estimate is the distri-

bution of belief heterogeneity P (νt; θ). They assume that νt is distributed according to a

variance mixture of logit errors. Specifically, they assume

P (ν1t, . . . , νnt; θ) =
M∑
m=1

(
n∏
i=2

F (νit|σm)

)
g(σm)

where F is a standard logistic distribution, and g(σm) is the mixing probability. The authors

report results for M = 1, 2, and 3, where they interpret M to be the number of types in

the population and σm to be a measure of belief heterogeneity for type m. A likelihood

ratio test rejects the one-type model in favor of the two-type model, while adding a third

type does not significantly improve the log-likelihood. The authors therefore focus on the

two-type model. In the two-type model with risk-neutral bettors, they estimate that 70%

of the population have a small σ = .028, while 30% have a large σ = .503. The authors

interpret the former group as having roughly correct beliefs (informed traders), and they

interpret the latter group as having dispersed beliefs (noise traders).63

60The authors effectively assume that all bettors bet the same amount, because while they permit hetero-
geneity in the amount bet, they assume this heterogeneity to be independent of the belief heterogeneity, and
thus the average amount bet by agents of each belief-heterogeneity type is equal to the average amount bet
by the population.
61In an appendix, they describe how this approach can be extended to permit risk-averse bettors.
62As a preliminary step, the authors regress ex-post return on (log) market shares, and indeed find evidence

of the favorite-long shot bias in their data.
63They also estimate a model with risk-averse bettors who all have the same CARA utility function, and
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Finally, the authors do some additional analysis to further buttress their argument that

belief heterogeneity is playing an important role in this domain. First, they use their data

to estimate a representative agent model using the preferred specification of Jullien and

Salanié (2000), and they conclude using a Vuong test that their belief heterogeneity model

is statistically better than the representative agent model. Second, they separately estimate

their model on the subsamples of maiden and non-maiden races. Maiden races are races in

which participating horses have yet to win a single race, and thus there is less handicapping

information about horses in maiden races than in non maiden races. Their estimates suggest

stable proportions of informed vs. noise traders across the two types of races, but lower

variance estimates for each type of trader in the non-maiden races. This result is exactly what

one might expect if belief heterogeneity were playing an important role in this environment.

In an alternative approach, Chiappori, Salanié, Salanié, and Gandhi (2012) investigate

how one can use aggregate data on horse races to estimate a model with heterogeneity in

preferences. In particular, they demonstrate that preference heterogeneity can be identified

provided some key restrictions are satisfied: (i) heterogeneity is one dimensional and sat-

isfies the single-crossing property described below; (ii) utility from betting on one horse is

independent from the utility from betting on a different one (hence not allowing for regret

theory); (iii) agents make their decisions based on the correct win probabilities p (hence not

allowing for subjective beliefs).

Chiappori, Salanié, Salanié, and Gandhi (2012) assume that there is a continuum of

bettors with utility function V (R, p, θ), where θ is a heterogeneity parameter normalized to

be uniformly distributed on [0, 1]. The authors prove that, under a set of regularity conditions

(among which a single crossing property explained below plays a particularly important role),

the utility function V (R, p, θ) is identified. Estimation and inference, however, are conducted

based on a feature of V which they label the “normalized fear of ruin”:

NF (R, p, θ) =
p

R + 1

Vp
VR

(R, p, θ).

Because different models of risk preferences have different implications for NF (R, p, θ), the

authors are able to use the estimated NF to test which, among different models of risk

preferences, better fits the data.

The utility function V (R, p, θ) is assumed to be continuously differentiable almost every-

where, increasing in R and p, and such that any higher return can be compensated by a

lower probability of winning and vice versa. The crucial assumption is that V satisfies a

single-crossing property: For any two gambles (R, p) and (R′, p′) with p′ < p, if, for some

reach much the same conclusion about the nature of belief heterogeneity.
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θ, V (R, p, θ) ≤ V (R′, p′, θ), then for all θ′ > θ, V (R, p, θ′) < V (R′, p′, θ′). Hence, θ can be

interpreted as a taste for risk, where the larger θ is, the more a bettor is prone to prefer

horses with a lower probability but higher expected return. This single-crossing assumption

is satisfied for an EU model with CARA utility or with CRRA utility. For an RDEU model,

it can be satisfied, though additional restrictions are required. A particularly important

restriction under RDEU is that if there is heterogeneity in both the utility function and the

probability-weighting function, the two types of heterogeneity must have a structure that can

be reduced to a single dimension of heterogeneity that satisfies the single-crossing condition.

To characterize the equilibrium given these preferences, Chiappori, Salanié, Salanié, and

Gandhi (2012) label horses in each race such that p1 > p2 > ... > pn. If preferences satisfy

the single-crossing condition, then for any vector of odds R satisfying R1 < R2 < ... < Rn

we can define, for each i ∈ {1, ..., n− 1}, θi(R) to be the unique θ′ such that V (Ri, pi, θ
′) =

V (Ri+1, pi+1, θ
′). For any race (p, τ), the market shares s and resulting odds R will adjust,

such that

θi(R) < θi+1(R) for all i ∈ {1, ..., n− 1}
s1 = θ1(R)

and si = θi+1(R)− θi(R) for all i ∈ {2, ..., n}.

In other words, bettors partition themselves according to their θ’s, where the bettors with

the lowest θ’s, who are most averse to risk, bet on the horse with the largest probability

of winning, and bettors with larger and larger θ’s bet on horses with smaller and smaller

probabilities of winning. The authors prove that for any race (p, τ) there exists a unique equi-

librium (s,R), and moreover for any observed equilibrium (s,R) there is a unique race (p, τ)

that can generate those odds. Hence, one can define a function p(R) ≡ (p1(R), ..., pn(R))

that reflects the underlying vector of probabilities associated with any observed odds R.

The intuition behind the authors’ approach to identification is that if one observes,

for each θ, enough indifference conditions of the form (R, p) ∼ (R′, p′), then one can

make inferences about V (R, p, θ)– in particular, about NF (R, p, θ). Specifically, they define

G(R, p,R′, θ) to be the p′ such that a bettor of type θ has (R, p) ∼ (R′, p′). For any observed

race, the equilibrium conditions imply

∀i < n, pi+1(R) = G(Ri, pi(R), Ri+1, θi(R)).

With this structure in place, the authors show that knowledge of G(Ri, pi(R), Ri+1, θi(R))

(which can be acquired from a regression of pi+1(R) on Ri, pi(R), Ri+1, θi(R)), yields knowl-
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edge of

NF (R, p, θ) =
p

R + 1

Gp

GR

(R, p,R′, θ).

The authors estimate their model– that is, the function G– using a dataset of more

than 53,000 thoroughbred races in the United States from 2001 to 2004.64 For each race, the

authors observe the oddsR, from which they can immediately derive the market shares s and

thus the cutoff values θi(R), i = 1, ..., n. To estimate G, they follow a two-step procedure.

First, they use empirically observed outcomes to estimate the function pi(R).65 In this step,

they use a semi-nonparametric sieve method with orthogonal polynomials, where the number

of terms to be included is selected using the Akaike Information Criterion and the Bayesian

Information Criterion. Second, with the function pi(R) in hand (in this step, they use the

BIC selected model), they estimate the function G(Ri, pi(R), Ri+1, θi(R)) via nonparametric

regression, performed using Generalized Additive Models.

Finally, the authors investigate the implications of the estimated Ĝ function. In particu-

lar, they use Ĝ to compute theNF index at each observation in the data. They then test how

well different models of risk preferences can explain the variation in this estimated NF in-

dex. Of the models considered, a heterogenous non-expected utility model with non-additive

probability weights, in which the estimated probability weighting function is concave and

then convex, performs best.

5.3 Consumption, Asset Returns, and Labor Supply Data

In addition to the studies that use betting data, there are a number of studies that use

macroeconomic data to estimate risk preferences.

The bulk of these studies use data on consumption and investment (asset returns). A sem-

inal paper is Hansen and Singleton (1983). They study a single-good economy of identical,

infinitely-lived agents with time-additive EU preferences and CRRA utility. The represen-

tative agent in this economy chooses a stochastic consumption plan {ct}∞t=0 to maximize

E0

[ ∞∑
t=0

βtu(ct)

]
, (12)

where E0 is the expectation conditional on information available in period zero, β > 0 is a

64Observable heterogeneity across races is dealt with by conditioning on observable covariates X. In the
analysis, these are discrete and incorporated via cell mean estimation. In particular, the results reported are
for the subsample of weekday races run on urban tracks.
65This step is analogous to the approach in Weitzman (1965) and Snowberg and Wolfers (2010), except

that they estimate how the probability of horse i winning depends on the full vector of odds R as opposed
to merely depending on Ri.
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discount factor, and u(ct) = (c1−ρ
t − 1)/(1 − ρ), ρ > 0, subject to the sequence of budget

constraints

ct + p′txt+1 ≤ (pt + dt)
′ xt, (13)

where xt is a vector of the agent’s holdings of n assets in period t, pt is the vector of prices

of the n assets in xt net of any distributions, and dt is the vector of distributions in period

t.66

The first-order necessary conditions for the maximization of (12) subject to (13) are given

by the Euler equations,

Et

[
β

(
ct+1

ct

)−ρ
Rit+1

]
= 1, i = 1, . . . , n, (14)

where Et is the expectation conditional on information available in period t and Rit+1 =

(pit+1 + dit+1) /pit is the one-period return on asset i.

By assuming, inter alia, that the joint distribution of consumption and asset returns is

lognormal, Hansen and Singleton are able to obtain maximum likelihood (ML) estimates of

ρ and β using monthly U.S. data for the period February 1959 through December 1978. In

general, their estimates of the coeffi cient of relative risk aversion ρ range between zero and

two, and their estimates of the discount factor β are less than but close to unity. Perhaps

more importantly, however, they perform various chi-square and likelihood ratio tests that

provide substantial evidence against the model. Of course, these tests are joint tests of the

model’s several restrictions, including the preference assumptions (identical agents, EU pref-

erences, time additivity, CRRA utility, exponential discounting, etc.) and the distributional

assumption (jointly lognormally distributed consumption and asset returns), making it im-

possible to say which restrictions are being rejected. For this reason, the authors lay out a

dual plan of pursuing both "models . . . with more general specifications of preferences and

distribution-free methods of estimation and inference" (Hansen and Singleton 1983, p. 264).

In Hansen and Singleton (1982), the authors progress their plan to pursue distribution-

free methods of estimation and inference.67 They develop a generalized instrumental vari-

ables procedure for estimating the parameters of model (12)-(13) and implement their pro-

cedure using the same monthly data on consumption and asset returns used in Hansen

and Singleton (1983). In brief, they first use the Euler equations (14) to generate a set of

66In Hansen and Singleton (1983), the right-hand side of the budget constraint also includes a term
explicitly measuring the agent’s labor income in period t. This term can be supressed, however, without loss
of generality (Epstein and Zin 1989, 1991, p. 267).
67Hansen and Singleton (1982) was published before but apparently written after Hansen and Singleton

(1983).
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population orthogonality conditions,

E



β
(
ct+1
ct

)−ρ
R1t+1 − 1
...

β
(
ct+1
ct

)−ρ
Rnt+1 − 1

⊗ zt

 = 0, (15)

where E is unconditional expectation and the vector of instruments zt comprises lagged

values of (R1t+1, . . . , Rnt+1, ct+1/ct)
′. They then use the sample analog of the orthogonality

conditions to construct a generalized method of moments (GMM) estimator of the model

parameters. The GMM estimates of ρ and β are similar to the ML estimates reported in

Hansen and Singleton (1983). What is more, chi-square tests again provide evidence against

the model, which here may be interpreted as direct evidence against the model’s preference

assumptions.

The rejection by Hansen and Singleton (1982, 1983) of the standard preference assump-

tions is echoed in the subsequent literature on the equity premium puzzle (Mehra and

Prescott 1985).68 In their famous paper, Mehra and Prescott consider a variation of the

standard model studied by Hansen and Singleton in which there are two assets: a risky

equity security and a risk-free debt security. Unlike Hansen and Singleton, however, Mehra

and Prescott do not estimate the model’s preference parameters. Instead, they calibrate the

model’s non-preference parameters so that the population mean, variance, and autocorrela-

tion of consumption growth match their corresponding sample values for the U.S. economy

between 1889 and 1978. They then derive analytical expressions for the expected returns on

the equity and risk-free securities, Re and Rf , in terms of the model’s preference parameters,

ρ and β. Restricting ρ ≤ 10, β ≤ 1, and Rf ≤ 0.04 (more than four times the average return

on the three month Treasury bill during the sample period), they find that the maximum

equity premium (Re−Rf) that is consistent with the model is less than one percent, whereas

the historical equity premium (the difference between the average annual returns on the S&P

500 and the three month Treasury bill during the sample period) at the time was more than

six percent.

Motivated in part by the poor empirical performance of the standard model in Hansen

and Singleton (1983) and Mehra and Prescott (1985), and in part by concurrent develop-

ments in the microeconomics literature on non-EU preferences, Epstein and Zin (1989, 1991)

take the path of pursuing a model with a more general specification of preferences.69 The key

68For a survey of the literature on the equity premium puzzle, see Kocherlakota (1996). See also Siegel and
Thaler (1997). Campbell (2003) summarizes the larger literature on asset price puzzles in macroeconomics.
69Weil (1989, 1990) takes a parallel path.
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innovation of their model is that it disentangles the representative agent’s degree of risk aver-

sion from his elasticity of intertemporal substitution. In the standard model, the coeffi cient

of relative risk aversion is constrained to equal the reciprocal of the elasticity of intertempo-

ral substitution. As a result, an agent with standard preferences that is very averse to risk

must also be very averse to consumption growth. However, this is what makes the equity

premium a puzzle: the high degree of risk aversion that is required to explain the historical

equity premium implies an implausibly low elasticity of intertemporal substitution given the

historical rate of consumption growth.70 Accordingly, Epstein and Zin investigate whether a

model that delinks preferences over risk and intertemporal substitution can outperform the

standard model.

In Epstein and Zin’s model, the representative agent’s utility in period t is defined recur-

sively as

Ut =
[
(1− β) cςt + β

(
Et [Ut+1]1−ρ

) ς
1−ρ
] 1
ς
, (16)

where ς = 1 − (1/σ) and σ is the agent’s elasticity of intertemporal substitution, and his

intertemporal budget constraint is given by (13). The Euler equations that characterize the

first-order necessary conditions of the optimal consumption path are

Et

[
β

(
ct+1

ct

)θ(ς−1)

(mt+1)θ−1Rit+1

]
= 1, i = 1, . . . , n, (17)

where θ = (1− ρ)/ς and mt+1 = [(pt+1 + dt+1)′xt+1]/p′txt+1 is the one-period return on the

agent’s asset holdings in period t. Observe that when ρ = 1/σ, the Euler equations (17)

reduce to (14).

Following the GMM procedure of Hansen and Singleton (1982), Epstein and Zin estimate

the model using monthly U.S. data for the period February 1959 through December 1986.

Although Wald and likelihood ratio tests of the restriction ρ = 1/σ generally reject the

standard model, Epstein and Zin’s model does not resolve the equity premium puzzle. In

general, they find that the coeffi cient of relative risk aversion ρ is close to one and the

elasticity of intertemporal substitution σ is less than one. Moreover, they find that the

discount factor β is often greater than one.

Another generalization of the standard EU model which features prominently in the

macro-finance literature is the model with habit formation (e.g., Abel 1990, 1999; Constan-

tinides 1990; Campbell and Cochrane 1999). Habit formation models posit that marginal

70Stated differently, the equity premium puzzle may be viewed as a risk-free rate puzzle (Weil 1989): the
high degree of risk aversion that is required to explain the historical equity premium implies a low elasticity of
intertemporal substitution, but a low elasticity of intertemporal substitution necessitates a counterfactually
high risk-free rate to induce savings suffi cient to explain the historical rate of consumption growth.
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utility of consumption in period t is an increasing function of consumption in period t − 1.

Consider, as in Campbell and Cochrane (1999), the following modification to the standard

maximization problem in (12):

E0

∞∑
t=0

βt
(ct − xt)1−ρ − 1

1− ρ ,

where xt is the level of habit. Defining St ≡ (ct− xt)/ct as the surplus consumption ratio, it
is immediate to see that positive habit, xt, breaks the one-to-one link between the degree of

relative risk aversion and the parameter ρ:

−ctucc(ct, xt)
uc(ct, xt)

=
ρ

St
.

In particular, for a given ρ, the lower is the surplus consumption ratio (i.e., the lower is

consumption ct relative to habit xt), the higher is the agent’s relative risk aversion. Moreover,

depending on the specification of xt the coeffi cient of relative risk aversion will be time

varying. The implications for asset pricing can be seen from the corresponding inter-temporal

Euler equation:71

Et

[
β

(
St+1

St

)−ρ(
ct+1

ct

)−ρ
Rit+1

]
= 1.

Without habit (i.e., xt = 0), this collapses to the standard Euler equation in (14). However,

with positive habit, asset returns become untangled from consumption growth. Naturally,

the success of models with habit formation rests entirely on a convincing specification of a

process for St. Campbell and Cochrane postulate the following heteroskedastic AR(1) process

for the (log) surplus consumption ratio:

logSt+1 = (1− φ)s̄+ φ logSt + λ(logSt)(log ct+1 − log ct − g),

where φ and s̄ are parameters, g is the average consumption growth, and λ(·) is a decreasing
convex function over a finite support chosen such that the risk free rate is constant. They

show that with a realistically low parameter ρ (and other calibrated features of the model),

71There are two ways to specify habit formation: as either interal or external habit formation. With
internal habit formation, habit depends on an agent’s own consumption and the agent takes into account
the fact that increasing consumption today will increase the habit level, and thus the marginal utility of
consumption, in future periods. With external habit formation, habit depends on aggregate consumption
(which is unaffected by any one agent’s behavior), and can be viewed as formalizing the notion of "keeping
up with Jones." The Euler equation here is the one derived assuming external habit formation.
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the data generated by the model exhibits short- and long-run equity returns that come close

to their empirical counterparts.

Another type of macroeconomic data that has been used to estimate risk preferences is

data on labor supply (Chetty 2006). Chetty’s basic insight is that the wage elasticity of

labor supply, which has been estimated in numerous studies in labor economics, provides

information about the curvature of the marginal utility of consumption. To see the intuition

behind Chetty’s insight, note that in standard models with endogenous labor supply and

competitive labor markets, the first order condition with respect to labor is given by

Ul(c, l) = −wUc(c, l),

where c is consumption, l is labor supplied, and w is the wage. For illustrative purposes,

assume that the environment is static and that agents’preferences are separable in consump-

tion and labor:

U(c, l) =
c1−ρ

1− ρ − Λ
l1+ψ

1 + ψ
,

where Λ and ψ are positive constants that govern the disutility from labor. Finally, assume

that agents do not have any non-labor income: c = wl. It follows that the first-order condition

with respect to labor becomes

wc−ρ = Λlψ ⇔ w1−ρ = Λlψ+ρ ⇔ (1− ρ) logw = log Λ + (ψ + ρ) log l.

It then follows that

d log l

d logw
=

1− ρ
ψ + ρ

⇒ if
d log l

d logw
> 0 then ρ < 1.

In words, if the wage elasticity of labor supply is positive, then the curvature of the marginal

utility of consumption cannot be too high. Indeed, ceteris paribus, a high curvature implies

that the marginal utility of consumption diminishes quickly, and hence faced with increased

wages, agents would be willing to forgo consumption to have more leisure– that is, they will

work less.

Chetty develops this insight in a dynamic life cycle model with a generic utility function.

He uses the estimates of the degree of complementarity between consumption and labor, as

well as the estimates of wage elasticity of labor supply, obtained in various other studies,

to conclude, through a calibration exercise, that the curvature of the marginal utility of

consumption has to be modest, corresponding to a value of the coeffi cient of relative risk

aversion around one.
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Finally, aggregate consumption data has been coupled with individual consumption data

and the theory of optimal risk sharing to shed light on a number of interesting implications

of the EU model. A notable example of this type of research is Chiappori, Samphatharak,

Schulhofer-Wohl, and Townsend (2014), who study risk sharing in village economies in Thai-

land. The goal of the paper is to assess to which degree (if any) households in rural areas

share risk and to assess the degree of heterogeneity in their risk preferences. Based on a test

that relies on measuring (conditional) correlation between households’consumption and their

respective incomes, the authors cannot reject the null hypothesis of full risk sharing. Full risk

sharing allows for measuring preference heterogeneity via consumption correlation patterns

across households. Consider, for example, a village where all households have identical risk

preferences. Then, each household’s share of aggregate village consumption is constant over

time. However, if some households are more risk averse than others, optimal risk sharing

would imply that their consumption is more volatile and co-moves more closely with aggre-

gate village consumption. In fact, with full insurance, two households will have co-moving

consumption only when their consumption also co-moves with aggregate consumption. Simi-

larly, if the consumption levels of a pair of households are not correlated with each other, one

of these households must be more risk averse, and its consumption should be less correlated

with the aggregate consumption level of the village. The paper formalizes this intuition into

a mechanism that identifies relatively more or less risk averse households, by looking at the

pairwise correlations in their consumption.72 The authors find substantial heterogeneity in

risk preferences. However, as the they make clear, the analysis relying on the second moment

properties of consumption does not speak directly to the scale of the (average) risk aversion

across the population in question.73

6 Directions for Future Research

Our analysis of identification and estimation of risk preferences highlights specific assump-

tions that the literature has imposed to date. These can be divided into three broad cat-

egories: (1) assumptions about the possible sources of aversion to risk; (2) assumptions

about subjective beliefs; and (3) assumptions about how agents themselves transform– and

72A companion paper, Chiappori, Samphatharak, Schulhofer-Wohl, and Townsend (2013), shows that the
measures of risk aversion found in this study correlate with those that can be inferred from households
portfolio choices.
73The inability to pin down the exact scale of risk preferences can also be found in Chiappori and Paiella

(2011), who study how the riskiness of households’financial portfolios change with changes in their total
financial wealth. The authors find a negligible response of households’portfolio composition to wealth shocks,
which points to constant relative risk aversion. They also find that there is a negative correlation between
wealth and risk, though the latter can be measured only up to scale.
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simplify– a choice situation in their own minds before making a decision. In this section we

discuss various ways in which, as the literature moves forward, these assumptions can be

refined or weakened.

Within the first category of assumptions, we include not merely functional form re-

strictions, but more substantially the choice of whether a model of decision making under

uncertainty should include curvature of the utility function, and/or elements of probability

weighting, cumulative prospect theory, loss aversion, and disappointment aversion. In mak-

ing this choice, researchers often take lessons from the related literature. A natural question

is then to what extent these lessons are "portable." In Section 6.1 we review a very small

literature that has studied the extent of stability of risk preferences across contexts. We

believe that more research is needed to answer this important question. And to the extent

that stability of risk preferences is assumed, we propose that field data in which agents make

more than one choice can be leveraged to draw inference on the extent to which different

models of aversion to risk are useful in explaining agents’choices. We then suggest in Section

6.2 an additional avenue for future research, which also builds on the assumption of stability:

combining data from the laboratory with field data to obtain a better understanding of risk

preferences.

Within the second category of assumptions, we refer to the identification problem associ-

ated with disentangling risk preferences from beliefs. In Section 6.3 we propose that future

research augments choice data with survey data that measure probabilistic expectations

directly.

Finally, within the third category of assumptions, we refer to how the typically complex

field context is translated into concrete choice data that can be used to estimate risk prefer-

ences (see Section 4.1.1). Typically, the resulting assumptions are motivated by the need of

the researcher to obtain a tractable model, rather than by their psychological realism. An

important agenda for future research is to pay more careful attention to these assumptions,

and to investigate directly the impact of such assumptions on estimates of risk preferences.

6.1 Consistency across contexts

A common assumption in economics is that risk preferences are stable across decision contexts

(or domains), which implies that multiple risky choices by the same economic unit should

reflect the same degree of risk aversion (or risk loving), even if the contexts of the decisions

are different. If this assumption is correct, then the estimates of risk preferences derived from

choices in one context can be used to understand and make predictions about the behavior

of the households in other contexts. Assessing the empirical validity of this assumption is a
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diffi cult task. Moreover, it is quite possible that risk preferences are stable across a certain

set of contexts, but not others.

There has been a handful of papers on this issue, which we survey below. More work is

needed to fully assess whether and to what extent risk preferences are context-specific versus

domain-general.

Wolf and Pohlman (1983) compare the risk preferences of a single dealer in U.S. govern-

ment securities in two domains, a hypothetical gambling context and an actual investment

context. Throughout their study, Wolf and Pohlman assume that the dealer is an expected

utility maximizer with the following hyperbolic absolute risk aversion (HARA) utility func-

tion,

u(w) =
(1− g)

g

[
w

1− g + n

]g
, (18)

where [w/(1− g)] + n > 0.

In the gambling context, Wolf and Pohlman recover the utility parameters g and n from

the dealer’s direct assessments of six hypothetical lotteries. In each assessment, the dealer se-

lected a level of wealth that made him indifferent between the lottery {wi, 0.5;wk, 0.5} and the
status quo wealth wj, where wi < wj < wk. Specifically, for each wk ∈ {1.500, 1.667, 2.000},
the dealer selected (i) wi assuming wj = 1 and (ii) wj assuming wi = 1. From each pair

(wi, wj) selected by the dealer, the authors recover the implied values of g and n and then

compute the implied coeffi cients of absolute and relative risk aversion. They report that,

in each case, the dealer’s coeffi cient of relative risk aversion was equal to one, and that his

coeffi cient of absolute risk aversion likewise was close to one.

In the investment context, Wolf and Pohlman estimate g and n from the dealer’s bid

decisions over a series of 28 Treasury bill auctions conducted during a 20 week interval in

1976. According to the authors, the dealer’s bid decision can be separated into two decisions.

The dealer first determines the optimal bid composition, which determines the random net

return per dollar invested, r. He then chooses the optimal bid size, λ, to maximize

E [u (w0 (1 + λr))]

subject to λ ≥ 0, where w0 is the initial capital assigned to the auction. With u(w) given

by (18), the first-order necessary condition is

E

[
w0r

(
w0 (1 + λr)

1− g + n

)]g−1

= 0. (19)

For each auction in the sample, the dealer reported the composition and size of his bid. He
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also reported his subjective forecasts (at the time he submitted his bid) of the prices at which

Treasury bills could be bought and sold, expressed as discrete probability distributions over

a set of stop-out prices of the current auction and the following week’s auction.74 Using

the two forecasts and the bid composition, the authors construct the distribution of r. In

addition, they fix w0 = 1 and set λ equal to the bid size per dollar of assigned capital.

The authors obtain NLS estimates of g and n by finding the values that minimize, across

the 28 auctions in the sample, the sum of the squared residuals between λ and λ̂, where λ̂

is defined implicitly by (19). They then compute the implied coeffi cients of absolute and

relative risk aversion. The authors find that both coeffi cients are four times larger than the

dealer’s directly assessed coeffi cients, leading them to conclude that people’s "degree of risk

aversion may depend on the specific context in which their choices are made" (Wolf and

Pohlman 1983, p. 849).

Barseghyan, Prince, and Teitelbaum (2011) investigate the stability hypothesis by ex-

amining households’ insurance choices. The authors assemble a dataset that records the

insurance choices of 702 households in three lines of personal property coverage: auto col-

lision, auto comprehensive, and home all perils.75 They use the data to test whether the

households’deductible choices across coverage lines reflect the same degree of absolute risk

aversion. The test relies on a model of deductible choice that assumes, inter alia, that house-

holds are expected utility maximizers and that households know their coverage-specific claim

rates (i.e., the average rate at which they will experience claims in each line of coverage).

Under the assumptions of the model, Barseghyan, Prince, and Teitelbaum derive an

approximation of the coeffi cient of absolute risk aversion at which a household is indifferent

between any two deductible options, dl < dh:

r̃l,h ≈
pl−ph

λ(dh−dl) − 1
1
2
(dh − dl)

,

where pl and ph are the premiums for coverage with deductibles dl and dh, respectively, and

λ is the household’s claim rate. Although the deductible options and associated premiums

are observable variables, the household’s claim rate is a latent variable. The authors assume

that a household’s claims are generated by a Poisson process having rate λ, and they use

data on claim realizations and demographics to estimate λ.

The authors’test leverages the idea that each deductible choice by a household implies

that its coeffi cient of absolute risk aversion lies between two indifference points. For exam-

74The stop-out price of a Treasury bill auction action is the lowest price that the Treasury will accept for
bills in the auction.
75These are the same contexts as analyzed in BMOT, although for a different dataset. See footnote 47.
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ple, if the household chooses a deductible of $250 from a menu of $100, $250, and $500,

then r̃250,500 provides a lower bound on its coeffi cient of absolute risk aversion and r̃100,250

provides an upper bound. In this fashion, a household’s deductible choice in each line of

coverage identifies an interval that must contain its coeffi cient of absolute risk aversion. Be-

cause a household makes deductible choices in three lines of coverage– auto collision, auto

comprehensive, and home all perils– its choices imply three intervals. The test simply asks

whether the intervals intersect. If the intervals intersect, then any coeffi cient of absolute risk

aversion contained in the intersection can rationalize the household’s choices. If the intervals

do not intersect, however, then the household’s choices cannot be rationalized by the same

coeffi cient of absolute risk aversion.

Barseghyan, Prince, and Teitelbaum find that the hypothesis of stable risk preferences is

rejected by the data. More specifically, they find that only 23 percent of households "pass"

the test– i.e., the three intervals intersect for only 23 percent of households. The authors

argue that this is rather low considering that the pass rate would be 14 percent if households

were randomly assigned their deductible choices.76 As for the other 77 percent, the authors

find that these households typically exhibit greater risk aversion in their home deductible

choices than they do in their auto deductible choices. In the home domain, the average

household would pay $45 to avoid facing a gamble offering an equal chance of winning and

losing $100. In the auto domain, by comparison, the average household would pay only $30

to avoid facing the same gamble.

To further illustrate their results, the authors compare the joint distribution of auto

collision and home deductibles in the data with the joint distribution generated by the

model under the null hypothesis of stable risk preferences– see Figure 5. Conditional on

their auto collision deductibles, the model predicts that households would choose "high"

home deductibles ($500 or higher) with significantly greater frequency than is observed in the

data. Indeed, the authors report that a Wald test rejects at the 1 percent level the equality

of the marginal distribution of the actual home deductibles and the marginal distribution

of the model-generated home deductibles. Because lower deductibles correspond to more

insurance, the figure illustrates not only the conclusion that the hypothesis of stable risk

preferences is rejected by the data, but also the finding that households exhibit greater risk

aversion in the home domain than they do in the auto domain.

In their concluding remarks, Barseghyan, Prince, and Teitelbaum discuss several potential

76That said, even if every household had stable risk preferences, one should not expect a pass rate of 100
percent. This is because the households’ true claim rates are bound to differ from their predicted claim
rates due to unobserved heterogeneity. Therefore, as a relevant point of comparison, the authors simulate
the expected pass rate under the null hypothesis of stable risk preferences. They find that the expected pass
rate is 50 percent, more than twice the actual percentage.
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Figure 5: Joint distribution of deductibles —data vs. model

explanations for their results, including the possibility that people have systematic risk

misperceptions. They also acknowledge that rejecting the hypothesis of stable risk preference

is not equivalent to rejecting the hypothesis that there is no domain-general component to

risk preferences. After all, the authors’test is a joint test of the stability hypothesis and the

expected utility hypothesis, and the latter may be what is being rejected by their test.

Einav, Finkelstein, Pascu, and Cullen (2012) analyze whether and to what extent people’s

employee benefits choices exhibit systematic patterns, as would be implied by a domain-

general component of risk preferences. More specifically, the authors examine the benefits

choices of 12,752 Alcoa employees in six domains: health insurance, drug insurance, dental

insurance, short-term disability insurance, long-term disability insurance, and 401(k) invest-

ments. Using these data, they investigate the stability in ranking across domains of an

employee’s willingness to bear risk relative to his or her peers. In contrast to Barseghyan,

Prince, and Teitelbaum (2011), who focus on testing the hypothesis of stable risk preferences,

Einav, Finkelstein, Pascu, and Cullen focus on testing the hypothesis of nonstable risk pref-

erences and on quantifying the empirical importance of any domain-general component of

risk preferences.

Einav, Finkelstein, Pascu, and Cullen take two complementary approaches in their analy-

sis. First, they take a model-free approach in which they rank by risk the options within each

domain and compute the pairwise rank correlations in the employees’choices across domains.

Their Table 3A-Panel A, reproduced in Figure 6 for the reader’s convenience, reports their

results. They find that an employee’s choice in every domain is positively correlated to some

extent with his or her choice in every other domain. Thus, they conclude that they can reject

the null hypothesis of zero correlation and hence the null hypothesis of no domain-general
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Figure 6: Table 3A-Panel A from Einav, Finkelstein, Pascu, and Cullen (2012)

component of risk preferences.

Second, Einav, Finkelstein, Pascu, and Cullen take a model-based approach that is con-

ceptually similar to the test proposed by Barseghyan, Prince, and Teitelbaum (2011). They

first specify a model of coverage choice that assumes that employees are expected utility

maximizers and that an employee’s utility function has one free parameter that confounds

the degree of risk aversion and other domain-specific effects (e.g., beliefs). The parameter is

allowed to vary across domains (but not across employees within a given domain). Given this

model– and a specific parametric utility function such as CRRA or CARA– each coverage

choice of an employee identifies an interval that must contain its utility parameter. Because

an employee makes coverage choices in six domains, his or her choices imply six intervals. If

the intervals overlap, then the employee’s choices can be rationalized by a single coeffi cient

of risk aversion, subject to other domain-specific effects (that do not vary across employees).

In other words, if the intervals overlap, then the employee’s choices reflect a stable ranking

(relative to his or her peers) of risk aversion across domains.77 The authors then search for

the set of utility parameters (one for each domain) that maximize the fraction of employees

whose intervals overlap. They find that this maximum fraction is 30 percent.

In summary, on the one hand, Einav, Finkelstein, Pascu, and Cullen find evidence that

people’s risky choices are rank correlated across contexts, leading them to reject the null hy-

pothesis of nonstable risk preferences and to conclude that risk preferences have an important

domain-general component. On the other hand, like Barseghyan, Prince, and Teitelbaum

(2011), they also find evidence that most people do not exhibit stable risk preferences under

the assumption of expected utility maximization, suggesting that while people’s risk pref-

erences may have a domain-general component, they may not be well represented by the

expected utility model.

77Contrast this with the test in Barseghyan, Prince, and Teitelbaum (2011). Under that test, if a house-
hold’s intervals intersect, then the household’s choices reflect a stable level (in absolute terms) of risk aversion
across domains.
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Rather than treat stability of risk preferences as a testable hypothesis, Barseghyan, Moli-

nari, and Teitelbaum (2014) treat stability as a partial identification restriction and explore

what they can learn about the structure of households’ risk preferences from their risky

choices across multiple domains. Working with the same insurance data (featuring two auto

coverages and one home coverage) and probability distortion model studied by Barseghyan,

Molinari, O’Donoghue, and Teitelbaum (2013b), Barseghyan, Molinari, and Teitelbaum show

that a household’s choice of deductible d∗ in a given line of coverage implies lower and upper

bounds on its distorted probability of experiencing a claim in that coverage:

LB ≤ Ω(µ) ≤ UB,

where

LB ≡ max

{
0,max

d>d∗
∆

}
and UB ≡ min

{
1,min

d<d∗
∆

}
and

∆ ≡ u(w − p(d))− u(w − p(d∗)){
[u(w − p(d))− u(w − p(d)− d)]

−[u(w − p(d∗))− u(w − p(d∗)− d∗)]

} ,
and where u(·) and Ω(·) are the household’s utility and probability distortion functions, µ and
w are the household’s claim probability and wealth, and p(d) is the household’s premium

for coverage with deductible d. Because the authors observe three choices per household

(one choice per coverage) and a household’s µ and p(·) differ across coverage, they obtain
three pairs of bounds– or intervals– per household (one interval per coverage). Under the

assumption of stability across contexts– i.e., assuming u(·) and Ω(·) are domain-general and
thus do not differ across coverages– the authors show to partially identify u(·) and Ω(·)
through shape restrictions.

To begin, they assume that u(·) belongs to the CARA family– the implication of which
is that u(·) is fully characterized by the coeffi cient of absolute risk aversion r (which is

assumed to be household-specific)– and they exclude households that makes choices which

cannot be rationalized by any r ∈ [0, 0.01]. In addition, they consider five shape restrictions

on Ω(·): monotonicity, quadraticity, linearity, unit slope, and zero intercept.78 They first

use the intervals to recover the distribution of the lower bound on r under each shape

restriction on Ω(·). They find that the distribution is skewed to the right under each shape
restriction, and that the median is zero under each non-degenerate shape restriction (i.e.,

78The shape restrictions are cumulative. That is, quadraticity requires that Ω(·) is both monotone and
quadratic, i.e., Ω(µ) = a+ bµ+ cµ2, b ≥ 0 and c ≥ −b/2; linearity requires Ω(µ) = a+ bµ, b ≥ 0; unit slope
requires Ω(µ) = a+ µ; and zero intercept requires Ω(µ) = µ.
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each shape restriction other than zero intercept). Indeed, they find that the vast majority of

households– between 70 and 80 percent– can be rationalized by a model with linear utility

given monotone, quadratic, or even linear probability distortions. By contrast, they find that

fewer than 40 percent can be rationalized by a model with concave utility but no probability

distortions. Next, they use the intervals to perform kernel regressions of the lower and

upper bounds on Ω(µ) as a function of µ. Under each non-degenerate shape restriction, the

results evince a distortion function that substantially overweights small probabilities. Under

monotonicity, for instance, the midpoints of the estimated bounds imply Ω(0.02) = 0.11,

Ω(0.05) = 0.17, and Ω(0.10) = 0.25, and even the estimated lower bounds imply Ω(0.02) =

0.07, Ω(0.05) = 0.12, and Ω(0.10) = 0.15.79

In the remainder of the paper, Barseghyan, Molinari, and Teitelbaum show how one can

utilize the intervals to (i) classify households into preference types (i.e., special cases of the

model) and (ii) point estimate Ω(·) for the representative household. They also demonstrate a
close connection between rank correlation of choices and stability of risk preferences under the

probability distortion model. More specifically, they document that households’deductible

choices are rank correlated across lines of coverage, echoing the finding by Einav, Finkelstein,

Pascu, and Cullen (2012), and they show that it is "monotone" households who are driving

these rank correlations.

In particular, the classification exercise, in addition to measuring the fraction of house-

holds whose behavior is consistent with various special cases of the model (e.g., EU vs

KR-CPE), allows the researcher to measure the marginal contribution of each feature of the

general model in rationalizing households’choices. For example, the analysis recovers that

allowing for KR-CPE loss aversion in addition to standard curvature in the utility function

increases the fraction of rationalizable households by a very small amount. In contrast,

allowing for a monotone probability distortion function more than doubles the fraction of

rationalizable households.

Barseghyan, Molinari, and Teitelbaum construct the point estimate of Ω(·) without rely-
ing on parametric assumptions about the nature of unobserved heterogeneity. Rather, they

built an estimator that comes closest to rationalizing the behavior of the average household.

The estimated Ω(·) can rationalize all three choices of nearly one in five households whose
behavior is consistent with monotone probability distortions. The residual deviation between

the households’intervals and the estimated Ω(·) allows one to uncover the lower bound on
the degree of heterogeneity in probability distortions among households. An interesting next

79The results are very similar under quadraticity and linearity. Under quadraticity, for example, the
midpoints imply Ω(0.02) = 0.11, Ω(0.05) = 0.16, and Ω(0.10) = 0.21, and the lower bounds imply Ω(0.02) =
0.07, Ω(0.05) = 0.12, and Ω(0.10) = 0.15.
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step for future research is to generalize this approach to broader models of decision making

under uncertainty.

6.2 Combining Experimental and Field Data

A special case of the question of consistency across contexts is the question of consistency

between behavior in laboratory experiments and behavior in the field. Of course, if there is

such consistency, one might be able to combine experimental data from the laboratory and

field data to get a more complete picture of risk preferences. More importantly, however,

answering this question allows one to establish the extent of portability of risk preference

estimates obtained from the laboratory to real world applications.

In fact, there is some research that starts to address this question. One approach is to

gather experimental and field data for the same agents, although typically covering very

different contexts. For instance, some research elicits subjects’ risk preferences using a

standard experimental paradigm, while simultaneously collecting data on some aspect of

those same subjects’field behaviors related to risk. The research question is then, whether

subjects who are measured experimentally to have a stronger aversion to risk are also less

likely to engage in risky behaviors in the field. Examples of such work are Liu (2013)

and Liu and Huang (2013), which study how risk preferences elicited in a survey correlate,

respectively, with the adoption of new crops and with the usage of pesticide by Chinese

farmers. In a similar spirit, Meier and Sprenger (2010) study the link between time preference

(patience) and credit card borrowing by the U.S. consumers.

An alternative approach is to gather experimental and field data on arguably the same

or very similar choices– perhaps even with different agents– and then investigate the ex-

tent to which risk preferences estimated on experimental data correspond to risk prefer-

ences estimated on field data. One paper that follows this second approach is Barseghyan,

O’Donoghue, and Xu (2015). In an online survey, subjects are presented with three de-

ductible choices for property insurance coverages. The choice menus are constructed to

match closely the deductible options and prices associated with specific households in the

field data used by Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013b). The key

difference is that agents in the laboratory are provided with their underlying (objective)

claim probabilities, while Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013b) as-

sume households beliefs correspond to observed claim probabilities.

Qualitatively, the findings of Barseghyan, O’Donoghue, and Xu (2015) confirm the pat-

terns documented with field data (Barseghyan, Molinari, O’Donoghue, and Teitelbaum

(2013b), Barseghyan, Molinari, and Teitelbaum (2014)): probability distortions can ratio-
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nalize the behavior of the vast majority of households, while the curvature of the utility

function alone cannot do so. The estimated (average) probability distortion function is in-

creasing in the relevant range and exhibits significant over-weighting. Quantitatively, there

are interesting differences between laboratory and field findings. There is more overweight-

ing in the laboratory than in the field, as well as more "choice noise" and heterogeneity in

agents’behavior.

Going forward, we envision more work emerging in this area, as more field data become

available, and researchers are granted ways to design surveys that can reach (a subset of)

subjects in the data (e.g., Handel and Kolstad (2015)).

6.3 Direct Measurement of Beliefs

When estimating risk preferences from choice data, a researcher typically faces a funda-

mental identification problem: Observed choices are consistent with many combinations of

decision makers’risk preferences and their subjective expectations about various outcome

probabilities. In the literature reviewed in the previous sections (insurance and betting),

this fundamental identification problem is solved in one of two ways. One approach is to

assume individuals hold objective expectations. In the insurance context, this translates

into assuming that individuals know the objective claim probabilities or the objective health

shocks distribution. And in the betting context this translates into assuming that individu-

als know horses’objective odds of winning races. The analysis then focuses on identification

and estimation of risk preferences. A second approach is to assume that individuals are risk

neutral, and the analysis focuses on identification and estimation of subjective beliefs.

A different and promising approach for solving this identification problem, is based on

using survey data to measure probabilistic expectations directly, as advocated in Manski

(2004). For example, one may elicit subjective beliefs on likelihood of a claim with questions

such as: "What do you think is the percent chance that you will experience an auto colli-

sion claim within the next twelve months?". An important aspect of this approach is that

expectations are not elicited in verbal form (e.g., by asking individuals how likely to occur

n event is, with modifiers "very", "fairly, "not too" or "not at all" likely), but in numerical

form (e.g., on a scale out of 100).

Extensive work in this literature has been devoted to show that respondents are willing

and able to provide this information in probabilistic format. Manski (2004) and Hurd (2009)

survey these findings in connection with data elicited in developed countries, while Delavande

(2014) does the same in connection with data elicited in developing countries. The findings

include, inter alia, that there is substantial heterogeneity in beliefs (at least in the contexts
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analyzed so far), and that elicited beliefs correlate with individuals’observable characteristics

similarly to how actual outcomes do; see, e.g., Dominitz (1998) and Hurd and McGarry

(2002). While it is not possible to evaluate directly whether the reported expectations

are in fact those that respondents truly hold (because there cannot be validation data for

this information), numerous studies in different contexts have shown that respondents give

internally consistent answers that are sensible, when asked about questions that are relevant

to their lives. Examples include Dominitz and Manski (1997), who study individuals’income

expectations, and Manski and Straub (2000), who analyze individuals’expectations of their

job security, in both cases analyzing data from the Survey of Economic Expectations. Manski

(2004, Sections 5 and 6) summarizes their findings and the findings of many other studies.

Probabilistic expectations data have been used to enrich econometric analysis of field data in

several contexts already, including retirement behavior (e.g., Hurd, Smith, and Zissimopoulos

(2004) and van der Klaauw and Wolpin (2008)), criminal behavior (e.g., Lochner (2007)),

contraceptive choices and updating of beliefs on contraceptive effectiveness (e.g., Delavande

(2008b) and Delavande (2008a)), and schooling choices (e.g., Giustinelli (2015) and Wiswall

and Zafar (2015)). In the experimental literature, probabilistic expectations data have been

used, for example, by Nyarko and Schotter (2002) and Dominitz and Hung (2009).

Within the analysis of risk preferences and risk perceptions, expectation data can be

used to avoid the rational expectations and risk neutrality assumptions. We envision at

least three ways in which these richer data can supplement choice data. First, it would

be of interest to compare subjective beliefs with objective probabilities. Second, subjective

beliefs could be compared with estimates of the probability distortion function estimated

as in Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013b). Third, estimation of a

rich model encompassing standard risk aversion and a probability distortion function could

be conducted, using the reported subjective beliefs in place of the objective probabilities.

Recovering no further probability distortions would indicate that in fact subjective beliefs

drive individuals’decision. Recovering a probability distortion function that does not come

close to the identity function may further corroborate the finding that probability weighting

plays a key role in individuals’decisions.

6.4 Assumptions about “Mental Accounting”

As we discuss in Section 4.1.1, in order to estimate risk preferences in a field context, one

must make assumptions about how the typically complex field context is translated into

concrete choice data that can be used to estimate risk preferences. One justification for

such assumptions is that the agents themselves transform– and simplify– a choice situation

81



in their own minds before making a decision. This type of mental operation on the part

of agents is often labelled “mental accounting”, and thus we refer to these assumptions

as mental accounting assumptions. However, these assumptions are often not motivated

by psychological realism, but rather as “simplifying assumptions”that help the researcher

make progress– e.g., to overcome limitations of the data or to simplify computations. An

important agenda for future research is to pay more careful attention to these assumptions,

and to investigate directly the impact of such assumptions on estimates of risk preferences.

An important dimension on which one must make a mental accounting assumption is

how broadly vs. narrowly households bracket their decisions. On one extreme, households

could bracket all their decisions together into one grand “life”decision– indeed, theoretical

economic models are often written in this way. On the other extreme, households could

bracket very narrowly and evaluate each decision in isolation from all others. There are also

many possibilities in between.

In fact, virtually all papers that estimate risk preferences implicitly —and occasionally

explicitly—assume very narrow bracketing. They estimate risk preferences reflected in one

particular choice in isolation from how that choice might interact with the many other

choices that households make. In most cases, we suspect that this narrow bracketing is

assumed merely to help the researcher. If one has data on only one decision per household,

it is hard to assume anything other than narrow bracketing. Even when one has data on

multiple decisions per household, it can be computationally burdensome to collect them all

together into one grand decision.80 There may, however, be some psychological realism to

the assumption of narrow bracketing. Indeed, there is a literature which suggests that when

people make multiple choices, they frequently do not assess the consequences in an integrated

way, but rather tend to make each choice in isolation (e.g., Read, Loewenstein, and Rabin

1999).

In future research, it is worth investigating more carefully how broadly households bracket

their decisions. In simple terms, we need to understand whether incorrect assumptions about

bracketing bias estimates of risk preferences. Even beyond this, if households do in fact

bracket multiple decisions together, then they are choosing between more complex lotteries,

and, as highlighted in Section 3.6.4, this might permit one to separately identify multiple

sources of aversion to risk. Indeed, Barseghyan, Molinari, O’Donoghue, and Teitelbaum

(2013a) propose exactly this approach.

It is also worth noting a more reduced-form approach to account for broader bracketing,

80For instance, if one assumed daily bracketing at a horse track, and if on any day the track holds 10 races
with 8 horses in each, then there are 810 possible lotteries that one could choose (and even this is restricting
attention to win bets and ignoring any dynamics associated with basing later bets on earlier results).
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by incorporating “background risk”into one’s analysis. In other words, instead of directly

modeling all the other decisions that a household faces, one can reduce all of those decisions

into the resulting background risk that a person already faces when making the present

decision. Operationally, this means replacing the assumption that a household has a certain

prior wealth with an assumption that prior wealth is a lottery itself.

A second dimension on which one must make a mental accounting assumption is what

options enter a household’s consideration set– that is, what options does a household take

to be in its choice set. Because estimates of risk preferences can depend on what options

are considered but not chosen, assumptions about the consideration set can alter estimates.

To illustrate, consider a stylized example: Suppose we observe an individual in a casino who

chooses to bet $10 on BLACK in roulette (on a typical roulette wheel that has both 0 and

00). This choice yields a risky lottery
(
+$10, 18

38
;−$10, 20

38

)
that has an expected value of

−$0.526. This person could have also bet $10 on #1, which instead would yield a riskier

lottery
(
+$360, 1

38
;−$10, 37

38

)
that has a larger expected value of −$0.263. If we estimated,

for example, an EU model focusing on the fact that the person chose to bet on BLACK

rather than bet on #1, we would conclude that the person is risk averse, and we could infer

a lower bound on the magnitude of this risk aversion. However, if instead we estimated an

EU model focusing on the fact that the person chose to bet on BLACK rather than to not

bet at all, we would instead conclude that the person is risk loving, and we could infer a

lower bound on the magnitude of this risk lovingness.

The intuition of this example extends almost immediately to research that estimates risk

preferences using data from horse races. In such analyses, one must make an assumption

about whether the option not to bet is included in the consideration set. Because the ex-

pected return on most horses is negative, including the option not to bet in the consideration

set will yield estimates of risk preferences that are more risk loving. But this issue also ap-

plies to property insurance. When estimating preferences from deductible choices, one might

wonder whether households consider the possibility of not insuring at all, and also whether

they turn down any insurance options from other firms that are not in the dataset. In fu-

ture research, it is worth investigating more carefully the determinants and importance of

consideration sets.

A third dimension on which one must make a mental accounting assumption is what are

the possible outcomes that households account for. To illustrate, consider property insurance.

When researchers estimate risk preferences using data on property insurance, they typically

assume that households only consider the possibility of incurring no loss or a single loss during

the policy period. However, in principle, one might incur two, three, or even more losses

during a policy period. If so, then the set of lotteries from which households are choosing are

83



different. The assumption of zero or one loss is often made for simplicity, but again it could

reflect a psychological realism, as people seem to have a hard time imagining and accounting

for all the possibilities that could occur in life. This is especially true in more complex

domains, such as health insurance, where it seems quite likely that households approach

decisions with a simplified conceptualization of all the possible outcomes that might occur.

Moving forward, we think it important that the literature considers more carefully and

more directly these and other mental accounting assumptions when estimating risk prefer-

ences. Such assumptions can matter under EU, and they become even more important under

RDEU and other more complex models of risk preferences. Hence, these assumptions need

to be taken more seriously.
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