
http://www.econometricsociety.org/

Econometrica, Vol. 87, No. 4 (July, 2019), 1397–1432

CONFIDENCE INTERVALS FOR PROJECTIONS OF PARTIALLY
IDENTIFIED PARAMETERS

HIROAKI KAIDO
Department of Economics, Boston University

FRANCESCA MOLINARI
Department of Economics, Cornell University

JÖRG STOYE
Department of Economics, Cornell University

The copyright to this Article is held by the Econometric Society. It may be downloaded, printed and re-
produced only for educational or research purposes, including use in course packs. No downloading or
copying may be done for any commercial purpose without the explicit permission of the Econometric So-
ciety. For such commercial purposes contact the Office of the Econometric Society (contact information
may be found at the website http://www.econometricsociety.org or in the back cover of Econometrica).
This statement must be included on all copies of this Article that are made available electronically or in
any other format.

http://www.econometricsociety.org/
http://www.econometricsociety.org/


Econometrica, Vol. 87, No. 4 (July, 2019), 1397–1432

CONFIDENCE INTERVALS FOR PROJECTIONS OF PARTIALLY
IDENTIFIED PARAMETERS

HIROAKI KAIDO
Department of Economics, Boston University

FRANCESCA MOLINARI
Department of Economics, Cornell University

JÖRG STOYE
Department of Economics, Cornell University

We propose a bootstrap-based calibrated projection procedure to build confidence
intervals for single components and for smooth functions of a partially identified pa-
rameter vector in moment (in)equality models. The method controls asymptotic cov-
erage uniformly over a large class of data generating processes. The extreme points of
the calibrated projection confidence interval are obtained by extremizing the value of
the function of interest subject to a proper relaxation of studentized sample analogs of
the moment (in)equality conditions. The degree of relaxation, or critical level, is cali-
brated so that the function of θ, not θ itself, is uniformly asymptotically covered with
prespecified probability. This calibration is based on repeatedly checking feasibility of
linear programming problems, rendering it computationally attractive.

Nonetheless, the program defining an extreme point of the confidence interval is
generally nonlinear and potentially intricate. We provide an algorithm, based on the re-
sponse surface method for global optimization, that approximates the solution rapidly
and accurately, and we establish its rate of convergence. The algorithm is of indepen-
dent interest for optimization problems with simple objectives and complicated con-
straints. An empirical application estimating an entry game illustrates the usefulness of
the method. Monte Carlo simulations confirm the accuracy of the solution algorithm,
the good statistical as well as computational performance of calibrated projection (in-
cluding in comparison to other methods), and the algorithm’s potential to greatly ac-
celerate computation of other confidence intervals.
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1. INTRODUCTION

THIS PAPER PROVIDES NOVEL CONFIDENCE INTERVALS for projections and smooth func-
tions of a parameter vector θ ∈Θ⊂ Rd , d <∞, that is partially or point identified through
a finite number of moment (in)equalities. In addition, we develop a new algorithm for
computing these confidence intervals and, more generally, for solving optimization prob-
lems with “black box” constraints, and obtain its rate of convergence.

Until recently, the rich literature on inference for moment (in)equalities focused on
confidence sets for the entire vector θ, usually obtained by test inversion as

Cn(c1−α)≡ {
θ ∈Θ : Tn(θ)≤ c1−α(θ)

}
�

where the test statistic Tn(θ) aggregates violations of the sample analog of the moment
(in)equalities and the critical value c1−α(θ) controls asymptotic coverage, often uniformly
over a large class of data generating processes (DGPs). However, applied researchers are
frequently interested in a specific component (or function) of θ, for example, the returns
to education. Even if not, they may simply want to report separate confidence intervals for
components of a vector, as is standard practice in other contexts. Thus, consider inference
on the projection p′θ, where p is a known unit vector. To date, it is common to report as
confidence set the corresponding projection of Cn(c1−α) or the interval

CIproj
n =

[
inf

θ∈Cn(c1−α)
p′θ� sup

θ∈Cn(c1−α)
p′θ

]
� (1.1)

which will miss any “gaps” in a disconnected projection but is much easier to compute.
This approach yields asymptotically valid but typically conservative and therefore need-
lessly large confidence intervals. The potential severity of this effect is easily appreciated
in a point identified example. Given a

√
n-consistent estimator θ̂n ∈ Rd with limiting co-

variance matrix equal to the identity matrix, the usual 95% confidence interval for θk
equals [θ̂n�k − 1�96� θ̂n�k + 1�96]. Yet the analogy to CIproj

n would be projection of a 95%
confidence ellipsoid, which with d = 10 yields [θ̂n�k−4�28� θ̂n�k+4�28] and a true coverage
of essentially 1.

Our first contribution is to provide a bootstrap-based calibrated projection method to
largely anticipate and correct for the conservative effect of projection. The method uses
an estimated critical level ĉn�1−α calibrated so that the projection of Cn(ĉn�1−α) covers p′θ
(but not necessarily θ) with probability at least 1 − α. As a confidence region for the true
p′θ, one may report this projection, that is,{

p′θ : θ ∈ Cn(ĉn�1−α)
}
� (1.2)

or, for computational simplicity and presentational convenience, the interval

CIn ≡
[

inf
θ∈Cn(ĉn�1−α)

p′θ� sup
θ∈Cn(ĉn�1−α)

p′θ
]
� (1.3)

We prove uniform asymptotic validity of both over a large class of DGPs.
Computationally, calibration of ĉn�1−α is relatively attractive: We linearize all constraints

around θ, so that coverage of p′θ can be calibrated by analyzing many linear programs.
Nonetheless, computing the above objects is challenging in moderately high dimension.
This brings us to our second contribution, namely, a general method to accurately and
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rapidly compute confidence intervals whose construction resembles (1.3). Additional ap-
plications within partial identification include projection of confidence regions defined in
Chernozhukov, Hong, and Tamer (2007), Andrews and Soares (2010), or Andrews and
Shi (2013), as well as (with minor tweaking; see Appendix B) the confidence interval pro-
posed in Bugni, Canay, and Shi (2017, BCS henceforth) and further discussed later. In an
application to a point identified setting, Freyberger and Reeves (2017, Supplement Sec-
tion S.3) used our method to construct uniform confidence bands for an unknown func-
tion of interest under (nonparametric) shape restrictions. They benchmarked it against
gridding and found it to be accurate at considerably improved speed. More generally,
the method can be broadly used to compute confidence intervals for optimal values of
optimization problems with estimated constraints.

Our algorithm (henceforth called E-A-M for Evaluation-Approximation-Maximiza-
tion) is based on the response surface method; thus, it belongs to the family of expected
improvement algorithms (see, e.g., Jones (2001), Jones, Schonlau, and Welch (1998), and
references therein). Bull (2011) established convergence of an expected improvement al-
gorithm for unconstrained optimization problems where the objective is a “black box”
function. The rate of convergence that he derived depends on the smoothness of the
black box objective function. We substantially extend his results to show convergence,
at a slightly slower rate, of our similar algorithm for constrained optimization problems
in which the constraints are sufficiently smooth “black box” functions. Extensive Monte
Carlo experiments (see Appendix C and Section 5 of Kaido, Molinari, and Stoye (2017))
confirm that the E-A-M algorithm is fast and accurate.

Relation to Existing Literature. The main alternative inference procedure for
projections—introduced in Romano and Shaikh (2008) and significantly advanced in
BCS—is based on profiling out a test statistic. The classes of DGPs for which calibrated
projection and the profiling-based method of BCS (BCS-profiling henceforth) can be
shown to be uniformly valid are non-nested.1

Computationally, calibrated projection has the advantage that the bootstrap iterates
over linear as opposed to nonlinear programming problems. While the “outer” optimiza-
tion problems in (1.3) are potentially intricate, our algorithm is geared toward them.
Monte Carlo simulations suggest that these two factors give calibrated projection a con-
siderable computational edge over profiling, though profiling can also benefit from the
E-A-M algorithm. Indeed, in Appendix C, we replicate the Monte Carlo experiment of
BCS and find that adapting E-A-M to their method improves computation time by a fac-
tor of about 4, while switching to calibrated projection improves it by a further factor of
about 17.

In an influential paper, Pakes, Porter, Ho, and Ishii (2011, PPHI henceforth) also used
linearization but, subject to this approximation, directly bootstrapped the sample projec-
tion. This is valid only under stringent conditions.2 Other related articles that explicitly
consider inference on projections include Beresteanu and Molinari (2008), Bontemps,
Magnac, and Maurin (2012), Kaido (2016), and Kline and Tamer (2016). None of these
establish uniform validity of confidence sets. Chen, Christensen, and Tamer (2018) estab-
lished uniform validity of MCMC-based confidence intervals for projections, but aimed at

1See Kaido, Molinari, and Stoye (2017, Section 4.2 and Supplemental Appendix F) for a comparison of the
statistical properties of calibrated projection and BCS-profiling, summarized here at the end of Section 3.2.

2The published version of PPHI, i.e., Pakes et al. (2015), does not contain the inference part. Kaido, Moli-
nari, and Stoye (2017, Section 4.2) showed that calibrated projection can be much simplified under the condi-
tions imposed by PPHI.
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covering the projection of the entire identified region ΘI(P) (defined later) and not just
of the true θ. Gafarov, Meier, and Montiel-Olea (2016) used our insight in the context of
set identified spatial VARs.

Regarding computation, previous implementations of projection-based inference (e.g.,
Ciliberto and Tamer (2009), Grieco (2014), Dickstein and Morales (2018)) reported the
smallest and largest value of p′θ among parameter values θ ∈ Cn(c1−α) that were discov-
ered using, for example, grid-search or simulated annealing with no cooling. This be-
comes computationally cumbersome as d increases because it typically requires a number
of evaluation points that grows exponentially with d. In contrast, using a probabilistic
model, our method iteratively draws evaluation points from regions that are considered
highly relevant for finding the confidence interval’s endpoint. In applications, this tends
to substantially reduce the number of evaluation points.

Structure of the Paper. Section 2 sets up notation and describes our approach in detail,
including computational implementation of the method and choice of tuning parameters.
Section 3.1 establishes uniform asymptotic validity of CIn, and Section 3.2 shows that our
algorithm converges at a specific rate which depends on the smoothness of the constraints.
Section 4 reports the results of an empirical application that revisits the analysis in Kline
and Tamer (2016, Section 8). Section 5 draws conclusions. The proof of convergence of
our algorithm is in Appendix A. Appendix B shows that our algorithm can be used to
compute BCS-profiling confidence intervals. Appendix C reports the results of Monte
Carlo simulations comparing our proposed method with that of BCS. All other proofs,
background material for our algorithm, and additional results are in the Supplemental
Material (Kaido, Molinari, and Stoye (2019)).3

2. DETAILED EXPLANATION OF THE METHOD

2.1. Setup and Definition of CIn
Let Xi ∈ X ⊆ RdX be a random vector with distribution P , let Θ ⊆ Rd denote the pa-

rameter space, and let mj : X ×Θ→ R for j = 1� � � � � J1 + J2 denote known measurable
functions characterizing the model. The true parameter value θ is assumed to satisfy the
moment inequality and equality restrictions

EP

[
mj(Xi�θ)

] ≤ 0� j = 1� � � � � J1� (2.1)

EP

[
mj(Xi�θ)

] = 0� j = J1 + 1� � � � � J1 + J2� (2.2)

The identification region ΘI(P) is the set of parameter values in Θ satisfying (2.1)–(2.2).
For a random sample {Xi� i= 1� � � � � n} of observations drawn from P , we write

m̄n�j(θ)≡ n−1
n∑
i=1

mj(Xi�θ)� j = 1� � � � � J1 + J2�

σ̂n�j(θ)≡
(
n−1

n∑
i=1

[
mj(Xi�θ)

]2 − [
m̄n�j(θ)

]2

)1/2

� j = 1� � � � � J1 + J2�

3Appendix D provides convergence-related results and background material for our algorithm and describes
how to compute ĉn�1−α(θ). Appendix E presents the assumptions under which we prove uniform asymptotic
validity of CIn. Appendix F verifies, for a number of canonical partial identification problems, the assumptions
that we invoke to show validity of our inference procedure and for our algorithm. Appendix G contains the
proof of Theorem 3.1. Appendix H collects lemmas supporting this proof.
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for the sample moments and the analog estimators of the population moment functions’
standard deviations σP�j . The confidence interval in (1.3) then is

CIn = [−s(−p�Cn(ĉn�1−α)
)
� s

(
p�Cn(ĉn�1−α)

)]
(2.3)

with

s
(
p�Cn(ĉn�1−α)

) ≡ sup
θ∈Θ

p′θ s.t.
√
n
m̄n�j(θ)

σ̂n�j(θ)
≤ ĉn�1−α(θ)� j = 1� � � � � J� (2.4)

and similarly for (−p). Henceforth, to simplify notation, we write ĉn for ĉn�1−α. We also
define J ≡ J1 + 2J2 moments, where m̄n�J1+J2+k(θ)= −m̄J1+k(θ) for k= 1� � � � � J2. That is,
we treat moment equality constraints as two opposing inequality constraints.

For a class of DGPs P that we specify below, define the asymptotic size of CIn by4

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P)

P
(
p′θ ∈ CIn

)
� (2.5)

We next explain how to control this size and then how to compute CIn.

2.2. Calibration of ĉn(θ)

Calibration of ĉn requires careful analysis of the moment restrictions’ local behavior at
each point in the identification region. This is because the extent of projection conser-
vatism depends on (i) the asymptotic behavior of the sample moments entering the in-
equality restrictions, which can change discontinuously depending on whether they bind
at θ or not, and (ii) the local geometry of the identification region at θ, that is, the shape
of the constraint set formed by the moment restrictions. Features (i) and (ii) can be quite
different at different points in ΘI(P), making uniform inference challenging. In particu-
lar, (ii) does not arise if one only considers inference for the entire parameter vector, and
hence is a new challenge requiring new methods.

To build an intuition, fix P ∈P and θ ∈ΘI(P). The projection of θ is covered when

{
inf
ϑ∈Θ

p′ϑ s.t.
√
nm̄n�j(ϑ)

σ̂n�j(ϑ)
≤ ĉn(ϑ)�∀j

}

≤ p′θ≤
{

sup
ϑ∈Θ

p′ϑ s.t.
√
nm̄n�j(ϑ)

σ̂n�j(ϑ)
≤ ĉn(ϑ)�∀j

}

⇐⇒
{

inf
λ∈√

n(Θ−θ)
p′λ s.t.

√
nm̄n�j(θ+ λ/

√
n)

σ̂n�j(θ+ λ/
√
n)

≤ ĉn(θ+ λ/
√
n)�∀j

}

≤ 0 ≤
{

sup
λ∈√

n(Θ−θ)
p′λ s.t.

√
nm̄n�j(θ+ λ/

√
n)

σ̂n�j(θ+ λ/
√
n)

≤ ĉn(θ+ λ/
√
n)�∀j

}

4Here we focus on the confidence interval CIn defined in (1.3). See Appendix G.2.3 for the analysis of the
confidence region given by the mathematical projection in (1.2).



1402 H. KAIDO, F. MOLINARI, AND J. STOYE

⇐=
{

inf
λ∈√

n(Θ−θ)∩ρBd
p′λ s.t.

√
nm̄n�j(θ+ λ/

√
n)

σ̂n�j(θ+ λ/
√
n)

≤ ĉn(θ+ λ/
√
n)�∀j

}

≤ 0 ≤
{

sup
λ∈√

n(Θ−θ)∩ρBd
p′λ s.t.

√
nm̄n�j(θ+ λ/

√
n)

σ̂n�j(θ+ λ/
√
n)

≤ ĉn(θ+ λ/
√
n)�∀j

}
�

(2.6)

Here, we first substituted ϑ = θ + λ/
√
n and took λ to be the choice parameter; intu-

itively, this localizes around θ at rate 1/
√
n. We then make the event smaller by adding

the constraint λ ∈ ρBd , with Bd ≡ [−1�1]d and ρ ≥ 0 a tuning parameter. We motivate
this step later.

Our goal is to set the probability of (2.6) equal to 1 − α. To ease computation, we
approximate (2.6) by linear expansion in λ of the constraint set. For each j, add and
subtract

√
nEP[mj(Xi�θ+ λ/

√
n)]/σ̂n�j(θ+ λ/

√
n) and apply the mean value theorem to

obtain

√
nm̄n�j(θ+ λ/

√
n)

σ̂n�j(θ+ λ/
√
n)

= (
Gn�j(θ+λ/√n)+DP�j(θ̄)λ+√

nγ1�P�j(θ)
)σP�j(θ+ λ/

√
n)

σ̂n�j(θ+ λ/
√
n)
� (2.7)

Here Gn�j(·) ≡ √
n(m̄n�j(·)− EP[mj(Xi� ·)])/σP�j(·) is a normalized empirical process in-

dexed by θ ∈ Θ, DP�j(·) ≡ ∇θ{EP[mj(Xi� ·)]/σP�j(·)} is the gradient of the normalized
moment, γ1�P�j(·)≡ EP(mj(Xi� ·))/σP�j(·) is the studentized population moment, and the
mean value θ̄ lies componentwise between θ and θ+ λ/

√
n.5

We formally establish that the probability of the last event in (2.6) can be approxi-
mated by the probability that 0 lies between the optimal values of two stochastic lin-
ear programs. The components that characterize these programs can be estimated.
Specifically, we replace DP�j(·) with a uniformly consistent (on compact sets) estima-
tor, D̂n�j(·),6 and the process Gn�j(·) with its simple nonparametric bootstrap analog,
Gb
n�j(·)≡ n−1/2

∑n

i=1(mj(X
b
i � ·)−m̄n�j(·))/σ̂n�j(·).7 Estimation of γ1�P�j(θ) is more subtle be-

cause it enters (2.7) scaled by
√
n, so that a sample analog estimator will not do. However,

this specific issue is well understood in the moment inequalities literature. Following An-
drews and Soares (2010, AS henceforth) and others (Bugni (2010), Canay (2010), Stoye
(2009)), we shrink this sample analog toward zero, leading to conservative (if any) distor-
tion in the limit. Formally, we estimate γ1�P�j(θ) by ϕ(ξ̂n�j(θ)), where ϕ : RJ

[±∞] �→ RJ
[±∞] is

one of the Generalized Moment Selection (GMS henceforth) functions proposed by AS,

ξ̂n�j(θ)≡
{
κ−1
n

√
nm̄n�j(θ)/σ̂n�j(θ)� j = 1� � � � � J1�

0� j = J1 + 1� � � � � J�

5The mean value θ̄ changes with j but we omit the dependence to ease notation.
6See Supplemental Material Appendix F for such estimators in some canonical moment (in)equality exam-

ples.
7BCS approximated Gn�j(·) by n−1/2 ∑n

i=1[(mj(Xi� ·) − m̄n�j(·))/σ̂n�j(·)]χi with {χi ∼ N(0�1)}ni=1 i.i.d. This
approximation is equally valid in our approach, and can be faster as it avoids repeated evaluation of mj(X

b
i � ·).
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and κn → ∞ is a user-specified thresholding sequence.8 In sum, we replace the random
constraint set in (2.6) with the (bootstrap-based) random polyhedral set9

Λb
n(θ�ρ� c)≡ {

λ ∈ √
n(Θ− θ)∩ ρBd :

Gb
n�j(θ)+ D̂n�j(θ)λ+ϕj

(
ξ̂n�j(θ)

) ≤ c� j = 1� � � � � J
}
� (2.8)

The critical level ĉn(θ) to be used in (2.4) then is

ĉn(θ)≡ inf
{
c ∈R+ : P∗

(
min

λ∈Λbn(θ�ρ�c)
p′λ≤ 0 ≤ max

λ∈Λbn(θ�ρ�c)
p′λ

)
≥ 1 − α

}
(2.9)

= inf
{
c ∈ R+ : P∗(Λb

n(θ�ρ� c)∩ {
p′λ= 0

} �= ∅) ≥ 1 − α
}
� (2.10)

where P∗ denotes the law of the random setΛb
n(θ�ρ� c) induced by the bootstrap sampling

process, that is, by the distribution of (Xb
1 � � � � �X

b
n) conditional on the data. Expression

(2.10) uses convexity of Λb
n(θ�ρ� c) and reveals that the probability inside curly brackets

can be assessed by repeatedly checking feasibility of a linear program.10 We describe in
detail in Supplemental Material Appendix D.4 how we compute ĉn(θ) through a root-
finding algorithm.

We conclude by motivating the “ρ-box constraint” in (2.6), which is a major novel con-
tribution of this paper. The constraint induces conservative bias but has two fundamental
benefits: First, it ensures that the linear approximation of the feasible set in (2.6) by (2.8)
is used only in a neighborhood of θ, and therefore that it is uniformly accurate. More
subtly, it ensures that coverage induced by a given c depends continuously on estimated
parameters even in certain intricate cases. This renders calibrated projection valid in cases
that other methods must exclude by assumption.11

2.3. Computation of CIn and of Similar Confidence Intervals

Projection-based methods as in (1.1) and (1.3) have nonlinear constraints involving a
critical value which, in general, is an unknown function, with unknown gradient, of θ.
Similar considerations often apply to critical values used to build confidence intervals for

8A common choice of ϕ is given componentwise by

ϕj(x)=
{

0� if x≥ −1�
−∞� if x <−1�

Restrictions on ϕ and the rate at which κn diverges are imposed in Assumption E.2. While for concreteness
here we write out the “hard thresholding” GMS function, Theorem 3.1 below applies to all but one of the GMS
functions in AS, namely, to ϕ1 − ϕ4, all of which depend on κ−1

n

√
nm̄n�j(θ)/σ̂n�j(θ). We do not consider GMS

function ϕ5, which depends also on the covariance matrix of the moment functions.
9Here, we implicitly assume thatΘ is a polyhedral set. If it is instead defined by smooth convex (in)equalities,

these can be linearized, too.
10We implement a program in Rd for simplicity but, because p′λ= 0, one could reduce this to Rd−1.
11In (2.8), set (Gb

n�1(·)�Gb
n�2(·))∼N(0� I2), p= D̂n�1 = D̂n�2 = (0�1), ϕ1(·)= ϕ2(·)= 0, and α= 0�05. Then

simple algebra reveals that (with or without ρ-box) ĉn(·)=�−1(
√

0�95)≈ 1�95. If D̂n�1 = (0�1 − δ) and D̂n�2 =
(0�1 − δ), then without ρ-box we have ĉn(·) = �−1(0�95)/

√
2 ≈ 1�16 for any small δ > 0, and we therefore

cannot expect to get ĉn(·) right if gradients are estimated. With ρ-box, ĉn(·)→ 1�95 as δ→ 0, so the problem
goes away. This stylized example is relevant because it resembles polyhedral identified sets where one face is
near orthogonal to p. It violates assumptions in BCS and PPHI.
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optimal values of optimization problems with estimated constraints. When the dimen-
sion of the parameter vector is large, directly solving optimization problems with such
constraints can be expensive even if evaluating the critical value at each θ is cheap.

This concern motivates this paper’s second main contribution, namely, a novel algo-
rithm for constrained optimization problems of the following form:

p′θ∗ ≡ sup
θ∈Θ

p′θ

s.t. gj(θ)≤ c(θ)� j = 1� � � � � J� (2.11)

where θ∗ is an optimal solution of the problem and gj(·), j = 1� � � � � J as well as c(·) are
fixed functions of θ. In our own application, gj(θ)= √

nm̄n�j(θ)/σ̂n�j(θ) and, for calibrated
projection, c(θ)= ĉn(θ).12

The key issue is that evaluating c(·) is costly.13 Our algorithm does so at relatively few
values of θ. Elsewhere, it approximates c(·) through a probabilistic model that gets up-
dated as more values are computed. We use this model to determine the next evaluation
point but report as tentative solution the best value of θ at which c(·) was computed, not
a value at which it was merely approximated. Under reasonable conditions, the tentative
optimal values converge to p′θ∗ at a rate (relative to iterations of the algorithm) that is
formally established in Section 3.2.

After drawing an initial set of evaluation points that we set to grow linearly with d, the
algorithm has three steps called E, A, and M below.

Initialization: Draw randomly (uniformly) over Θ a set (θ(1)� � � � � θ(k)) of initial evalua-
tion points. Evaluate c(θ(�)) for �= 1� � � � �k− 1. Initialize L= k.

E-step: Evaluate c(θ(L)) and record the tentative optimal value

p′θ∗�L ≡ max
{
p′θ(�) : � ∈ {1� � � � �L}� ḡ(θ)≤ c

(
θ(�)

)}
�

with ḡ(θ)= maxj=1�����J gj(θ).
A-step: Approximate θ �→ c(θ) by a flexible auxiliary model. We use a Gaussian-process

regression model (or kriging), which for a mean-zero Gaussian process ζ(·) indexed by θ
and with constant variance ς2 specifies

Υ(�) = μ+ ζ
(
θ(�)

)
� �= 1� � � � �L� (2.12)

Corr
(
ζ(θ)� ζ

(
θ′)) =Kβ

(
θ− θ′)� θ�θ′ ∈Θ� (2.13)

where Υ(�) = c(θ(�)) and Kβ is a kernel with parameter vector β ∈×d

h=1[βh�βh] ⊂ Rd
++;

for example, Kβ(θ− θ′) = exp(−∑d

h=1 |θh − θ′
h|2/βh). The unknown parameters (μ� ς2)

can be estimated by running a GLS regression of Υ = (Υ (1)� � � � �Υ (L))′ on a constant with
the given correlation matrix. The unknown parameters β can be estimated by a (concen-
trated) MLE.

12We emphasize that, in analyzing the computational problem, we take the data, including bootstrap data, as
given. Thus, while an econometrician would usually think of

√
nm̄n�j(θ)/σ̂n�j(θ) and ĉn(θ) as random variables,

for this section’s purposes they are indeed just functions of θ.
13For simplicity and to mirror our motivating application, we suppose that gj(·) is easy to compute. The

algorithm is easily adapted to the case where it is not. Indeed, in Appendix B, we show how E-A-M can be
employed to compute BCS-profiling confidence intervals, where the profiled test statistic itself is costly to
compute and is approximated together with the critical value.
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The (best linear) predictor of the critical value and its gradient at θ are then given by

cL(θ)= μ̂+ rL(θ)′R−1
L (Υ − μ̂1)�

∇θcL(θ)= μ̂+ QL(θ)R−1
L (Υ − μ̂1)�

where rL(θ) is a vector whose �th component is Corr(ζ(θ)� ζ(θ(�))) as given above with
estimated parameters, QL(θ)= ∇θrL(θ)′, and RL is anL-by-Lmatrix whose (�� �′) entry is
Corr(ζ(θ(�))� ζ(θ(�′))) with estimated parameters. This surrogate model has the property
that its predictor satisfies cL(θ(�))= c(θ(�)), �= 1� � � � �L. Hence, it provides an analytical
interpolation, with analytical gradient, of evaluation points of c(·).14 The uncertainty left
in c(·) is captured by the variance

ς̂2s2
L(θ)= ς̂2

(
1 − rL(θ)′R−1

L rL(θ)+
(
1 − 1′R−1

L rL(θ)
)2

1′R−1
L 1

)
�

M-step: With probability 1 − ε, obtain the next evaluation point θ(L+1) as

θ(L+1) ∈ arg max
θ∈Θ

EIL(θ)= arg max
θ∈Θ

(
p′θ−p′θ∗�L)

+

(
1 −�

(
ḡ(θ)− cL(θ)

ς̂sL(θ)

))
� (2.14)

where EIL(θ) is the expected improvement function.15 This step can be implemented by
standard nonlinear optimization solvers, for example, MATLAB’s fmincon or KNITRO
(see Appendix D.3 for details). With probability ε, draw θ(L+1) randomly from a uniform
distribution over Θ. Set L←L+ 1 and return to the E-step.

The algorithm yields an increasing sequence of tentative optimal values p′θ∗�L, L =
k+1�k+2� � � � , with θ∗�L satisfying the true constraints in (2.11) but the sequence of eval-
uation points leading to it obtained by maximization of expected improvement defined
with respect to the approximated surface. Once a convergence criterion is met, p′θ∗�L is
reported as the endpoint of CIn. We discuss convergence criteria in Appendix C.

The advantages of E-A-M are as follows. First, we control the number of points at which
we evaluate the critical value; recall that this evaluation is the expensive step. Also, the
initial k evaluations can easily be parallelized. For any additional E-step, one needs to
evaluate c(·) only at a single point θ(L+1). The M-step is crucial for reducing the number
of additional evaluation points. To determine the next evaluation point, it trades off “ex-
ploitation” (i.e., the benefit of drawing a point at which the optimal value is high) against
“exploration” (i.e., the benefit of drawing a point in a region in which the approximation
error of c is currently large) through maximizing expected improvement.16 Finally, the
algorithm simplifies the M-step by providing constraints and their gradients for program
(2.14) in closed form, thus greatly aiding fast and stable numerical optimization. The price
is the additional approximation step. In the empirical application in Section 4 and in the
numerical exercises of Appendix C, this price turns out to be low.

14See details in Jones, Schonlau, and Welch (1998). We use the DACE MATLAB kriging toolbox
(http://www2.imm.dtu.dk/projects/dace/) for this step in our empirical application and Monte Carlo experi-
ments.

15Heuristically, EIL(θ) is the expected improvement gained from analyzing parameter value θ for a Bayesian
whose current beliefs about c are described by the estimated model. Indeed, for each θ, the maximand in (2.14)
multiplies improvement from learning that θ is feasible with this Bayesian’s probability that it is.

16It is also possible to draw multiple points in each iteration (Schonlau, Welch, and Jones (1998)), as we do
in our implementation of the method.

http://www2.imm.dtu.dk/projects/dace/
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2.4. Choice of Tuning Parameters

Practical implementation of calibrated projection and the E-A-M algorithm is detailed
in Kaido et al. (2017). It involves setting several tuning parameters, which we now discuss.

Calibration of ĉn in (2.10) must be tuned at two points, namely, the use of GMS and
the choice of ρ. The trade-offs in setting these tuning parameters are apparent from in-
spection of (2.8). GMS is parameterized by a shrinkage function ϕ and a sequence κn
that controls the rate of shrinkage. In practice, choice of κn is more delicate. A smaller κn
will make Λb

n larger, hence increase bootstrap coverage probability for any given c, hence
reduce ĉn and therefore make for shorter confidence intervals—but the uniform asymp-
totics will be misleading, and finite sample coverage therefore potentially off target, if κn
is too small. We follow the industry standard set by AS and recommend κn = √

logn.
The trade-off in choosing ρ is similar but reversed. A larger ρ will expandΛb

n and there-
fore make for shorter confidence intervals, but (our proof of) uniform validity of inference
requires ρ < ∞. Indeed, calibrated projection with ρ = 0 will disregard any projection
conservatism and (as is easy to show) exactly recovers projection of the AS confidence
set. Intuitively, we then want to choose ρ large but not too large.

To this end, we heuristically calibrate ρ based on how much conservative distortion one
is willing to accept in well-behaved cases. This distortion—denote it η, for which we sug-
gest a numerical value of 0�01—is compared against a bound on conservative distortion
that is itself likely to be conservative but data-free and trivial to compute. In particular,
we set

ρ=�−1

(
1
2

+ 1
2

(
1 −η

/(
J1 + J2

d

))1/d)
�

The underlying heuristic is as follows: If all basic solutions (i.e., intersections of exactly d
constraints) that potentially define vertices of Λb

n realize inside the ρ-box, then the ρ-box
cannot affect the values in (2.9) and hence not whether coverage obtains in a given boot-
strap sample. Conversely, the probability that at least one basic solution realizes outside
the ρ-box bounds from above the conservative distortion. This probability is, of course,
dependent on unknown parameters. Our data-free approximation imputes multivariate
standard normal distributions for all basic solutions and Bonferroni adjustment to handle
their covariation.17

The E-A-M algorithm also has two tuning parameters. One is k, the initial number of
evaluation points. The other is ε, the probability of drawing θ(L+1) randomly from a uni-
form distribution on Θ instead of by maximizing EIL. In calibrated projection use of the
E-A-M algorithm, there is a single “black box” function, ĉn(θ). We therefore suggest set-
ting k= 10d + 1, similarly to the recommendation in Jones, Schonlau, and Welch (1998,
p. 473). In our Monte Carlo exercises, we experimented with larger values, for example,
k= 20d + 1, and found that the increased number had no noticeable effect on the com-
puted CIn. If a user applies our E-A-M algorithm to a constrained optimization problem
with many “black box” functions to approximate, we suggest using a larger number of
initial points.

17To reproduce the expression, recall that if a≡ (
J1+J2
d

)
random variables in Rd are individually multivariate

standard normal, then a Bonferroni upper bound on the probability that not all of them realize inside the ρ-box
equals a(1− (1−2�(−ρ))d). Also, if Bonferroni is replaced with an independence assumption, the expression
changes to ρ=�−1( 1

2 + 1
2 (1 −η)1/ad). The numerical difference is negligible for moderate J1 + J2.
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The role of ε (e.g., Bull (2011, p. 2889)) is to trade off the greediness of the EIL max-
imization criterion with the overarching goal of global optimization. Sutton and Barto
(1998, pp. 28–29) explored the effect of setting ε= 0�1 and 0�01 on different optimization
problems, and found that for sufficiently large L, ε = 0�01 performs better. In our own
simulations, we have found that drawing both a uniform point and computing the value of
θ for each L (thereby sidestepping the choice of ε) is fast and accurate, and that is what
we recommend doing.

3. THEORETICAL RESULTS

3.1. Asymptotic Validity of Inference

In this section, we establish that CIn is uniformly asymptotically valid in the sense of
ensuring that (2.5) equals at least 1 − α.18 The result applies to: (i) confidence intervals
for one projection; (ii) joint confidence regions for several projections, in particular con-
fidence hyperrectangles for subvectors; (iii) confidence intervals for smooth nonlinear
functions f : Θ �→ R. Examples of the latter extension include policy analysis and esti-
mation of partially identified counterfactuals as well as demand extrapolation subject to
rationality constraints.

THEOREM 3.1:Suppose Assumptions E.1, E.2, E.3, E.4, and E.5 hold. Let 0<α< 1/2.
(I) Let CIn be as defined in (1.3), with ĉn as in (2.10). Then:

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P)

P
(
p′θ ∈ CIn

) ≥ 1 − α� (3.1)

(II) Let p1� � � � �ph denote unit vectors in Rd , h≤ d. Then:

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P)

P
(
pk′θ ∈ CIn�k�k= 1� � � � �h

) ≥ 1 − α�

where CIn�k = [infθ∈Cn(ĉhn ) p
k′θ� supθ∈Cn(ĉhn ) p

k′θ] and ĉhn (θ) ≡ inf{c ∈ R+ : P∗(Λb
n(θ�ρ� c) ∩

{⋂h

k=1{pk′λ= 0}} �= ∅)≥ 1 − α}.
(III) Let CIfn be a confidence interval whose lower and upper points are obtained solving

inf
θ∈Θ

/ sup
θ∈Θ

f (θ) s.t.
√
nm̄n�j(θ)/σ̂n�j(θ)≤ ĉfn(θ)� j = 1� � � � � J�

where ĉfn(θ) ≡ inf{c ≥ 0 : P∗(Λb
n(θ�ρ� c) ∩ {‖∇θf (θ)‖−1∇θf (θ)λ = 0} �= ∅) ≥ 1 − α}. Sup-

pose that there exist � > 0 and M < ∞ such that infP∈P infθ∈ΘI(P) ‖∇f (θ)‖ ≥ � and
supθ�θ̄∈Θ ‖∇f (θ) − ∇f (θ̄)‖ ≤ M‖θ − θ̄‖, where ∇θf (θ) is the gradient of f (θ).19 Let 0 <
α< 1/2. Then:

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P)

P
(
f (θ) ∈ CIfn

) ≥ 1 − α�

All assumptions can be found in Supplemental Material Appendix E.1. Assumptions
E.1 and E.5 are mild regularity conditions typical in the literature; see, for example, Def-
inition 4.2 and the corresponding discussion in BCS. Assumption E.2 is based on AS and

18In Appendix G.2.3, we show that the result actually applies to the mathematical projection in (1.2).
19Because the function f is known, these conditions can be easily verified in practice (especially if the first

one is strengthened to hold over Θ).
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constrains the GMS function ϕ(·) as well as the rate at which κn diverges. Assumption E.4
requires normalized population moments to be sufficiently smooth and consistently es-
timable. Assumption E.3 is our key departure from the related literature. In essence,
it requires that the correlation matrix of the moment functions corresponding to close-
to-binding moment conditions has eigenvalues uniformly bounded from below.20 Under
this condition, we are able to show that in the limit problem corresponding to (2.6)—
where constraints are replaced with their local linearization using population gradients
and Gaussian processes—the probability of coverage increases continuously in c. If such
continuity is directly assumed (Assumption E.6), Theorem 3.1 remains valid (Supplemen-
tal Material Appendix G.2.2). While the high level Assumption E.6 is similar in spirit to a
key condition (Assumption A.2) in BCS, we propose Assumption E.3 due to its familiarity
and ease of interpretation; a similar condition is required for uniform validity of standard
point identified Generalized Method of Moments inference. In Supplemental Material
Appendix F.2, we verify that our assumptions hold in some of the canonical examples in
the partial identification literature: mean with missing data, linear regression and best
linear prediction with interval data (and discrete covariates), entry games with multiple
equilibria (and discrete covariates), and semiparametric binary regression models with
discrete or interval valued covariates (as in Magnac and Maurin (2008)).

Assumptions E.1–E.5 define the class of DGPs over which our proposed method yields
uniformly asymptotically valid coverage. This class is non-nested with the class of DGPs
over which the profiling-based methods of Romano and Shaikh (2008) and BCS are uni-
formly asymptotically valid. Kaido, Molinari, and Stoye (2017, Section 4.2 and Supple-
mental Appendix F) showed that in well-behaved cases, calibrated projection and BCS-
profiling are asymptotically equivalent. They also provided conditions under which cali-
brated projection has lower probability of false coverage in finite sample, thereby estab-
lishing that the two methods’ finite sample power properties are non-ranked.

3.2. Convergence of the E-A-M Algorithm

We next provide formal conditions under which the sequence p′θ∗�L generated by the
E-A-M algorithm converges to the true endpoint of CIn asL→ ∞ at a rate that we obtain.
Although p′θ∗�L = max{p′θ(�) : � ∈ {1� � � � �L}� ḡ(θ)≤ c(θ(�))}, so that θ∗�L satisfies the true
constraints for each L, the sequence of evaluation points θ(�) is mostly obtained through
expected improvement maximization (M-step) with respect to the approximating surface
cL(·). Because of this, a requirement for convergence is that the function c(·) is suffi-
ciently smooth, so that the approximation error in |c(θ)− cL(θ)| vanishes uniformly in θ
as L→ ∞.21 We furthermore assume that the constraint set in (2.11) satisfies a degener-
acy condition introduced to the partial identification literature by Chernozhukov, Hong,
and Tamer (2007, Condition C.3).22 In our application, the condition requires that Cn(ĉn)
has an interior and that the inequalities in (2.4), when evaluated at points in a (small)
τ-contraction of Cn(ĉn), are satisfied with a slack that is proportional to τ. Theorem 3.2
below establishes that these conditions jointly ensure convergence of the E-A-M algo-
rithm at a specific rate. This is a novel contribution to the literature on response surface
methods for constrained optimization.

20Assumption E.3 allows for high correlation among moment inequalities that cannot cross. This covers
equality constraints but also entry games as the ones studied in Ciliberto and Tamer (2009).

21As in Bull (2011), our convergence result accounts for the fact that the parameters of the Gaussian process
prior in (2.12) are re-estimated for each iteration of the A-step using the “training data” {θ�� c(θ�)}L�=1.

22Chernozhukov, Hong, and Tamer (2007, eq. (4.6)) imposed the condition on the population identified set.
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In the formal statement below, the expectation EQ is taken with respect to the law of
(θ(1)� � � � � θ(L)) determined by the Initialization step and the M-step but conditioning on
the sample. We refer to Appendix A for a precise definition of EQ and a proof of the
theorem.

THEOREM 3.2: Suppose Θ ⊂ Rd is a compact hyperrectangle with nonempty interior,
that ‖p‖ = 1, and that Assumptions A.1, A.2, and A.3 hold. Let the evaluation points
(θ(1)� � � � � θ(L)) be drawn according to the Initialization and M-steps. Then

∥∥p′θ∗ −p′θ∗�L∥∥
L1
Q

=O

((
L

lnL

)−ν/d
(lnL)δ

)
� (3.2)

where ‖·‖L1
Q

is theL1-norm under Q, δ≥ 1+χ, and the constants 0< ν ≤ ∞ and 0<χ<∞
are defined in Assumption A.1. If ν = ∞, the statement in (3.2) holds for any ν <∞.

The requirement that Θ is a compact hyperrectangle with nonempty interior can be
replaced by a requirement that Θ belongs to the interior of a closed hyperrectangle in
Rd . Assumption A.1 specifies the types of kernel to be used to define the correlation
functional in (2.13). Assumption A.2 collects requirements on differentiability of gj(θ),
j = 1� � � � � J, and smoothness of c(θ). Assumption A.3 is the degeneracy condition dis-
cussed above.

To apply Theorem 3.2 to calibrated projection, we provide low-level conditions (As-
sumption D.1 in Supplemental Material Appendix D.1.1) under which the map θ �→ ĉn(θ)
uniformly stochastically satisfies a Lipschitz-type condition. To get smoothness, we work
with a mollified version of ĉn, denoted ĉn�τn in equation (D.1), where τn = o(n−1/2).23 The-
orem D.1 in the Supplemental Material shows that ĉn and ĉn�τn can be made uniformly
arbitrarily close, and that ĉn�τn yields valid inference as in (3.1). In practice, we directly
apply the E-A-M steps to ĉn.

The key condition imposed in Theorem D.1 is Assumption D.1. It requires that the
GMS function used is Lipschitz in its argument,24 and that the standardized moment
functions are Lipschitz in θ. In Supplemental Material Appendix F.1, we establish that
the latter condition is satisfied by some canonical examples in the moment (in)equality
literature: mean with missing data, linear regression and best linear prediction with in-
terval data (and discrete covariates), entry games with multiple equilibria (and discrete
covariates), and semiparametric binary regression models with discrete or interval valued
covariates (as in Magnac and Maurin (2008)).25

The E-A-M algorithm is proposed as a method to implement our statistical proce-
dure, not as part of the statistical procedure itself. As such, its approximation error is
not taken into account in Theorem 3.1. Our comparisons of the confidence intervals ob-
tained through the use of E-A-M as opposed to directly solving problems (2.4) through
the use of MATLAB’s fmincon in our empirical application in the next section suggest
that such error is minimal.

23For a discussion of mollification, see, for example, Rockafellar and Wets (2005, Example 7.19).
24This requirement rules out the GMS function in footnote 8, but it is satisfied by other GMS functions

proposed by AS.
25For these same examples, we verify the differentiability requirement in Assumption A.2 on gj(θ).
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4. EMPIRICAL ILLUSTRATION: ESTIMATING A BINARY GAME

We employ our method to revisit the study in Kline and Tamer (2016, Section 8) of
“what explains the decision of an airline to provide service between two airports.” We use
their data and model specification.26 Here, we briefly summarize the setup and refer to
Kline and Tamer (2016) for a richer discussion.

The study examines entry decisions of two types of firms, namely, Low Cost Carriers
(LCC) versus Other Airlines (OA). A market is defined as a trip between two airports,
irrespective of intermediate stops. The entry decision Y��i of player � ∈ {LCC�OA} in
market i is recorded as a 1 if a firm of type � serves market i and 0 otherwise. Firm �’s
payoff equals Y��i(Z′

��iϑ� + δiY−��i + u��i), where Y−��i is the opponent’s entry decision.
Each firm enters if doing so generates nonnegative payoffs. The observable covariates in
the vectorZ��i include the constant and the variablesW size

i andW pres
��i . The former is market

size, a market-specific variable common to all airlines in that market and defined as the
population at the endpoints of the trip. The latter is a firm-and-market-specific variable
measuring the market presence of firms of type � in market i (see Kline and Tamer (2016,
p. 356 for its exact definition). While W size

i enters the payoff function of both firms, W pres
LCC�i

(respectively, W pres
OA�i) is excluded from the payoff of firm OA (respectively, LCC). Each of

market size and of the two market presence variables is transformed into binary variables
based on whether they realized above or below their respective median. This leads to
a total of eight market types, hence J1 = 16 moment inequalities and J2 = 16 moment
equalities. The unobserved payoff shifters u��i are assumed to be i.i.d. across i and to have
a bivariate normal distribution with E(u��i)= 0, Var(u��i)= 1, and Corr(uLCC�i� uOA�i)= r
for each i and � ∈ {LCC�OA}, where the correlation r is to be estimated. Following Kline
and Tamer (2016), we assume that the strategic interaction parameters δLCC and δOA are
negative, that r ≥ 0, and that the researcher imposes these sign restrictions. To ensure that
Assumption E.4 is satisfied,27 we furthermore assume that r ≤ 0�85 and use this value as
its upper bound in the definition of the parameter space.

The results of the analysis are reported in Table I, which displays 95% nominal con-
fidence intervals (our CIn as defined in equations (2.3)–(2.4)) for each parameter. The
output of the E-A-M algorithm is displayed in the accordingly labeled column. The next
column shows a robustness check, namely, the output of MATLAB’s fmincon function,
henceforth labeled “direct search,” that was started at each of a widely spaced set of fea-
sible points that were previously discovered by the E-A-M algorithm. We emphasize that
this is a robustness or accuracy check, not a horse race: Direct search mechanically im-
proves on E-A-M because it starts (among other points) at the point reported by E-A-M
as optimal feasible. Using the standard MultiStart function in MATLAB instead of
the points discovered by E-A-M produces unreliable and extremely slow results. In 10 out
of 18 optimization problems that we solved, the E-A-M algorithm’s solution came within
its set tolerance (0�005) from the direct search solution. The other optimization problems
were solved by E-A-M with a minimal error of less than 5%.

Table I also reports computational time of the E-A-M algorithm, of the subsequent di-
rect search, and the total time used to compute the confidence intervals. The direct search
greatly increases computation time with small or negligible benefit. Also, computational

26The data, which pertain to the second quarter of the year 2010, are downloaded from http://qeconomics.
org/ojs/index.php/qe/article/downloadSuppFile/371/1173.

27This assumption, common in the literature on projection inference, requires that DP�j(θ) are Lipschitz in
θ and have bounded norm. But ∂({EP [mj(X� ·)]/σP�j(·)})/∂r includes a denominator equal to (1 − r2)2. As
r → 1, this leads to a violation of the assumption and to numerical instability.

http://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/371/1173
http://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/371/1173
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TABLE I

RESULTS FOR EMPIRICAL APPLICATION, WITH α= 0�05, ρ= 6�6055, n= 7882, κn = √
lnna

CIn Computational Time

E-A-M Direct Search E-A-M Direct Search Total

ϑcons
LCC [−2�0603�−0�8510] [−2�0827�−0�8492] 24�73 32�46 57�51

ϑsize
LCC [0�1880�0�4029] [0�1878�0�4163] 16�18 230�28 246�49

ϑ
pres
LCC [1�7510�1�9550] [1�7426�1�9687] 16�07 115�20 131�30

ϑcons
OA [0�3957�0�5898] [0�3942�0�6132] 27�61 107�33 137�66

ϑsize
OA [0�3378�0�5654] [0�3316�0�5661] 11�90 141�73 153�66

ϑ
pres
OA [0�3974�0�5808] [0�3923�0�5850] 13�53 148�20 161�75

δLCC [−1�4423�−0�1884] [−1�4433�−0�1786] 15�65 119�50 135�17
δOA [−1�4701�−0�7658] [−1�4742�−0�7477] 13�06 114�14 127�23
r [0�1855�0�85] [0�1855�0�85] 5�37 42�38 47�78

a“Direct search” refers to fmincon performed after E-A-M and starting from feasible points discovered by E-A-M, including the
E-A-M optimum.

time varied substantially across components. We suspect this might be due to the shape of
the level sets of maxj=1�����J

√
nm̄n�j(θ)/σ̂n�j(θ): By manually searching around the optimal

values of the program, we verified that the level sets in specific directions can be extremely
thin, rendering search more challenging.

Comparing our findings with those in Kline and Tamer (2016), we see that the results
qualitatively agree. The confidence intervals for the interaction effects (δLCC and δOA) and
for the effect of market size on payoffs (ϑsize

LCC and ϑsize
OA) are similar to each other across

the two types of firms. The payoffs of LCC firms seem to be impacted more than those of
OA firms by market presence. On the other hand, monopoly payoffs for LCC firms seem
to be smaller than for OA firms.28 The confidence interval on the correlation coefficient
is quite large and includes our upper bound of 0.85.29

For most components, our confidence intervals are narrower than the corresponding
95% credible sets reported in Kline and Tamer (2016).30 However, the intervals are not
comparable for at least two reasons: We impose a stricter upper bound on r and we aim
to cover the projections of the true parameter value as opposed to the identified set.

Overall, our results suggest that in a reasonably sized, empirically interesting problem,
calibrated projection yields informative confidence intervals. Furthermore, the E-A-M
algorithm appears to accurately and quickly approximate solutions to complex smooth
nonlinear optimization problems.

5. CONCLUSION

This paper proposes a confidence interval for linear functions of parameter vectors
that are partially identified through finitely many moment (in)equalities. The extreme

28Monopoly payoffs are those associated with a market with below-median size and below-median market
presence (i.e., the constant terms).

29Being on the boundary of the parameter space is not a problem for calibrated projection; indeed, it is
accounted for in the calibration of ĉn in equations (2.8)–(2.10).

30For the interaction parameters δ, Kline and Tamer’s upper confidence points are lower than ours; for the
correlation coefficient r, their lower confidence point is higher than ours.
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points of our calibrated projection confidence interval are obtained by minimizing and
maximizing p′θ subject to properly relaxed sample analogs of the moment conditions.
The relaxation amount, or critical level, is computed to insure uniform asymptotic cov-
erage of p′θ rather than θ itself. Its calibration is computationally attractive because it
is based on repeatedly checking feasibility of (bootstrap) linear programming problems.
Computation of the extreme points of the confidence intervals is furthermore attractive
thanks to an application of the response surface method for global optimization; this is a
novel contribution of independent interest. Indeed, one key result is a convergence rate
for this algorithm when applied to constrained optimization problems in which the objec-
tive function is easy to evaluate but the constraints are “black box” functions. The result
is applicable to any instance when the researcher wants to compute confidence intervals
for optimal values of constrained optimization problems. Our empirical application and
Monte Carlo analysis show that, in the DGPs that we considered, calibrated projection is
fast and accurate, and also that the E-A-M algorithm can greatly improve computation of
other confidence intervals.

APPENDIX A: CONVERGENCE OF THE E-A-M ALGORITHM

In this appendix, we provide details on the algorithm used to solve the outer maximiza-
tion problem as described in Section 2.3. Below, let (Ω�F) be a measurable space and
ω a generic element of Ω. Let L ∈ N and let (θ(1)� � � � � θ(L)) be a measurable map on
(Ω�F) whose law is specified below. The value of the function c in (2.11) is unknown ex
ante. Once the evaluation points θ(�), �= 1� � � � �L, realize, the corresponding values of c,
that is, Υ(�) ≡ c(θ(�)), �= 1� � � � �L, are known. We may therefore define the information
set

FL ≡ σ
(
θ(�)�Υ (�)� �= 1� � � � �L

)
�

Let CL ≡ {θ(�) : � ∈ {1� � � � �L}� gj(θ(�))≤ c(θ(�))� j = 1� � � � � J} be the set of feasible evalua-
tion points. Then argmaxθ∈CLp

′θ is measurable with respect to FL and we take a measur-
able selection θ∗�L from it.

Our algorithm iteratively determines evaluation points based on the expected improve-
ment criterion (Jones, Schonlau, and Welch (1998)). For this, we formally introduce a
model that describes the uncertainty associated with the values of c outside the current
evaluation points. Specifically, the unknown function c is modeled as a Gaussian process
such that31

E
[
c(θ)

] = μ� Cov
(
c(θ)� c

(
θ′)) = ς2Kβ

(
θ− θ′)�

where β = (β1� � � � �βd) ∈ Rd controls the length-scales of the process. Two values c(θ)
and c(θ′) are highly correlated when θk − θ′

k is small relative to βk. Throughout,
we assume β

k
≤ βk ≤ βk for some 0 < β

k
< βk < ∞ for k = 1� � � � � d. We let β̄ =

(β̄1� � � � � β̄d)
′ ∈Rd . Specific suggestions on the forms of Kβ are given in Appendix D.2.

31We use P and E to denote the probability and expectation for the prior and posterior distributions of c to
distinguish them from P and E used for the sampling uncertainty for Xi .



CONFIDENCE INTERVALS FOR PROJECTIONS 1413

For a given (μ� ς�β), the posterior distribution of c given FL is then another Gaussian
process whose mean cL(·) and variance ς2s2

L(·) are given as follows (Santner, Williams,
and Notz (2013, Section 4.1.3)):

cL(θ)= μ+ rL(θ)′R−1
L (Υ −μ1)�

ς2s2
L(θ)= ς2

(
1 − rL(θ)′R−1

L rL(θ)+
(
1 − 1′R−1

L rL(θ)
)2

1′R−1
L 1

)
�

Given this, the expected improvement function can be written as

EIL(θ)≡ E
[(
p′θ−p′θ∗�L)

+1
{
ḡ(θ)≤ c(θ)

}|FL

]
= (

p′θ−p′θ∗�L)
+P

(
c(θ)≥ max

j=1�����J
gj(θ)

∣∣FL

)

= (
p′θ−p′θ∗�L)

+P
(
c(θ)− cL(θ)

ςsL(θ)
≥

max
j=1�����J

gj(θ)− cL(θ)

ςsL(θ)

∣∣∣FL

)

= (
p′θ−p′θ∗�L)

+

(
1 −�

(
ḡ(θ)− cL(θ)

ςsL(θ)

))
�

The evaluation points (θ(1)� � � � � θ(L)) are then generated according to the following algo-
rithm (M-step in Section 2.3).

ALGORITHM A.1: Let k ∈ N.
Step 1: Initial evaluation points θ(1)� � � � � θ(k) are drawn uniformly over Θ independent

of c.
Step 2: For L≥ k, with probability 1−ε, let θ(L+1) = argmaxθ∈ΘEIL(θ). With probability

ε, draw θ(L+1) uniformly at random from Θ.

Below, we use Q to denote the law of (θ(1)� � � � � θ(L)) determined by the algorithm
above. We also note that θ∗�L+1 = arg maxθ∈CL+1

p′θ is a function of the evaluation points
and therefore is a random variable whose law is governed by Q. We let

C ≡ {
θ ∈Θ : ḡ(θ)− c(θ)≤ 0

}
� (A.1)

We require that the kernel used to define the correlation functional for the Gaus-
sian process in (2.13) satisfies some basic regularity conditions. For this, let K̂β =∫
e−2πix′ξKβ(x)dx denote the Fourier transform of Kβ. Note also that, for real valued

functions f , g, f (y) = O(g(y)) means f (y) = O(g(y)) as y → ∞ and lim infy→∞ f (y)/
g(y) > 0.

ASSUMPTION A.1—Kernel Function: (i) Kβ is continuous and integrable. (ii) K̂β =
k̂β(‖x‖) for some non-increasing function k̂β : R+ → R+. (iii) As x→ ∞, either K̂β(x) =
O(‖x‖−2ν−d) for some ν > 0 or K̂β(x) = O(‖x‖−2ν−d) for all ν > 0. (iv) Kβ is k-times con-
tinuously differentiable for k= �2ν�, and at the origin K has kth-order Taylor approximation
Pk satisfying |K(x)− Pk(x)| =O(‖x‖2ν(− ln‖x‖)2χ) as x→ 0, for some χ> 0.
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Assumption A.1 is essentially the same as Assumptions 1–4 in Bull (2011). When a
kernel satisfies the second condition of Assumption A.1(iii), that is, K̂β(x)=O(‖x‖−2ν−d),
∀ν > 0, we say ν = ∞. Assumption A.1 is satisfied by popular kernels such as the Matérn
kernel (with 0< ν <∞ and χ= 1/2) and the Gaussian kernel (ν = ∞ and χ= 0). These
kernels are discussed in Appendix D.2.

Finally, we require that the functions gj are differentiable with continuous Lipschitz
gradient,32 that the function c is smooth, and we impose on the constraint set C (which is
a confidence set in our application) a degeneracy condition inspired by Chernozhukov,
Hong, and Tamer (2007, Condition C.3).33 Below, Hβ(Θ) is the reproducing kernel
Hilbert space (RKHS) on Θ ⊆ Rd determined by the kernel used to define the corre-
lation functional in (2.13). The norm on this space is ‖ · ‖Hβ

; see Supplemental Material
Appendix D.2 for details.

ASSUMPTION A.2—Continuity and Smoothness: (i) For each j = 1� � � � � J, the function
gj(θ) is differentiable in θ with Lipschitz continuous gradient. (ii) The function c : Θ �→ R

satisfies ‖c‖Hβ̄
≤R for some R> 0, where β̄= (β̄1� � � � � β̄d)

′.

ASSUMPTION A.3—Degeneracy: There exist constants (C1�M�τ1) such that for all � ∈
[0� τ1],

max
j
gj(θ)− c(θ)≤ −C1�� for all θ ∈ C−��

dH
(
C−��C

) ≤M��

where C−� ≡ {θ ∈ C : d(θ�Θ \ C)≥�}.

Assumptions A.2 and A.3 jointly imply a linear minorant property on maxj(gj(θ) −
c(θ))+:

∃C2 > 0� τ2 > 0 : max
j

(
gj(θ)− c(θ)

)
+ ≥ C2 min

{
d(θ�C)� τ2

}
� (A.2)

To see this, define fj(θ) ≡ gj(θ) − c(θ), so that the l.h.s. of the above inequality is
maxj fj(θ). By Assumptions A.2–A.3 and compactness of Θ, fj(·) is differentiable with
Lipschitz continuous gradient. Let D̃j(·) denote its gradient and let M̃ denote the cor-
responding Lipschitz constant. Let ε = C1/(MM̃J), where (C1�M) are from Assump-
tion A.3. We will show that, for constants (C2� τ2) to be determined, (i) d(θ�C) ≤ ε ⇒
maxj fj(θ) ≥ C2d(θ�C) and (ii) d(θ�C) ≥ ε ⇒ maxj fj(θ) ≥ C2τ2, so that the minimum
between these bounds applies to any θ.

To see (i), write θ= θ∗ + r, where θ∗ is the projection of θ onto C. Fix a sequence �m →
0. By Assumption A.3, there exists a corresponding sequence θ∗

m → θ∗ with (for m large
enough) ‖θ∗

m − θ∗‖ ≤M�m but also maxj fj(θ∗
m)≤ −C1�m. Let tm ≡ (θ∗

m − θ∗)/‖θ∗
m − θ∗‖

be the sequence of corresponding directions. Then, for any accumulation point t of tm
and any active constraint j (i.e., fj(θ∗) = 0; such j necessarily exists due to continuity

32This requirement holds in the canonical partial identification examples discussed in Supplemental Mate-
rial Appendix F, using the same arguments as in Supplemental Material Appendix F.1, provided σ̂n�j(θ) > 0.

33Chernozhukov, Hong, and Tamer (2007) imposed the degeneracy condition on the population identified
set.
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of fj(·)), one has D̃j(θ
∗)t ≤ −C1/M . We note for future reference that this finding im-

plies ‖D̃j(θ
∗)‖ ≥ C1/M . It also implies that the Mangasarian–Fromowitz constraint qual-

ification holds at θ∗, hence r (being in the normal cone of C at θ∗) is in the positive
span of the active constraints’ gradients. Thus, j can be chosen such that fj(θ∗) = 0 and
D̃j(θ

∗)r ≥ ‖D̃j(θ
∗)‖‖r‖/J. For any such j, write

fj(θ)= fj
(
θ∗) +

∫ 1

0

dfj
(
θ∗ + kr

)
dk

dk

= 0 +
∫ 1

0
D̃j

(
θ∗ + kr

)
r dk

=
∫ 1

0

(
D̃j

(
θ∗)r + (

D̃j

(
θ∗ + kr

) − D̃j

(
θ∗))r)dk

≥ ∥∥D̃j

(
θ∗)∥∥‖r‖/J +

∫ 1

0

(−M̃k‖r‖)‖r‖dk
≥ C1

MJ
‖r‖ − M̃‖r‖2/2

≥ C1

2MJ
‖r‖�

In the inequality steps, we successively substituted bounds stated before the display, eval-
uated the integral in k, and (in the last step) used ‖r‖ ≤ ε. This establishes (i), where
C2 = C1/(2MJ). Next, by continuity of maxj fj(·) and compactness of the constraint set,
τ ≡ minθ{maxj fj(θ) : d(θ�C)≥ ε} is well-defined and strictly positive. This establishes (ii)
with τ2 = τ/C2.

A.1. Proof of Theorem 3.2

For each L ∈ N, let

rL ≡
(
L

lnL

)−ν/d
(lnL)χ�

PROOF OF THEOREM 3.2: First, note that∥∥p′θ∗ −p′θ∗�L∥∥
L1
Q

=EQ

[∣∣p′θ∗ −p′θ∗�L∣∣] =EQ

[
p′θ∗ −p′θ∗�L]�

where the last equality follows from p′θ∗ −p′θ∗�L+1 ≥ 0, Q-a.s. Hence, it suffices to show

EQ

[
p′θ∗ −p′θ∗�L] =O

((
L

lnL

)−ν/d
(lnL)δ

)
�

Let (Ω�F) be a measurable space. Below, we let L≥ 2k. Let 0< ν <∞. Let 0< η<
ε and AL ∈ F be the event that at least �ηL� of the points θ(k+1)� � � � � θ(L) are drawn
independently from a uniform distribution on Θ. Let BL ∈F be the event that one of the
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points θ(L+1)� � � � � θ(2L) is chosen by maximizing the expected improvement. For each L,
define the mesh norm:

hL ≡ sup
θ∈Θ

min
�=1����L

∥∥θ− θ(�)
∥∥�

For a given M̄ > 0, let CL ∈F be the event that hL ≤ M̄(L/ lnL)−1/d . We then let

DL ≡AL ∩BL ∩CL� (A.3)

For each ω ∈DL, let

�(ω�L)≡ inf
{
�̃ ∈ N :L≤ �̃≤ 2L�θ(�̃) ∈ arg max

θ∈Θ
EI�̃−1(θ)

}
� (A.4)

This is a (random) index that is associated with the first maximizer of the expected im-
provement between L and 2L.

Let εL = (L/ lnL)−ν/d(lnL)δ for δ≥ 1 +χ and note that εL is a positive sequence such
that εL → 0 and rL = o(εL). We further define the following events:

E1L ≡ {
ω ∈Ω : 0< ḡ

(
θ(�(ω�L))

) − c
(
θ(�(ω�L))

) ≤ ε�(ω�L)
}
�

E2L ≡ {
ω ∈Ω : −ε�(ω�L) ≤ ḡ

(
θ(�(ω�L))

) − c
(
θ(�(ω�L))

)
< 0

}
�

E3L ≡ {
ω ∈Ω : ∣∣ḡ(θ(�(ω�L))) − c

(
θ(�(ω�L))

)∣∣> ε�(ω�L)}�
Note that DL can be partitioned into DL ∩E1L, DL ∩E2L, and DL ∩E3L. By Lemmas A.2,
A.3, and A.4, there exists a constant M > 0 such that, respectively,

sup
ω∈DL∩E1L

∣∣p′θ∗ −p′θ∗��(ω�L)∣∣/ε�(ω�L) ≤M� (A.5)

sup
ω∈DL∩E2L

∣∣p′θ∗ −p′θ∗��(ω�L)∣∣/ε�(ω�L) ≤M� (A.6)

sup
ω∈DL∩E3L

∣∣p′θ∗ −p′θ∗��(ω�L)∣∣/exp(−Mη�(ω�L))≤M� (A.7)

where ηL ≡ εL/rL. Note that

ηL = εL/rL = (lnL)δ−χ� (A.8)

Hence, by taking M sufficiently large so that M > ν/d,

exp(−MηL)= exp
(−M(lnL)δ−χ

) ≤ exp(−M lnL)=L−M =O
(
L−ν/d) =O(εL)� (A.9)

where the inequality follows from M(lnL)δ−χ ≥M lnL by δ≥ 1 +χ. By (A.5)–(A.9),

sup
ω∈DL

∣∣p′θ∗ −p′θ∗��(ω�L)∣∣/ε�(ω�L) ≤M�

for some constant M > 0 for all L sufficiently large. Since L ≤ �(ω�L) ≤ 2L, p′θ∗�L is
non-decreasing in L, and εL is non-increasing in L, we have

p′θ∗ −p′θ∗�2L ≤M(L/ lnL)−ν/d(lnL)δ ≤M(2L/ ln 2L)−ν/d(ln 2L)δ� (A.10)

where the last equality follows from L−ν/d = 2ν/d(2L)−ν/d and lnL≤ ln 2L.
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Now consider the case ω /∈DL. By (A.3),

Q
(
Dc
L

) ≤Q
(
Ac

L

) +Q
(
Bc
L

) +Q
(
Cc
L

)
� (A.11)

Let Z� be a Bernoulli random variable such that Z� = 1 if θ(�) is randomly drawn from
a uniform distribution. Then, by the Chernoff bounds (see, e.g., Boucheron, Lugosi, and
Massart (2013, p.48)),

Q
(
Ac

L

) =Q

(
L∑

�=k+1

Z� < �ηL�
)

≤ exp
(−(L− k+ 1)ε(ε−η)2/2

)
� (A.12)

Further, by the definition of BL,

Q
(
Bc
L

) = εL� (A.13)

and finally, by taking M̄ large upon defining the event CL and applying Lemma 12 in Bull
(2011), one has

Q
(
Cc
L

) =O
(
L−γ)� (A.14)

for any γ > 0. Combining (A.11)–(A.14), for any γ > 0,

Q
(
Dc
L

) =O
(
L−γ)� (A.15)

Finally, noting that p′θ∗ −p′θ∗�2L is bounded by some constant M > 0 due to the bound-
edness of Θ, we have

EQ

[
p′θ∗ −p′θ∗�2L] =

∫
DL

p′θ∗ −p′θ∗�2L dQ+
∫
DcL

p′θ∗ −p′θ∗�2L dQ

=O
(
(2L/ ln 2L)−ν/d(ln 2L)δ

) +O
(
2L−γ)� (A.16)

where the second equality follows from (A.10) and (A.15). Since γ > 0 can be made aribi-
trarily large, one may let the second term on the right-hand side of (A.16) converge to 0
faster than the first term. Therefore,

EQ

[
p′θ∗ −p′θ∗�2L] =O

(
(2L/ ln 2L)−ν/d(ln 2L)δ

)
�

which establishes the claim of the theorem for 0 < ν < ∞. When the second condition
of Assumption A.1(iii) holds (i.e., ν = ∞), the argument above holds for any 0< ν <∞.

Q.E.D.

A.2. Auxiliary Lemmas for the Proof of Theorem 3.2

Let DL be defined as in (A.3). The following lemma shows that on DL ∩E1L, p′θ∗ and
p′θ(�(ω�L)) are close to each other, where we recall that θ(�(ω�L)) is the expected improve-
ment maximizer (but does not belong to C for ω ∈E1L).

LEMMA A.1: Suppose Assumptions A.1, A.2, and A.3 hold. Let εL be a positive se-
quence such that εL → 0 and rL = o(εL). Then, there exists a constant M > 0 such that
supω∈DL∩E1L

|p′θ∗ −p′θ(�(ω�L))|/ε�(ω�L) ≤M for all L sufficiently large.
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PROOF: We show the result by contradiction. Let {ωL} ⊂ Ω be a sequence such that
ωL ∈DL ∩ E1L for all L. First, assume that, for any M > 0, there is a subsequence such
that |p′θ∗ − p′θ(�(ωL�L))| >Mε�(ωL�L) for all L. This occurs if it contains a further subse-
quence along which, for all L, (i) p′θ(�(ωL�L)) −p′θ∗ >Mε�(ωL�L) or (ii) p′θ∗ −p′θ(�(ωL�L)) >
Mε�(ωL�L).

Case (i): p′θ(�(ωL�L)) −p′θ∗ >Mε�(ωL�L) for all L for some subsequence.
To simplify notation, we select a further subsequence {aL} of {L} such that, for any

aL < aL′ , �(ωaL�aL) < �(ωaL′ � aL′). This then induces a sequence {θ(�)} of expected im-
provement maximizers such that p′θ(�) − p′θ∗ > Mε� for all �, where each � equals
�(ωaL�aL) for some aL ∈ N. In what follows, we therefore omit the arguments of �, but
this sequence’s dependence on (waL�aL) should be implicitly understood.

Recall that C defined in equation (A.1) is a compact set and that ΠCθ
(�) =

arg minθ∈C ‖θ(�) − θ‖ denotes the projection of θ(�) on C. Then

p′θ(�) −p′θ∗ = (
p′θ(�) −p′ΠCθ

(�)
) + (

p′ΠCθ
(�) −p′θ∗)

≤ ‖p‖∥∥θ(�) −ΠCθ
(�)

∥∥ + (
p′ΠCθ

(�) −p′θ∗) ≤ d
(
θ(�)�C

)
�

where the first inequality follows from the Cauchy–Schwarz inequality, and the second
inequality follows from p′ΠCθ

(�) − p′θ∗ ≤ 0 due to ΠCθ
(�) ∈ C. Therefore, by equation

(A.2), for any M > 0,

ḡ
(
θ(�)

) − c
(
θ(�)

)
+ ≥ C2d

(
θ(�)�C

)
>C2Mε�

for all � sufficiently large, where the last inequality follows from p′θ(�)−p′θ∗ >Mε�. Take
M such that C2M > 1. Then (ḡ(θ(�))− c(θ(�)))/ε� > C2M > 1 for all � sufficiently large,
contradicting ωL ∈E1L.

Case (ii): Similarly to Case (i), we work with a further subsequence along which p′θ∗ −
p′θ(�) > Mε� for all �. Recall that along this subsequence, θ(�) /∈ C because 0 < ḡ(θ(�))−
c(θ(�)) ≤ ε�. We will construct θ̃(�) ∈ C−ε� s.t. EI�−1(θ̃

(�)) > EI�−1(θ
(�)), contradicting the

definition of θ(�).
By Assumption A.3,

dH
(
C−ε��C

) ≤Mε�� (A.17)

for all � such that ε� ≤ τ1. By the Cauchy–Schwarz inequality, for any θ̃,

p′θ∗ −p′θ̃≤ ‖p‖∥∥θ∗ − θ̃
∥∥� (A.18)

Therefore, minimizing both sides with respect to θ̃ ∈ C−ε� and noting that ‖p‖ = 1, we
obtain

p′θ∗ − sup
θ̃∈C−ε�

p′θ̃≤ inf
θ̃∈C−ε�

∥∥θ∗ − θ̃
∥∥� (A.19)

Further, noting that θ∗ ∈ C,

inf
θ̃∈C−ε�

∥∥θ∗ − θ̃
∥∥ ≤ sup

θ∈C
inf

θ̃∈C−ε�
‖θ− θ̃‖ ≤ dH

(
C−ε��C

)
� (A.20)
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By (A.17)–(A.20),

p′θ∗ − sup
θ∈C−ε�

p′θ≤Mε��

for all � sufficiently large. Therefore, for all � sufficiently large, one has

p′θ∗ − sup
θ∈C−ε�

p′θ < p′θ∗ −p′θ(�)�

implying existence of θ̃(�) ∈ C−ε� s.t.

p′θ̃(�) > p′θ(�)� (A.21)

By Lemma A.6, for t(θ)≡ (ḡ(θ)− c(θ))/s�(θ), one can write

EI�−1

(
θ(�)

) ≤ (
p′θ(�) −p′θ∗��−1

)
+

(
1 −�

(
t
(
θ(�)

) −R

ς

))
(A.22)

≤ (
p′θ(�) −p′θ∗��−1

)
+
(
1 −�(−R/ς))� (A.23)

where the last inequality uses t(θ(�)) > 0. Lemma A.6 also yields

EI�−1

(
θ̃(�)

) ≥ (
p′θ̃(�) −p′θ∗��−1

)
+

(
1 −�

(
t
(
θ̃(�)

) +R

ς

))

>
(
p′θ(�) −p′θ∗��−1

)
+

(
1 −�

(
t
(
θ̃(�)

) +R

ς

))

for all � sufficiently large, where the second inequality follows from (A.21). Next, by As-
sumption A.3,

t
(
θ̃(�)

) = ḡ
(
θ̃(�)

) − c
(
θ̃(�)

)
s�

(
θ̃(�)

) ≤ −C1ε�

s�
(
θ̃(�)

) (A.24)

for all � sufficiently large. Note that s�(θ̃(�))=O(r�) by (A.32) and r� = o(ε�) by assump-
tion. Hence, t(θ̃(�))→ −∞. This in turn implies

EI�−1

(
θ̃(�)

)
>

(
p′θ(�) −p′θ∗��−1

)
+
(
1 −�(−R/ς)) (A.25)

for all � sufficiently large. Equations (A.23) and (A.25) jointly establish the desired con-
tradiction. Q.E.D.

The next lemma shows that, on DL ∩E1L, p′θ∗ and p′θ∗�(�(ω�L)) are close to each other,
where we recall that θ∗�(�(ω�L)) is the optimum value among the available feasible points (it
belongs to C).

LEMMA A.2: Suppose Assumptions A.1, A.2, and A.3 hold. Let εL be a positive se-
quence such that εL → 0 and rL = o(εL). Then, there exists a constant M > 0 such that
supω∈DL∩E1L

|p′θ∗ −p′θ∗��(ω�L)|/ε�(ω�L) ≤M for all L sufficiently large.
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PROOF: We show below p′θ∗ − p′θ∗��(ω�L)−1 = O(ε�(ω�L)) uniformly over DL ∩ E1L for
some decreasing sequence ε� satisfying the assumptions of the lemma. The claim then
follows by relabeling ε�.

Suppose by contradiction that, for any M > 0, there is a subsequence {ωaL} ⊂Ω along
which ωaL ∈ DaL and |p′θ∗ − p′θ∗��(ωaL �aL)−1| > Mε�(ωaL �aL) for all L sufficiently large.
To simplify notation, we select a subsequence {aL} of {L} such that, for any aL < aL′ ,
�(ωaL�aL) < �(ωaL′ � aL′). This then induces a sequence such that |p′θ∗ −p′θ∗��−1|>Mε�
for all �, where each � equals �(ωaL�aL) for some aL ∈ N. Similarly to the proof of
Lemma A.1, we omit the arguments of � below and construct a sequence of points
θ̃(�) ∈ C−ε� such that EI�−1(θ̃

(�)) > EI�−1(θ
(�)).

Arguing as in (A.17)–(A.20), one may find a sequence of points θ̃(�) ∈ C−ε� such that

p′θ∗ −p′θ̃(�) ≤M1ε�� (A.26)

for some M1 > 0 and for all � sufficiently large. Furthermore, by Lemma A.1,∣∣p′θ∗ −p′θ(�)
∣∣ ≤M2ε�� (A.27)

for some M2 > 0 and for all � sufficiently large. Arguing as in (A.23),

EI�−1

(
θ(�)

) ≤ (
p′θ(�) −p′θ∗��−1

)
+
(
1 −�(−R/ς))

= (
p′θ∗ −p′θ∗��−1 − (

p′θ∗ −p′θ(�)
))

+
(
1 −�(−R/ς))

≤ (
p′θ∗ −p′θ∗��−1

)(
1 −�(−R/ς)) + ∣∣p′θ∗ −p′θ(�)

∣∣� (A.28)

where the last inequality follows from the triangle inequality, p′θ∗ − p′θ∗��−1 ≥ 0, and
1 −�(−R

ς
)≤ 1. Similarly, by Lemma A.6,

EI�−1

(
θ̃(�)

) ≥ (
p′θ̃(�) −p′θ∗��−1

)
+

(
1 −�

(
t
(
θ̃(�)

) +R

ς

))

= (
p′θ∗ −p′θ∗��−1 − (

p′θ∗ −p′θ̃(�)
))

+

(
1 −�

(
t
(
θ̃(�)

) +R

ς

))

≥ (
p′θ∗ −p′θ∗��−1

)(
1 −�

(
t
(
θ̃(�)

) +R

ς

))
− (

p′θ∗ −p′θ̃(�)
)
� (A.29)

where the last inequality holds for all � sufficiently large because p′θ∗ −p′θ̃(�) ∈ (0�M2ε�]
and one can find a subsequence p′θ∗ − p′θ∗��−1 >M2ε� so that p′θ∗ − p′θ∗��−1 − (p′θ∗ −
p′θ̃(�)) > 0 for all � sufficiently large.

Subtracting (A.28) from (A.29) yields

EI�−1

(
θ̃(�)

) −EI�−1

(
θ(�)

)
≥ (

p′θ∗ −p′θ∗��−1
)(
�

(−R
ς

)
−�

(
t
(
θ̃(�)

) +R

ς

))
− (

p′θ∗ −p′θ̃(�)
) − ∣∣p′θ∗ −p′θ(�)

∣∣
≥ (

p′θ∗ −p′θ∗��−1
)(
�

(−R
ς

)
−�

(
t
(
θ̃(�)

) +R

ς

))
− (M1 +M2)ε��
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where the last inequality follows from (A.26) and (A.27). Note that there is a constant
ζ > 0 s.t.

�

(−R
ς

)
−�

(
t
(
θ̃(�)

) +R

ς

)
> ζ�

due to t(θ̃(�)) → −∞ by (A.24), (A.32), and r� = o(ε�). Therefore, for all � sufficiently
large,

EI�−1

(
θ̃(�)

) −EI�−1

(
θ(�)

)
>Mζε� − (M1 +M2)ε��

One may take M large enough so that, for some positive constant γ, Mζε� − (M1 +
M2)ε� > γε� for all � sufficiently large, which implies EI�−1(θ̃

(�))−EI�−1(θ
(�)) > 0 for all �

sufficiently large. However, this contradicts the assumption that θ(�) /∈ C−ε� is the expected
improvement maximizer. Q.E.D.

The next lemma shows that, on DL ∩E2L, p′θ∗ and p′θ∗�(�(ω�L)) are close to each other.

LEMMA A.3: Suppose Assumptions A.1, A.2, and A.3 hold. Let {εL} be a positive se-
quence such that εL → 0 and rL = o(εL). Then, there exists a constant M > 0 such that
supω∈DL∩E2L

|p′θ∗ −p′θ∗��(ω�L)|/ε�(ω�L) ≤M for all L sufficiently large.

PROOF: Note that, for any L ∈ N, ω ∈DL ∩E2L, and �= �(ω�L), θ(�) satisfies ḡ(θ(�))−
c(θ(�))≤ 0, hence p′θ∗�� ≥ p′θ(�), which in turn implies

0 ≤ p′θ∗ −p′θ∗�� ≤ p′θ∗ −p′θ(�)�

Therefore, it suffices to show the existence of M > 0 that ensures (p′θ∗ − p′θ(�(ω�L)))+ ≤
Mε�(ω�L) uniformly over DL ∩E2L for all L. Suppose by contradiction that, for any M > 0,
there is a subsequence {ωaL} ⊂Ω along which ωaL ∈DaL ∩E2aL and p′θ∗ −p′θ(�(ωaL �aL)) >
Mε�(ωaL �aL) for all L sufficiently large. Again, we select a subsequence {aL} of {L} such
that, for any aL < aL′ , �(ωaL�aL) < �(ωaL′ � aL′). This then induces a sequence {θ(�)} of
expected improvement maximizers such that (p′θ∗ −p′θ(�))+ >Mε� for all �, where each
� equals �(ωaL�aL) for some aL ∈N.

Similarly to the proof of Lemma A.1, we omit the arguments of � below and prove the
claim by contradiction. Below, we assume that, for any M > 0, there is a further subse-
quence along which p′θ∗ −p′θ(�) >Mε� for all � sufficiently large.

Now let ε′
� = C̃ε� with C̃ > 0 specified below. By Assumption A.3, for all θ̃ ∈ C−ε′

� , it
holds that

ḡ(θ̃)− c(θ̃)≤ −C̃C1ε��

for all � sufficiently large. Noting that −ε� ≤ ḡ(θ(�))−c(θ(�)) and taking C̃ such that C̃C1 >
1, it follows that θ(�) /∈ C−ε′

� for all � sufficiently large.
Arguing as in (A.17)–(A.20), one may find a sequence of points θ̃(�) ∈ C−ε′

� such that

p′θ∗ −p′θ̃(�) ≤M1ε
′
� =M1C̃ε��
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This and the assumption that one can find a subsequence such that p′θ∗ −p′θ(�) >M1C̃ε�
for all � imply

p′θ∗ −p′θ̃(�) < p′θ∗ −p′θ(�)�

for all � sufficiently large. Now mimic the argument along (A.23)–(A.25) to deduce

EI�−1

(
θ̃(�)

)
> EI�−1

(
θ(�)

)
for all � sufficiently large. However, this contradicts the assumption that θ(�) /∈ C−ε′

� is the
expected improvement maximizer. Q.E.D.

The next lemma shows that, on DL ∩E3L, p′θ∗ and p′θ∗�(�(ω�L)) are close to each other.

LEMMA A.4: Suppose Assumptions A.1, A.2, and A.3 hold. Let εL = (L/ lnL)−ν/d(lnL)δ
for δ ≥ 1 + χ. Let ηL = εL/rL = (lnL)δ−χ. Then, there exists a constant M > 0 such that
supω∈DL∩E3L

|p′θ∗ −p′θ∗��(ω�L)|/exp(−Mη�(ω�L))≤M for all L sufficiently large.

PROOF: Let {ωL} ⊂Ω be a sequence such that ωL ∈DL for all L. Since ωL ∈ BL, there
is � = �(ωL�L) such that L ≤ � ≤ 2L and θ(�) is chosen by maximizing the expected im-
provement.

For later use, we note that, for any M̃ > 0, it can be shown that exp(−M̃ηL−1)/

exp(−M̃ηL)→ 1, which in turn implies that there exists a constant C > 1 such that

exp(−M̃ηL−1)≤ C exp(−M̃ηL)� (A.30)

for all L sufficiently large.
For θ ∈ Θ and L ∈ N, let IL(θ) ≡ (p′θ − p′θ∗�L)+1{ḡ(θ) ≤ c(θ)}. Recall that θ∗ is an

optimal solution to (2.11). Then, for all L sufficiently large,

p′θ∗ −p′θ∗��−1 (1)= I�−1

(
θ∗) (2)≤ EI�−1

(
θ∗)(1 −�(R/ς)

)−1 (3)≤ EI�−1

(
θ(�)

)(
1 −�(R/ς)

)−1

(4)≤ (
I�−1

(
θ(�)

) +M1 exp(−M̃η�−1)
)(

1 −�(R/ς)
)−1

(5)≤ (
I�−1

(
θ(�)

) +M2 exp(−M̃η�)
)(

1 −�(R/ς)
)−1

(6)≤ (
I�−1

(
θ∗��) +M2 exp(−M̃η�)

)(
1 −�(R/ς)

)−1

(7)≤ (
EI�−1

(
θ∗��) + 2M2 exp(−M̃η�)

)(
1 −�(R/ς)

)−1

(8)≤ (
EI�−1

(
θ(�−1)

) + 2M2 exp(−M̃η�)
)(

1 −�(R/ς)
)−1

(9)≤ (
I�−1

(
θ(�−1)

) + 3M2 exp(−M̃η�)
)(

1 −�(R/ς)
)−1

(10)≤ 3M2 exp(−M̃η�)
(
1 −�(R/ς)

)−1
�

where (1) follows by construction, (2) follows from Lemma A.6(ii), (3) follows from θ(�)

being the maximizer of the expected improvement, (4) follows from Lemma A.5, (5) fol-
lows from (A.30) with M2 = CM1, (6) follows from θ∗�� = argmaxθ∈C�p

′θ, (7) follows from
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Lemma A.5, (8) follows from θ(�−1) being the expected improvement maximizer, (9) fol-
lows from Lemma A.5, and (10) follows from I�−1(θ

(�−1)) = 0 due to the definition of
θ∗��−1. This establishes the claim. Q.E.D.

For evaluation points θL such that |ḡ(θL) − c(θL)| > εL, the following lemma is an
analog of Lemma 8 in Bull (2011), which links the expected improvement to the actual
improvement achieved by a new evaluation point θ.

LEMMA A.5: Suppose Θ ⊂ Rd is bounded and p ∈ Sd−1. Suppose the evaluation points
(θ(1)� � � � � θ(L)) are drawn by Algorithm A.1 and let Assumptions A.1 and A.2(ii) hold. For
θ ∈Θ and L ∈ N, let IL(θ)≡ (p′θ−p′θ∗�L)+1{ḡ(θ)≤ c(θ)}. Let {εL} be a positive sequence
such that εL → 0 and rL = o(εL). Let ηL ≡ εL/rL. Then, for any sequence {θL} ⊂ Θ such
that |ḡ(θL)− c(θL)|> εL,

IL(θL)− γL ≤ EIL(θL)≤ IL(θL)+ γL�

where γL =O(exp(−MηL)).

PROOF OF LEMMA A.5: If sL(θL) = 0, then the posterior variance of c(θL) is zero.
Hence, EIL(θL)= IL(θL), and the claim of the lemma holds.

Suppose sL(θL) > 0. We first show the upper bound. Let u≡ (ḡ(θL)− cL(θL))/sL(θL)
and t ≡ (ḡ(θL)− c(θL))/sL(θL). By Lemma 6 in Bull (2011), we have |u− t| ≤R. Starting
from Lemma A.6(i), we can write

EIL(θL)≤ (
p′θL −p′θ∗�L)

+

(
1 −�

(
t −R

ς

))

= (
p′θL −p′θ∗�L)

+
(
1
{
ḡ(θL)≤ c(θL)

} + 1
{
ḡ(θL) > c(θL)

})(
1 −�

(
t −R

ς

))

≤ IL(θL)+ (
p′θL −p′θ∗�L)

+1
{
ḡ(θL) > c(θL)

}(
1 −�

(
t −R

ς

))
� (A.31)

where the last inequality used 1 −�(x)≤ 1 for any x ∈ R. Note that one may write

1
{
ḡ(θL) > c(θL)

}(
1 −�

(
t −R

ς

))

= 1
{
ḡ(θL) > c(θL)

}(
1 −�

(
ḡ(θL)− c(θL)− sL(θL)R

ςsL(θL)

))
�

To be clear about the hyperparameter value at which we evaluate sL, we will write
sL(θL;β). By the hypothesis that ‖c‖Hβ̄

≤R and Lemma 4 in Bull (2011), we have

‖c‖HβL
≤R2

d∏
k=1

(βk/βk)≡ S�

Note that there are �ηL� uniformly sampled points, and Kβ is associated with index ν ∈
(0�∞). As shown in the proof of Theorem 5 in Bull (2011), this ensures that

sup
β∈∏d

k=1[β
k
�βk]

sL(θL;β)=O
(
hνL(lnL)

χ
) =O(rL)� (A.32)
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Below, we simply write this result sL(θL)=O(rL). This, together with |ḡ(θL)−c(θL)|> εL
and the fact that 1 −�(·) is decreasing, yields

1
{
ḡ(θL) > c(θL)

}(
1 −�

(
ḡ(θL)− c(θL)− sL(θL)R

ςsL(θL)

))

≤ 1 −�

(
εL

ςsL(θL)
− R

ς

)

≤ 1 −�(M1ηL −M2)� (A.33)

for some M1 > 0 and where M2 =R/ς. Note that, by the triangle inequality,

1 −�(M1ηL −M2)

≤ 1 −�(M1ηL)+ ∣∣(1 −�(M1ηL −M2)
) − (

1 −�(M1ηL)
)∣∣� (A.34)

and

1 −�(M1ηL)≤ 1
M1ηL

φ(M1ηL)=O
(
exp(−MηL)

)
� (A.35)

for some M > 0, where φ is the density of the standard normal distribution, and the
inequality follows from 1 − �(x) ≤ φ(x)/x. The second term on the right-hand side of
(A.34) can be bounded as

∣∣(1 −�(M1ηL −M2)
) − (

1 −�(M1ηL)
)∣∣ ≤φ(η̃L)M2 =O

(
exp(−MηL)

)
(A.36)

by the mean value theorem, where η̃L is a point between M1ηL and M1ηL − M2. The
claim of the lemma then follows from (A.31), (A.33)–(A.36), and (p′θL − p′θ∗�L

L ) being
bounded because Θ is bounded.

Similarly, for the lower bound, we have

EIL(θL)≥ (
p′θL −p′θ∗

L

)
+

(
1 −�

(
t +R

ς

))

≥ (
p′θL −p′θ∗

L

)
+1

{
ḡ(θL)≤ c(θL)

}(
1 −�

(
t +R

ς

))

≥ IL(θL)− (
p′θL −p′θ∗

L

)
+1

{
ḡ(θL)≤ c(θL)

}
�

(
t +R

ς

)
� (A.37)

Note that we may write

1
{
ḡ(θL)≤ c(θL)

}
�

(
t +R

ς

)

= 1
{
ḡ(θL) < c(θL)

}
�

(
ḡ(θL)− c(θL)+ sL(θL)R

ςsL(θL)

)
� (A.38)
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by |ḡ(θL)− c(θL)|> εL. Arguing as in (A.37) and noting that � is increasing, one has

1
{
ḡ(θL) < c(θL)

}
�

(
ḡ(θL)− c(θL)+ sL(θL)R

ςsL(θL)

)
≤�

( −εL
ςsL(θL)

+M2

)

≤�(−M1ηL +M2)� (A.39)

for some M1 > 0 and M2 > 0. By the triangle inequality,

�(−M1ηL +M2)≤�(−M1ηL)+ ∣∣�(−M1ηL +M2)−�(−M1ηL)
∣∣� (A.40)

where arguing as in (A.35),

�(−M1ηL)= 1 −�(M1ηL)=O
(
exp(−MηL)

)
� (A.41)

The second term on the right-hand side of (A.40) can be bounded as∣∣�(−M1ηL +M2)−�(−M1ηL)
∣∣

= ∣∣(1 −�(M1ηL −M2)
) − (

1 −�(M1ηL)
)∣∣ ≤φ(η̃L)M2 =O

(
exp(−MηL)

)
(A.42)

by the mean value theorem, where η̃L is a point between M1ηL and M1ηL − M2. The
claim of the lemma then follows from (A.37)–(A.42), and (p′θL −p′θ∗�L

L ) being bounded
because Θ is bounded. Q.E.D.

LEMMA A.6: Suppose Θ ⊂ Rd is bounded and p ∈ Sd−1 and let Assumptions A.1 and
A.2(ii) hold. Let t(θ) ≡ (ḡ(θ) − c(θ))/sL(θ). For θ ∈ Θ and L ∈ N, let IL(θ) ≡ (p′θ −
p′θ∗�L)+1{ḡ(θ)≤ c(θ)}. Then, (i) for any L ∈ N and θ ∈Θ,

(
p′θ−p′θ∗�L)

+

(
1 −�

(
t(θ)+R

ς

))
≤ EIL(θ)≤ (

p′θ−p′θ∗�L)
+

(
1 −�

(
t(θ)−R

ς

))
�

Further, (ii) for any L ∈ N and θ ∈Θ such that sL(θ) > 0,

IL(θ)≤ EIL(θ)

(
1 −�

(
R

ς

))−1

� (A.43)

PROOF: (i) Let u(θ) ≡ (ḡ(θ) − cL(θ))/sL(θ) and t(θ) ≡ (ḡ(θ) − c(θ))/sL(θ). By
Lemma 6 in Bull (2011), we have |u(θ) − t(θ)| ≤ R. Since 1 − �(·) is decreasing, we
have

EIL(θ)= (
p′θ−p′θ∗�L)

+

(
1 −�

(
u(θ)

ς

))
≤ (

p′θ−p′θ∗�L)
+

(
1 −�

(
t(θ)−R

ς

))
�

Similarly,

EIL(θ)= (
p′θ−p′θ∗�L)

+

(
1 −�

(
u(θ)

ς

))
≥ (

p′θ−p′θ∗�L)
+

(
1 −�

(
t(θ)+R

ς

))
�
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(ii) For the lower bound in (A.43), we have

EIL(θ)≥ (
p′θ−p′θ∗�L)

+

(
1 −�

(
t(θ)+R

ς

))

≥ (
p′θ−p′θ∗�L)

+1
{
ḡ(θ)≤ c(θ)

}(
1 −�

(
t(θ)+R

ς

))

≥ IL(θ)
(
1 −�(R/ς)

)
�

where the last inequality follows from t(θ) = (ḡ(θ) − c(θ))/sL(θ) ≤ 0 and the fact that
1 −�(·) is decreasing. Q.E.D.

APPENDIX B: APPLYING THE E-A-M ALGORITHM TO PROFILING

We describe below how to use the E-A-M procedure to compute BCS-profiling based
confidence intervals. Let T ⊂ R denote the parameter space for τ = p′θ. The (one-
dimensional) profiling confidence region is{

τ ∈ T : inf
θ:p′θ=τ

Tn(θ)≤ cMR
n (τ)

}
�

where cMR
n is the critical value proposed in Bugni, Canay, and Shi (2017) and Tn is any

test statistic that they allowed for. The E-A-M algorithm can be used to compute the
endpoints of this set so that the researcher may report an interval.

For ease of exposition, we discuss below the computation of the right endpoint of the
confidence interval, which is the optimal value of the following problem:34

max
τ∈T

τ

s.t. inf
θ∈Θ:p′θ=τ

Tn(θ)≤ cMR
n (τ)�

(B.1)

We then take c(τ) ≡ − infθ∈Θ:p′θ=τ Tn(θ) + cMR
n (τ) as a black box function and apply the

E-A-M algorithm.35 We include the profiled statistic in the black box function because it
involves a nonlinear optimization problem, which is also relatively expensive. The modi-
fied procedure is as follows.

Initialization: Draw randomly (uniformly) over T ⊂ R a set (τ(1)� � � � � τ(k)) of initial
evaluation points and evaluate c(τ(�)) for �= 1� � � � �k− 1. Initialize L= k.

E-step: Evaluate c(τ(L)) and record the tentative optimal value

τ∗�L ≡ max
{
τ� : � ∈ {1� � � � �L}� c(τ(�)) ≥ 0

}
�

A-step: (Approximation): Approximate τ �→ c(τ) by a flexible auxiliary model. We again
use the kriging approximation, which for a mean-zero Gaussian process ζ(·) indexed by τ
and with constant variance ς2 specifies

Υ(�) = μ+ ζ
(
τ(�)

)
� �= 1� � � � �L�

Corr
(
ζ(τ)� ζ

(
τ′)) =Kβ

(
τ− τ′)� τ� τ′ ∈R�

34The left endpoint is the optimal value of a program that replaces max with min.
35One may view (B.1) as a special case of (2.11) with a scalar control variable and a single constraint g1(τ)≤

c(τ) with g1(τ)= 0.
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where Kβ is a kernel with a scalar parameter β ∈ [β�β] ⊂ R++. The parameters are esti-
mated in the same way as before.

The (best linear) predictor of c and its derivative are then given by

cL(τ)= μ̂+ rL(τ)′R−1
L (Υ − μ̂1)�

∇τcL(τ)= μ̂+ QL(τ)R−1
L (Υ − μ̂1)�

where rL(τ) is a vector whose �th component is Corr(ζ(τ)� ζ(τ(�))) as given above with
estimated parameters, QL(τ)= ∇τrL(τ)′, and RL is anL-by-Lmatrix whose (�� �′) entry is
Corr(ζ(τ(�))� ζ(τ(�′))) with estimated parameters. The amount of uncertainty left in c(τ)
is captured by the following variance:

ς̂2s2
L(τ)= ς̂2

(
1 − rL(τ)′R−1

L rL(τ)+
(
1 − 1′R−1

L rL(τ)
)2

1′R−1
L 1

)
�

M-step: (Maximization): With probability 1 − ε, maximize the expected improvement
function EIL to obtain the next evaluation point, with

τ(L+1) ≡ arg max
τ∈T

EIL(τ)= arg max
τ∈T

(
τ− τ∗�L)

+

(
1 −�

(−cL(τ)
ς̂sL(τ)

))
�

With probability ε, draw τ(L+1) randomly from a uniform distribution over T .
As before, τ∗�L is reported as endpoint of CIn upon convergence. In order for Theo-

rem 3.2 to apply to this algorithm, the profiled statistic infθ∈Θ:p′θ=τ Tn(θ) and the critical
value ĉMR

n need to be sufficiently smooth. We leave derivation of sufficient conditions for
this to be the case to future research.

APPENDIX C: AN ENTRY GAME MODEL AND SOME MONTE CARLO SIMULATIONS

We evaluate the statistical and numerical performance of calibrated projection and E-
A-M in comparison with BCS-profiling in a Monte Carlo experiment run on a server
with two Intel Xeon X5680 processors rated at 3.33 GHz with six cores each and with a
memory capacity of 24 Gb rated at 1333 MHz. The experiment simulates a two-player
entry game in the Monte Carlo exercise of BCS, using their code to implement their
method.36

C.1. The General Entry Game Model

We consider a two-player entry game based on Ciliberto and Tamer (2009):

Y2 = 0 Y2 = 1

Y1 = 0 0�0 0�Z′
2ϑ1 + u2

Y1 = 1 Z′
1ϑ1 + u1�0 Z′

1(ϑ1 +$1)+ u1�Z
′
2(ϑ2 +$2)+ u2

36See http://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/431/1411.

http://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/431/1411
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Here, Y�, Z�, and u� denote player �’s binary action, observed characteristics, and un-
observed characteristics. The strategic interaction effects Z′

�$� ≤ 0 measure the impact
of the opponent’s entry into the market. We let X ≡ (Y1�Y2�Z

′
1�Z

′
2)

′. We generate
Z = (Z1�Z2) as an i.i.d. random vector taking values in a finite set whose distribu-
tion pz = P(Z = z) is known. We let u = (u1�u2) be independent of Z and such that
Corr(u1�u2) ≡ r ∈ [0�1] and Var(u�) = 1, � = 1�2. We let θ ≡ (ϑ′

1�ϑ
′
2�$

′
1�$

′
2� r)

′. For a
given set A ⊂ R2, we define Gr(A) ≡ P(u ∈A). We choose Gr so that the c.d.f. of u is
continuous, differentiable, and has a bounded p.d.f. The outcome Y = (Y1�Y2) results
from pure strategy Nash equilibrium play. For some value of Z and u, the model predicts
monopoly outcomes Y = (0�1) and (1�0) as multiple equilibria. When this occurs, we se-
lect outcome (0�1) by independent Bernoulli trials with parameter μ ∈ [0�1]. This gives
rise to the following restrictions:

E
[
1
{
Y = (0�0)

}
1{Z = z}] −Gr

((−∞�−z′
1ϑ1

) × (−∞�−z′
2ϑ2

))
pz = 0�

E
[
1
{
Y = (1�1)

}
1{Z = z}]

−Gr

([−z′
1(ϑ1 +$1)�+∞) × [−z′

2(ϑ2 +$2)�+∞))
pz = 0�

E
[
1
{
Y = (0�1)

}
1{Z = z}] −Gr

((−∞�−z′
1(ϑ1 +$1)

) × [−z′
2ϑ2�+∞))

pz ≤ 0�

−E[
1
{
Y = (0�1)

}
1{Z = z}] + [

Gr

((−∞�−z′
1(ϑ1 +$1)

) × [−z′
2ϑ2�+∞))

−Gr

([−z′
1ϑ1�−z′

1(ϑ1 +$1)
) × [−z′

2ϑ2�−z′
2(ϑ2 +$2)

)]
pz ≤ 0�

(C.1)

We show in Supplemental Material Appendix F that this model satisfies Assumptions D.1
and E.3-2.37 Throughout, we analytically compute the moments’ gradients and studentize
them using sample analogs of their standard deviations.

C.2. A Comparison to BCS-Profiling

BCS specialized this model as follows. First, u1, u2 are independently uniformly dis-
tributed on [0�1] and the researcher knows r = 0. Equality (C.1) disappears because (0�0)
is never an equilibrium. Next, Z1 =Z2 = [1; {Wk}dWk=0], where Wk are observed market-type
indicators, $� = [δ�;0dW ] for � = 1�2, and ϑ1 = ϑ2 = ϑ = [0; {ϑ[k]}dWk=0].38 The parame-
ter vector is θ= [δ1;δ2;ϑ] with parameter space Θ= {θ ∈ R2+dW : (δ1� δ2) ∈ [0�1]2�ϑk ∈
[0�min{δ1� δ2}]�k= 1� � � � � dW }. This leaves four moment equalities and eight moment in-
equalities (so J = 16); compare equation (5.1) in BCS. We set dW = 3, P(Wk = 1)= 1/4,
k = 0�1�2�3, θ = [0�4;0�6;0�1;0�2;0�3], and μ = 0�6. The implied true bounds on pa-
rameters are δ1 ∈ [0�3872�0�4239], δ2 ∈ [0�5834�0�6084], ϑ[1] ∈ [0�0996�0�1006], ϑ[2] ∈
[0�1994�0�2010], and ϑ[3] ∈ [0�2992�0�3014].

The BCS-profiling confidence interval CIprof
n inverts a test of H0 : p′θ = τ over a grid

for τ. We do not, in practice, exhaust the grid but search inward from the extreme points
of Θ in directions ±p. At each τ that is visited, we use BCS code to compute a pro-
filed test statistic and the corresponding critical value ĉMR

n (τ). The latter is a quantile

37The specialization in which we compare to BCS also fulfils their assumptions. The assumptions in Pakes
et al. (2011) exclude any DGP that has moment equalities.

38This allows for market-type homogeneous fixed effects but not for player-specific covariates nor for ob-
served heterogeneity in interaction effects.
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of the minimum of two distinct bootstrap approximations, each of which solves a non-
linear program for each bootstrap draw. Computational cost quickly increases with grid
resolution, bootstrap size, and the number of starting points used to solve the nonlinear
programs.

Calibrated projection computes ĉn(θ) by solving a series of linear programs for each
bootstrap draw.39 It computes the extreme points of CIn by solving the nonlinear pro-
gram (2.4) twice, a task that is much accelerated by the E-A-M algorithm. Projection of
Andrews and Soares (2010) operates very similarly but computes its critical value ĉproj

n (θ)
through bootstrap simulation without any optimization.

We align grid resolution in BCS-profiling with the E-A-M algorithm’s convergence
threshold of 0�005.40 We run all methods with B = 301 bootstrap draws, and calibrated
and “uncalibrated” (i.e., based on Andrews and Soares (2010)) projection also with
B = 1001.41 Some other choices differ: BCS-profiling is implemented with their own
choice to multi-start the nonlinear programs at three oracle starting points, that is, us-
ing knowledge of the true DGP; our implementation of both other methods multi-starts
the nonlinear programs from 30 data-dependent random points (see Kaido et al. (2017)
for details).

Table II displays results for (δ1� δ2) and for 300 Monte Carlo repetitions of all three
methods. All confidence intervals are conservative, reflecting the effect of GMS. As ex-
pected, uncalibrated projection is most conservative, with coverage of essentially 1. Also,
BCS-profiling is more conservative than calibrated projection. The most striking contrast
is in computational effort. Here, uncalibrated projection is fastest—indeed, in contrast
to received wisdom, this procedure is computationally somewhat easy. This is due to our
use of the E-A-M algorithm and therefore part of this paper’s contribution. Next, our
implementation of calibrated projection beats BCS-profiling with gridding by a factor of
about 70. This can be disentangled into the gain from using calibrated projection, with its
advantage of bootstrapping linear programs, and the gain afforded by the E-A-M algo-
rithm. It turns out that implementing BCS-profiling with the adapted E-A-M algorithm
(see Appendix B) improves computation by a factor of about 4; switching to calibrated
projection leads to a further improvement by a factor of about 17. Finally, Table III ex-
tends the analysis to all components of θ and to 1000 Monte Carlo repetitions. We were
unable to compute this for BCS-profiling.

In sum, the Monte Carlo experiment on the same DGP used in BCS yields three inter-
esting findings: (i) the E-A-M algorithm accelerates projection of the Andrews and Soares
(2010) confidence region to the point that this method becomes reasonably cheap; (ii) it
also substantially accelerates computation of profiling intervals, and (iii) for this DGP, cal-
ibrated projection combined with the E-A-M algorithm has the most accurate size control
while also being computationally attractive.

39We implement this step using the high-speed solver CVXGEN, available from http://cvxgen.com and de-
scribed in Mattingley and Boyd (2012).

40This is only one of several individually necessary stopping criteria. Others include that the current opti-
mum θ∗�L and the expected improvement maximizer θL+1 (see equation (2.14)) satisfy |p′(θL+1 −θ∗�L)| ≤ 0�005.
See Kaido et al. (2017) for the full list of convergence requirements.

41Based on some trial runs of BCS-profiling for δ1, we estimate that running it with B = 1001 throughout
would take 3.14 times longer than the computation times reported in Table II. By comparison, calibrated
projection takes only 1.75 times longer when implemented with B= 1001 instead of B= 301.

http://cvxgen.com
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TABLE II

RESULTS FOR SET 1 WITH n= 4000, MCs = 300, B= 301, ρ= 5�04, κn = √
lnna

Median CI

CIprof
n CIn CIproj

n

Implementation 1 − α Grid E-A-M E-A-M E-A-M

δ1 = 0�4
0.95 [0�330�0�495] [0�331�0�495] [0�336�0�482] [0�290�0�558]
0.90 [0�340�0�485] [0�340�0�485] [0�343�0�474] [0�298�0�543]
0.85 [0�345�0�475] [0�346�0�479] [0�348�0�466] [0�303�0�537]

δ2 = 0�6
0.95 [0�515�0�655] [0�514�0�655] [0�519�0�650] [0�461�0�682]
0.90 [0�525�0�647] [0�525�0�648] [0�531�0�643] [0�473�0�675]
0.85 [0�530�0�640] [0�531�0�642] [0�539�0�639] [0�481�0�671]

Coverage

CIprof
n CIn CIproj

n

Grid E-A-M E-A-M E-A-M

Implementation 1 − α Lower Upper Lower Upper Lower Upper Lower Upper

δ1 = 0�4
0.95 0.997 0.990 1.000 0.993 0.993 0.977 1.000 1.000
0.90 0.990 0.980 0.993 0.977 0.987 0.960 1.000 1.000
0.85 0.970 0.970 0.973 0.960 0.957 0.930 1.000 1.000

δ2 = 0�6
0.95 0.987 0.993 0.990 0.993 0.973 0.987 1.000 1.000
0.90 0.977 0.973 0.980 0.977 0.940 0.953 1.000 1.000
0.85 0.967 0.957 0.963 0.960 0.943 0.927 1.000 1.000

Average Time

CIprof
n CIn CIproj

n

Implementation 1 − α Grid E-A-M E-A-M E-A-M

δ1 = 0�4
0.95 1858.42 425.49 26.40 18.22
0.90 1873.23 424.11 25.71 18.55
0.85 1907.84 444.45 25.67 18.18

δ2 = 0�6
0.95 1753.54 461.30 26.61 22.49
0.90 1782.91 472.55 25.79 21.38
0.85 1809.65 458.58 25.00 21.00

a(1) Projections of ΘI are: δ1 ∈ [0�3872�0�4239], δ2 ∈ [0�5834�0�6084], ζ1 ∈ [0�0996�0�1006], ζ2 ∈ [0�1994�0�2010], ζ3 ∈
[0�2992�0�3014]. (2) “Upper” coverage is for maxθ∈ΘI(P) p

′θ, and similarly for “Lower”. (3) “Average time” is computation time in

seconds averaged over MC replications. (4) CIprof
n results from BCS-profiling, CIn is calibrated projection, and CIproj

n is uncalibrated
projection. (5) “Implementation” refers to the method used to compute the extreme points of the confidence interval.
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TABLE III

RESULTS FOR SET 1 WITH n= 4000, MCs = 1000, B= 999, ρ= 5�04, κn = √
lnna

Median CI CIn Coverage CIproj
n Coverage Average Time

1 − α CIn CIproj
n Lower Upper Lower Upper CIn CIproj

n

δ1 = 0�4
0.95 [0�333�0�478] [0�288�0�555] 0.988 0.982 1 1 42.41 22.23
0.90 [0�341�0�470] [0�296�0�542] 0.976 0.957 1 1 41.56 22.11
0.85 [0�346�0�464] [0�302�0�534] 0.957 0.937 1 1 40.47 19.79

δ2 = 0�6
0.95 [0�525�0�653] [0�466�0�683] 0.969 0.983 1 1 42.11 24.39
0.90 [0�538�0�646] [0�478�0�677] 0.947 0.960 1 1 40.15 28.13
0.85 [0�545�0�642] [0�485�0�672] 0.925 0.941 1 1 41.38 26.44

ζ[1] = 0�1
0.95 [0�054�0�142] [0�020�0�180] 0.956 0.958 1 1 40.31 22.53
0.90 [0�060�0�136] [0�028�0�172] 0.911 0.911 1 1 36.80 24.15
0.85 [0�064�0�132] [0�032�0�167] 0.861 0.860 0�999 0�999 39.10 21.81

ζ[2] = 0�2
0.95 [0�156�0�245] [0�121�0�281] 0.952 0.952 1 1 39.23 24.66
0.90 [0�162�0�238] [0�128�0�273] 0.914 0.910 0�998 0�998 41.53 21.66
0.85 [0�165�0�234] [0�133�0�268] 0.876 0.872 0�996 0�996 39.44 22.83

ζ[3] = 0�3
0.95 [0�257�0�344] [0�222�0�379] 0.946 0.946 1 1 41.45 22.91
0.90 [0�263�0�338] [0�230�0�371] 0.910 0.909 0�997 0�999 42.09 22.83
0.85 [0�267�0�334] [0�235�0�366] 0.882 0.870 0�994 0�993 42.19 23.69

aSame DGP and conventions as in Table II.

REFERENCES

ANDREWS, D. W. K., AND X. SHI (2013): “Inference Based on Conditional Moment Inequalities,” Economet-
rica, 81, 609–666. [1399]

ANDREWS, D. W. K., AND G. SOARES (2010): “Inference for Parameters Defined by Moment Inequalities
Using Generalized Moment Selection,” Econometrica, 78, 119–157. [1399,1402,1429]

BERESTEANU, A., AND F. MOLINARI (2008): “Asymptotic Properties for a Class of Partially Identified Models,”
Econometrica, 76, 763–814. [1399]

BONTEMPS, C., T. MAGNAC, AND E. MAURIN (2012): “Set Identified Linear Models,” Econometrica, 80, 1129–
1155. [1399]

BOUCHERON, S., G. LUGOSI, AND P. MASSART (2013): Concentration Inequalities: A Nonasymptotic Theory of
Independence. Oxford University Press. [1417]

BUGNI, F. A. (2010): “Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities:
Coverage of the Identified Set,” Econometrica, 78 (2), 735–753. [1402]

BUGNI, F. A., I. A. CANAY, AND X. SHI (2017): “Inference for Subvectors and Other Functions of Partially
Identified Parameters in Moment Inequality Models,” Quantitative Economics, 8 (1), 1–38. [1399,1426]

BULL, A. D. (2011): “Convergence Rates of Efficient Global Optimization Algorithms,” Journal of Machine
Learning Research, 12 (Oct), 2879–2904. [1399,1407,1408,1414,1417,1423,1425]

CANAY, I. A. (2010): “EL Inference for Partially Identified Models: Large Deviations Optimality and Bootstrap
Validity,” Journal of Econometrics, 156 (2), 408–425. [1402]

CHEN, X., T. M. CHRISTENSEN, AND E. TAMER (2018): “Monte Carlo Confidence Sets for Identified Sets,”
Econometrica, 86 (6), 1965–2018. [1399]

CHERNOZHUKOV, V., H. HONG, AND E. TAMER (2007): “Estimation and Confidence Regions for Parameter
Sets in Econometric Models,” Econometrica, 75, 1243–1284. [1399,1408,1414]

CILIBERTO, F., AND E. TAMER (2009): “Market Structure and Multiple Equilibria in Airline Markets,” Econo-
metrica, 77, 1791–1828. [1400,1408,1427]

DICKSTEIN, M. J., AND E. MORALES (2018): “What Do Exporters Know?” The Quarterly Journal of Economics,
133 (4), 1753–1801. [1400]

FREYBERGER, J., AND B. REEVES (2017): “Inference Under Shape Restrictions,” Working Paper. [1399]
GAFAROV, B., M. MEIER, AND J. L. MONTIEL-OLEA (2016): “Projection Inference for Set-Identified SVARs,”

Working Paper. [1400]

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AShiECMA&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/AS&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/bermol08&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/BontempsMagnacMaurin2012E&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/boucheron2013concentration&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Bugni2009E&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/BCS14subv&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/BullConvergence2011&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Canay2010JE&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/CCOT&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/CHT&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/CilibertoTamer09&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/dicmor16&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AShiECMA&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/AS&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/bermol08&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/BontempsMagnacMaurin2012E&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:5/boucheron2013concentration&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/Bugni2009E&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/BCS14subv&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:8/BullConvergence2011&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Canay2010JE&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/CCOT&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:11/CHT&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/CilibertoTamer09&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/dicmor16&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R


1432 H. KAIDO, F. MOLINARI, AND J. STOYE

GRIECO, P. L. E. (2014): “Discrete Games With Flexible Information Structures: An Application to Local
Grocery Markets,” The RAND Journal of Economics, 45 (2), 303–340. [1400]

JONES, D. R. (2001): “A Taxonomy of Global Optimization Methods Based on Response Surfaces,” Journal of
Global Optimization, 21 (4), 345–383. [1399]

JONES, D. R., M. SCHONLAU, AND W. J. WELCH (1998): “Efficient Global Optimization of Expensive Black-
Box Functions,” Journal of Global Optimization, 13 (4), 455–492. [1399,1405,1406,1412]

KAIDO, H. (2016): “A Dual Approach to Inference for Partially Identified Econometric Models,” Journal of
Econometrics, 192 (1), 269–290. [1399]

KAIDO, H., F. MOLINARI, AND J. STOYE (2017): “Confidence Intervals for Projections of Partially Identified
Parameters,” CeMMAP Working Paper CWP 49/17, Available at https://www.cemmap.ac.uk/publication/id/
10139. [1399,1408]

(2019): “Supplement to ‘Confidence Intervals for Projections of Partially Identified Parameters’,”
Econometrica Supplemental Material, 87, https://doi.org/10.3982/ECTA14075. [1400]

KAIDO, H., F. MOLINARI, J. STOYE, AND M. THIRKETTLE (2017): “Calibrated Projection in MATLAB,”
Technical Report, Available at https://molinari.economics.cornell.edu/docs/KMST_Manual.pdf. [1397,1406,

1429]
KLINE, B., AND E. TAMER (2016): “Bayesian Inference in a Class of Partially Identified Models,” Quantitative

Economics, 7 (2), 329–366. [1399,1400,1410,1411]
MAGNAC, T., AND E. MAURIN (2008): “Partial Identification in Monotone Binary Models: Discrete Regressors

and Interval Data,” Review of Economic Studies, 75, 835–864. [1408,1409]
MATTINGLEY, J., AND S. BOYD (2012): “CVXGEN: A Code Generator for Embedded Convex Optimization,”

Optimization and Engineering, 13 (1), 1–27. [1429]
PAKES, A., J. PORTER, K. HO, AND J. ISHII (2011): “Moment Inequalities and Their Application,” Discussion

Paper, Harvard University. [1399,1428]
(2015): “Moment Inequalities and Their Application,” Econometrica, 83, 315–334. [1399]

ROCKAFELLAR, R. T., AND R. J.-B. WETS (2005): Variational Analysis (Second Ed.). Berlin: Springer-Verlag.
[1409]

ROMANO, J. P., AND A. M. SHAIKH (2008): “Inference for Identifiable Parameters in Partially Identified Econo-
metric Models,” Journal of Statistical Planning and Inference, 138, 2786–2807. [1399,1408]

SANTNER, T. J., B. J. WILLIAMS, AND W. I. NOTZ (2013): The Design and Analysis of Computer Experiments.
Springer Science & Business Media. [1413]

SCHONLAU, M., W. J. WELCH, AND D. R. JONES (1998): “Global versus Local Search in Constrained Op-
timization of Computer Models,” in New Developments and Applications in Experimental Design, Lecture
Notes-Monograph Series, Vol. 34, 11–25. [1405]

STOYE, J. (2009): “More on Confidence Intervals for Partially Identified Parameters,” Econometrica, 77, 1299–
1315. [1402]

SUTTON, R. S., AND A. G. BARTO (1998): Reinforcement Learning: An Introduction. Cambridge, MA, USA:
MIT Press. [1407]

Co-editor Elie Tamer handled this manuscript.

Manuscript received 6 January, 2016; final version accepted 18 February, 2019; available online 14 March, 2019.

http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Grieco14&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jonesa2001&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/jonesefficient1998&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/Kaido12&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
https://www.cemmap.ac.uk/publication/id/10139
https://doi.org/10.3982/ECTA14075
https://molinari.economics.cornell.edu/docs/KMST_Manual.pdf
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/KT15&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/magmau08&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/CVXGEN&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/PPHIECMA&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/RomanoShaikh2008aJSPIWP&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/Santner2013aa&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/SchonlauGlobal1998&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Stoye09&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/sutbar98&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/Grieco14&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:17/jonesa2001&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/jonesefficient1998&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/Kaido12&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
https://www.cemmap.ac.uk/publication/id/10139
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/KT15&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/magmau08&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:25/CVXGEN&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/PPHIECMA&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:29/RomanoShaikh2008aJSPIWP&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:30/Santner2013aa&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/SchonlauGlobal1998&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:31/SchonlauGlobal1998&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:32/Stoye09&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:33/sutbar98&rfe_id=urn:sici%2F0012-9682%28201907%2987%3A4%3C1397%3ACIFPOP%3E2.0.CO%3B2-R


Econometrica Supplementary Material

ONLINE APPENDIX TO “CONFIDENCE INTERVALS FOR PROJECTIONS OF
PARTIALLY IDENTIFIED PARAMETERS”

Hiroaki Kaido1, Francesca Molinari2 and Jörg Stoye3

Outline

Section D states and proofs Theorem D.1, which establishes convergence-related results for our E-
A-M algorithm. It also provides background material for the E-A-M algorithm, and details on the
root-finding algorithm that we use to compute ĉn(θ). Section E.1 presents the assumptions under
which we prove asymptotic uniform validity of coverage of our procedure. Section F verifies some
of our main assumptions for moment (in)equality models that have received much attention in the
literature. Section G summarizes the notation we use and the structure of the proof of Theorem
3.1,1 and provides a proof of Theorems 3.1 (both under our main assumptions and under a high level
assumption replacing Assumption E.3 and dropping the ρ-box constraints). Section H contains the
statements and proofs of the lemmas used to establish Theorems 3.1 and D.1, as well as a rigorous
derivation of the almost sure representation result for the bootstrap empirical process that we use
in the proof of Theorem 3.1.

Throughout the Appendix we use the convention ∞ · 0 = 0.

D. Additional Convergence Results and Background Materials for the E-A-M
algorithm and for Computation of ĉn(θ)

D. Theorem D.1: An Approximating Critical Level Sequence for the E-A-M Algorithm

D. Assumption D.1: A Low Level Condition Yielding a Stochastic Lipschitz-Type Property for ĉn

In order to establish convergence of our E-A-M algorithm, we need ĉn to uniformly stochastically
exhibit a Lipschitz-type property so that its mollified counterpart (see equation (D.1)) is sufficiently
smooth and yields valid inference. Below we provide a low level condition under which we are able
to establish the Lipschitz-type property. In Appendix F.1 we verify the condition for the canonical
examples in the moment (in)equality literature.

Assumption D.1 The model P for P satisfies:

(i) |σP,j(θ)−1mj(x, θ)−σP,j(θ′)−1mj(x, θ
′)| ≤ M̄(x)‖θ−θ′‖ with EP [M̄(X)2] < M for all θ, θ′ ∈

Θ, x ∈ X , j = 1, · · · , J , and there exists a function F such that |σP,j(θ)−1mj(·, θ)| ≤ F (·) for
all θ ∈ Θ and EP [|F (X)M̄(X)|2] < M .

(ii) ϕj is Lipschitz continuous in x ∈ R for all j = 1, . . . , J.
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2 H. KAIDO, F. MOLINARI, AND J. STOYE

D. Statement and Proof of Theorem D.1

For all τ > 0 let ĉn,τ (θ) be a mollified version of ĉn(θ), i.e.:

ĉn,τ (θ) =

∫
Rd
ĉn(θ − ν)φτ (ν)dν =

∫
Rd
ĉn(θ)φτ (θ − ν)dν,(D.1)

where the family of functions φτ is a mollifier as defined in Rockafellar and Wets (2005, Example
7.19). Choose it to be a family of bounded, measurable, smooth functions such that φτ (z) ≥ 0 ∀z ∈
Rd,

∫
Rd φτ (z)dz = 1 and with Bτ = {z : φτ (z) > 0} = {z : ‖z‖ ≤ τ}.

Theorem D.1 Suppose Assumptions E.1, E.2, E.4, E.5 and D.1 hold. Let τn be a positive sequence
such that τn = n−ζ with ζ > 1/2. Let {βn} be a positive sequence such that βn = o(1) and
‖D̂n −DP ‖∞ = OP(βn). Let εn = κ−1

n

√
nτn ∨ βn. Then,

1.

lim sup
n→∞

sup
P∈P

P

(
sup

‖θ−θ′‖≤τn
|ĉn(θ)− ĉn(θ′)| > Cεn

)
= 0;(D.2)

2. Let ĉn,τn be defined as in (D.1) with τn replacing τ . Then there exists C > 0 such that

lim inf
n→∞

inf
P∈P

P
(
‖ĉn − ĉn,τn‖∞ ≤ Cεn

)
= 1;(D.3)

3. Let Assumption E.3 also hold. Let {Pn, θn} be a sequence such that Pn ∈ P and θn ∈ ΘI(Pn)

for all n and κ−1
n

√
nγ1,Pn,j(θn) → π1j ∈ R[−∞], j = 1, . . . , J, ΩPn

u→ Ω, and DPn(θn) → D.
Let

ĉn,ρ,τ (θ) ≡ inf
λ∈Bdn,ρ

ĉn,τ (θ +
λρ√
n

).(D.4)

For c ≥ 0, let Un(θn, c) be defined as in (G.26). Then,

lim inf
n→∞

Pn (Un(θn, ĉn,ρ,τn) 6= ∅) ≥ 1− α.(D.5)

4. Fix P ∈ P and n. There exists R > 0 such that ‖ĉn,τn‖Hβ ≤ R.

Proof: We establish each part of the theorem separately.
Part 1. Throughout, let C > 0 denote a positive constant, which may be different in different

appearances. Define the event

(D.6) En ≡
{
x∞ ∈ X∞ : ‖D̂n −DP ‖∞ ≤ Cβn, sup

‖θ−θ′‖≤τn
‖Gn(θ)−Gn(θ′))‖ ≤ (lnn)2τn,

sup
θ∈Θ
|ηn,j(θ)| ≤ C/

√
n, max

j=1,··· ,J
sup

‖θ−θ′‖<τn
|ηn,j(θ)− ηn,j(θ′)| ≤ Cτn

}
.

Note that (lnn)2τn/(−τn ln τn) = (lnn)2/ζ lnn = lnn/ζ, and hence tends to ∞. By Assumption
D.1-(i) and arguing as in the proof of Theorem 2 in Andrews (1994), condition (H.224) in Lemma
H.11 is satisfied with v = d. Also, by Lemma H.13, (H.225) in Lemma H.11 holds with γ = 1. This
therefore ensures the conditions of Lemma H.11.
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Similarly, by Assumption D.1-(i) m2
j (x, θ)/σ

2
P,j(θ) satisfies

∣∣∣m2
j (x, θ)

σ2
P,j(θ)

−
m2
j (x, θ)

σ2
P,j(θ)

∣∣∣ ≤ ∣∣∣mj(x, θ)

σP,j(θ)
+
mj(x, θ

′)

σP,j(θ′)

∣∣∣∣∣∣mj(x, θ)

σP,j(θ)
− mj(x, θ

′)

σP,j(θ′)

∣∣∣(D.7)

≤ 2F (x)M̄(x)‖θ − θ′‖.(D.8)

Let F̄ (x) ≡ 2F (x)M̄(x). By Theorem 2.7.11 in van der Vaart and Wellner (2000),

N[](ε‖F̄‖L2
P
,M2

P , ‖ · ‖L2
P

) ≤ N(ε,Θ, ‖ · ‖) ≤ (diam(Θ)/ε)d,(D.9)

where N(ε,Θ, ‖ · ‖) is the covering number of Θ. This ensures∫ ∞
0

sup
P∈P

√
lnN[](ε‖F̄‖L2

P
,M2

P , ‖ · ‖L2
P

)dε <∞.(D.10)

Further, for any C > 0

(D.11) EP [F̄ 2(X)1{F̄ (X) > C}] ≤ EP [F̄ 2(X)]P (F̄ (X) > C)

≤ 4EP [|F (X)M(X)|2]
‖F̄‖L1

P

C
≤ 4M2

C
,

which implies limC→∞ supP∈P EP [F̄ 2(X)1{F̄ (X) > C}] = 0. By Theorems 2.8.4 and 2.8.2 in
van der Vaart and Wellner (2000), this implies that SP is Donsker and pre-Gaussian uniformly in
P ∈ P. This therefore ensures the conditions of Lemma H.12 (i). Note also that Assumption D.1-(i)
ensures the conditions of Lemma H.12 (ii). Therefore, by Lemmas H.11-H.12 and Assumption E.4,
for any η > 0, there exists C > 0 such that infP∈P P (En) ≥ 1− η for all n sufficiently large.

Let θ, θ′ ∈ Θ. For each j, we have

(D.12)
∣∣∣Gbn,j(θ) + ρD̂n,j(θ)λ+ ϕj(ξ̂n,j(θ))−Gbn,j(θ′)− ρD̂n,j(θ

′)λ− ϕj(ξ̂n,j(θ′))
∣∣∣

≤ |Gbn,j(θ)−Gbn,j(θ′)|+ ρ‖D̂n,j(θ)− D̂n,j(θ
′)‖ sup

λ∈Bd
‖λ‖+ |ϕj(ξ̂n,j(θ))− ϕj(ξ̂n,j(θ′))|.

Assume that the sample path {Xi}∞i=1 is such that the event En holds. Conditional on {Xi}∞i=1 and
using Gbn,j(θ)−Gbn,j(θ) = Gbn,j(θ)ηn,j(θ),

(D.13) |Gbn,j(θ)−Gbn,j(θ′)| ≤ |Gbn,j(θ)−Gbn,j(θ
′)|+ 2 sup

θ∈Θ
|Gbn,j(θ)| sup

θ∈Θ
|ηn,j(θ)|

≤ |Gbn,j(θ) − Gbn,j(θ
′)| + 2 sup

θ∈Θ
|Gbn,j(θ)|

C√
n
.

Define the event Fn ∈ C for the bootstrap weights by

Fn ≡
{
mn ∈ Q : sup

‖θ−θ′‖≤τn
‖Gbn(θ)−Gbn(θ′)‖ ≤ (lnn)2τn, sup

θ∈Θ
‖Gbn(θ)‖ ≤ C

}
.(D.14)

By Lemma H.11 (ii) and the asymptotic tightness of Gbn, for any η > 0, there exists a C such that
P ∗n(Fn) ≥ 1 − η for all n sufficiently large. Suppose that the multinomial bootstrap weight Mn is
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such that Fn holds. Then, the right hand side of (D.13) is bounded by (lnn)2τn + C/
√
n for some

C > 0.
Next, by the triangle inequality and Assumption E.4,

(D.15) ‖D̂n,j(θ)− D̂n,j(θ
′)‖

≤ ‖D̂n,j(θ)−DP,j(θ)‖+ ‖DP,j(θ)−DP,j(θ
′)‖+ ‖D̂n,j(θ

′)−DP,j(θ
′)‖ ≤ Cβn + Cτn.

Finally, note that by the Lipschitzness of ϕj , |ϕj(ξ̂n,j(θ)) − ϕj(ξ̂n,j(θ′))| ≤ C|ξ̂n,j(θ) − ξ̂n,j(θ′)|
and

ξ̂n,j(θ)− ξ̂n,j(θ′)(D.16)

= κ−1
n

[√
n
(m̄n,j(θ)

σP,j(θ)
(1 + ηn,j(θ))

− EP [mj(X, θ)]

σP,j(θ)

)
−
√
n
(m̄n,j(θ

′)

σP,j(θ′)
(1 + ηn,j(θ

′))− EP [mj(X, θ
′)]

σP,j(θ′)

)]
+ κ−1

n

√
n
(EP [mj(X, θ)]

σP,j(θ)
− EP [mj(X, θ

′)]

σP,j(θ′)

)
.

Hence,

(D.17) |ξ̂n,j(θ)− ξ̂n,j(θ′)| ≤ κ−1
n |Gn,j(θ)−Gn,j(θ′)|

+ κ−1
n

√
n
∣∣∣m̄n,j(θ)

σP,j(θ)
ηn,j(θ)−

m̄n,j(θ
′)

σP,j(θ′)
ηn,j(θ

′)
∣∣∣+ κ−1

n

√
nDP,j(θ̄)‖θ − θ′‖.

By Lemma H.11, the right hand side of (D.17) can be further bounded by

(D.18) κ−1
n (lnn)2τn + κ−1

n

√
n
∣∣∣m̄n,j(θ)

σP,j(θ)
− m̄n,j(θ

′)

σP,j(θ′)

∣∣∣|ηn,j(θ)|
+ κ−1

n

√
n
∣∣∣m̄n,j(θ

′)

σP,j(θ′)

∣∣∣|ηn,j(θ)− ηn,j(θ′)|+ Cκ−1
n

√
nτn

≤ κ−1
n (lnn)2τn + κ−1

n

√
nτn

C√
n

+ Cκ−1
n

√
nτn + Cκ−1

n

√
nτn,

where the last inequality follows from Condition (i) and Lemma H.12 (ii).
Combining (D.12), (D.13), (D.15), and (D.16)-(D.18), we obtain∣∣∣Gbn,j(θ) + D̂n,j(θ)λ+ ϕj(ξ̂n,j(θ))−Gbn,j(θ′)− D̂n,j(θ

′)λ− ϕj(ξ̂n,j(θ′))
∣∣∣ ≤ Cεn.(D.19)

In particular, if 1
(
Λbn(θ, ρ, ĉn(θ)) ∩ {p′λ = 0} 6= ∅

)
= 1, it also holds that 1

(
Λbn(θ′, ρ, ĉn(θ)+Cεn)∩

{p′λ = 0} 6= ∅
)

= 1 because

(D.20) Gbn,j(θ′) + D̂n,j(θ
′)λ+ ϕj(ξ̂n,j(θ

′))

≤ Gbn,j(θ) + D̂n,j(θ)λ + ϕj(ξ̂n,j(θ)) + Cεn ≤ ĉn(θ) + Cεn,



CONFIDENCE INTERVALS FOR PROJECTIONS OF PARTIALLY IDENTIFIED PARAMETERS 5

Recalling that P ∗n(Fn) ≥ 1− η for all n sufficiently large, we then have

(D.21) P ∗n
({

Λbn(θ′, ρ, ĉn(θ) + Cεn) ∩ {p′λ = 0} 6= ∅
})

≥ P ∗n
({

Λbn(θ′, ρ, ĉn(θ) + Cεn) ∩ {p′λ = 0} 6= ∅
}
∩ Fn

)
≥ P ∗n

({
Λbn(θ, ρ, ĉn(θ)) ∩ {p′λ = 0} 6= ∅

}
∩ Fn

)
≥ 1 − α − η.

Since η is arbitrary, we have

ĉn(θ′) ≤ ĉn(θ) + Cεn.

Reversing the roles of θ and θ′ and noting that supP∈P P (En) → 0 yields the first claim of the
lemma.

Part 2. To obtain the result in equation (D.3), we use that for any θ, θ′ ∈ Θ such that ‖θ−θ′‖ ≤
τn, |ĉn(θ)− ĉn(θ′)| ≤ Cεn with probability approaching 1 uniformly in P ∈ P by the result in Part
1. This implies

|ĉn(θ)− ĉn,τn(θ)| =
∣∣∣∣∫

Rd
ĉn(θ − ν)φτn(ν)dν − ĉn(θ)

∣∣∣∣ ≤ ∫
Rd
|ĉn(θ − ν)− ĉn(θ)|φτn(ν)dν

=

∫
Bτn
|ĉn(θ − ν)− ĉn(θ)|φτn(ν)dν ≤ Cεn

∫
Bτn

φτn(ν)dν ≤ Cεn.

Part 3. By Part 2 and the definition of ĉn,ρ,τ in (D.4), it follows that

ĉn,ρ,τn(θn) ≥ ĉn,ρ(θn)− en(D.22)

≥ cIn,ρ(θn)− en,

for some en = OP(εn), where the second inequality follows from the construction of cIn,ρ in the proof

of Lemma H.1. Note that Lemma H.3 and the fact that εn = oP(1) by Part 1 imply cIn,ρ(θn)−en
Pn→

c∗π∗ . Replicate equation (H.22) with ĉn,ρ,τn replacing ĉn,ρ, and mimic the argument following (H.22)
in the proof of Lemma H.1. Then, the conclusion of the lemma follows.

Part 4. By the construction of the mollified version of the critical value, we have ĉn,τn ∈ C∞(Θ)
(Adams and Fournier, 2003, Theorem 2.29). Therefore it has derivatives of all order. Using the
multi-index notation, for any s > 0 and |α| ≤ s, the partial derivative ∇αĉn,τn is bounded by some
constant M > 0 on the compact set Θ, and hence∫

Θ

|∇αĉn,τn(θ)|2dυ(θ) ≤Mυ(Θ) <∞,

where υ denote the Lebesgue measure on Rd. This ensures ∇αĉn,τn ∈ L2
υ(Θ) for all |α| ≤ s. Hence,

ĉn,τn is in the Sobolev-Hilbert space Hs(Θo) for any s > 0. Note that when a Matérn kernel with
ν <∞ is used and ĉn,τn is continuous, Lemma 3 in Bull (2011) implies that the RKHS-norm ‖ ·‖Hβ̄
(in Hβ̄(Θ)) and the Sobolev-Hilbert norm ‖ · ‖Hν+d/2 are equivalent. Hence, there is R > 0 such
that ‖ĉn,τn‖Hβ ≤ C‖ĉn,τn‖Hν+d/2 ≤ R.

Q.E.D.
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D. The kernel of the Gaussian Process and its Associated Function Space

Following Bull (2011), we consider two commonly used classes of kernels. The first one is the
Gaussian kernel, which is given by

Kβ(θ − θ′) = exp
(
−

d∑
k=1

|(θk − θ′k)/βk|2
)
, βk ∈ [β

k
, βk], k = 1, · · · , d,(D.23)

where 0 < β
k
< βk <∞ for all k. The second one is the class of Matérn kernels (see, e.g., Rasmussen

and Williams, 2005, Chapter 4) defined by

Kβ(θ − θ′) =
21−ν

D(ν)

(√
2ν

d∑
k=1

|(θk − θ′k)/βk|2
)ν
kν

(√
2ν

d∑
k=1

|(θk − θ′k)/βk|2
)
,

ν ∈ (0,∞), ν /∈ N,

where D is the gamma function, and kν is the modified Bessel function of the second kind.2 The
index ν controls the smoothness of Kβ . In particular, the Fourier transform K̂β(ζ) of the Matérn

kernel is bounded from above and below by the order of ‖ζ‖−2ν−d as ‖ζ‖ → ∞, i.e. K̂β(ζ) =

Θ(‖ζ‖−2ν−d). Similarly, the Fourier transform of the Gaussian kernel satisfies K̂β(ζ) = O(‖ζ‖−2ν−d)
for any ν > 0. Below, we treat the Gaussian kernel as a kernel associated with ν =∞.

Each kernel is associated with a space of functions Hβ(Rd), called the reproducing kernel Hilbert
space (RKHS). Below, we give some background on this space and refer to Steinwart and Christmann
(2008); van der Vaart and van Zanten (2008) for further details. For D ⊆ Rd, let K : D ×D → R
be a symmetric and positive definite function. K is said to be a reproducing kernel of a Hilbert
space H(D) if K(·, θ′) ∈ H(D) for all θ′ ∈ D, and

f(θ) = 〈f,K(·, θ)〉H(D)

holds for all f ∈ H(D) and θ ∈ D. The space H(D) is called a reproducing kernel Hilbert space
(RKHS) over D if for all θ ∈ D, the point evaluation functional δθ : H(D) → R defined by
δθ(f) = f(θ) is continuous. When K(θ, θ′) = Kβ(θ− θ′) is used as the correlation functional of the
Gaussian process, we denote the associated RKHS by Hβ(D). Using Fourier transforms, the norm
on Hβ(D) can be written as

‖f‖Hβ ≡ inf
g|D=f

∫
ĝ(ζ)

K̂β(ζ)
dζ,(D.24)

where the infimum is taken over functions g : Rd → R whose restrictions to D coincide with f , and
we take 0/0 = 0.

The RKHS has a connection to other well-known classes of functions. In particular, when D is a
Lipschitz domain, i.e. the boundary of D is locally the graph of a Lipschitz function (Tartar, 2007)
and the kernel is associated with ν ∈ (0,∞), Hβ(D) is equivalent to the Sobolev-Hilbert space
Hν+d/2(Do), which is the space of functions on Do such that

‖f‖2Hν+d/2 ≡ inf
g|Do=f

∫
ĝ(ζ)

(1 + ‖ζ‖2)ν+d/2
dζ(D.25)

2The requirement ν /∈ N is not essential for the convergence result. However, it simplifies some of the arguments
as one can exploit the 2ν-Hölder continuity of Kβ at the origin without a log factor (Bull, 2011, Assumption 4).
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is finite, where the infimum is taken over functions g : Rd → R whose restrictions to Do coincide
with f . Further, if ν = ∞, Hβ(D) is continuously embedded in Hs(Do) for all s > 0 (Bull, 2011,
Lemma 3).

Theorem 3.2 requires that c has a finite RKHS norm. This is to ensure that the approximation
error made by the best linear predictor cL of the Gaussian process regression is controlled uniformly
(Narcowich, Ward, and Wendland, 2003). When a Matérn kernel is used, it suffices to bound the
norm in the Sobolev-Hilbert space Hν+d/2 to bound c’s RKHS norm. We do so in Theorem D.1 by
introducing a mollified version of ĉn.

D. A Reformulation of the M-step as a Nonlinear Program

In (2.21), θ(L+1) is defined as the maximizer of the following maximization problem

max
θ∈Θ

(p′θ − p′θ∗L)+

(
1− Φ

( ḡ(θ)− cL(θ)

ς̂sL(θ)

))
,(D.26)

where ḡ(θ) = maxj=1,...,Jgj(θ). Since Φ is strictly increasing, one may rewrite the objective function
as

(p′θ − p′θ∗L)+

(
1− max

j=1,...,J
Φ
(gj(θ)− cL(θ)

ς̂sL(θ)

))
= min

j=1,...,J
(p′θ − p′θ∗L)+

(
1 − Φ

(gj(θ)− cL(θ)

ς̂sL(θ)

))
.

Hence, θ(L+1) is a solution to the maximin problem:

max
θ∈Θ

min
j=1,...,J

(p′θ − p′θ∗L)+

(
1− Φ

(gj(θ)− cL(θ)

ς̂sL(θ)

))
,

which can be solved, for example, by Matlab’s fminimax function. It can also be rewritten as a
nonlinear program:

max
(θ,v)∈Θ×R

v s.t. (p′θ − p′θ∗L)+

(
1− Φ

(gj(θ)− cL(θ)

ς̂sL(θ)

))
≥ v, j = 1, . . . , J,

which can be solved by nonlinear optimization solvers, e.g. Matlab’s fmincon or KNITRO. We note
that the objective function and constraints together with their gradients are available in closed
form.

D. Root-Finding Algorithm Used to Compute ĉn(θ)

This section explains in detail how ĉn(θ) in equation (2.13) is computed. For a given θ ∈ Θ,
P ∗(Λbn(θ, ρ, c) ∩ {p′λ = 0} 6= ∅) increases in c (with Λbn(θ, ρ, c) defined in (2.11)), and so ĉn(θ) can
be quickly computed via a root-finding algorithm, such as the Brent-Dekker Method (BDM), see

Brent (1971) and Dekker (1969). To do so, define hα(c) = 1
B

∑B
b=1 ψb(c)− (1− α) where

ψb(c(θ)) = 1(Λbn(θ, ρ, c) ∩ {p′λ = 0} 6= ∅).

Let c̄(θ) be an upper bound on ĉn(θ) (for example, the asymptotic Bonferroni bound c̄(θ) ≡ Φ−1(1−
α/J)). It remains to find ĉn(θ) so that hα(ĉn(θ)) = 0 if hα(0) ≤ 0. It is possible that hα(0) > 0
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in which case we output ĉn(θ) = 0. Otherwise, we use BDM to find the unique root to hα(c) on
[0, c̄(θ)] where, by construction, hα(c̄n(θ)) ≥ 0. We propose the following algorithm:

Step 0 (Initialize)

(i) Set Tol equal to a chosen tolerance value;
(ii) Set cL = 0 and cU = c̄(θ) (values of c that bracket the root ĉn(θ));
(iii) Set c−1 = cL and c−2 = [] to be undefined for now (proposed values of c from 1 and 2 iterations

prior). Also set c0 = cL and c1 = cU .

(iv) Compute ϕj(ξ̂n,j(θ)) j = 1, . . . , J ;

(v) Compute D̂P,n(θ);
(vi) Compute Gbn,j for b = 1, . . . , B, j = 1, . . . , J ;

(vii) Compute ψb(cL) and ψb(cU ) for b = 1, . . . , B;
(viii) Compute hα(cL) and hα(cU ).

Step 1 (Method Selection)

Use the BDM rule to select the updated value of c, say c2. The value is updated using one
of three methods: Inverse Quadratic Interpolation, Secant, or Bisection. The selection rule is
based on the values of ci, i = −2,−1, 0, 1 and the corresponding function values.

Step 2 (Update Value Function)

Update the value of hα(c2). We can exploit previous computation and monotonicity function
ψb(c2) to reduce computational time:

1. If ψb(cL) = ψb(cU ) = 0, then ψb(c2) = 0;

2. If ψb(cL) = ψb(cU ) = 1, then ψb(c2) = 1.

Step 3 (Update)

(i) If hα(c2) ≥ 0, then set cU = c2. Otherwise set cL = c2.
(ii) Set c−2 = c−1, c−1 = c0, c0 = cL, and c1 = cU .
(iii) Update corresponding function values hα(·).
Step 4 (Convergence)

(i) If hα(cU ) ≤ Tol or if |cU − cL| ≤ Tol , then output ĉn(θ) = cU and exit. Note: hα(cU ) ≥ 0, so
this criterion ensures that we have at least 1− α coverage.

(ii) Otherwise, return to Step 1.

The computationally difficult part of the algorithm is computing ψb(·) in Step 2. This is simplified
for two reasons. First, evaluation of ψb(c) entails determining whether a constraint set comprised
of J + 2d − 2 linear inequalities in d − 1 variables is feasible. This can be accomplished efficiently
employing commonly used software.3 Second, we exploit monotonicity in ψb(·), reducing the number
of linear programs needed to be solved.

E. Assumptions for Asymptotic Coverage Validity

E. Main Assumptions

We posit that P , the distribution of the observed data, belongs to a class of distributions denoted
by P. We write stochastic order relations that hold uniformly over P ∈ P using the notations oP
and OP ; see Appendix G.1 for the formal definitions. Below, ε, ε, δ, ω, σ, M , M̄ denote generic

3Examples of high-speed solves for linear programs include CVXGEN, availiable from http://www.cvxgen.com

and Gurobi, available from http://www.gurobi.com.

http://www.cvxgen.com
http://www.gurobi.com
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constants which may be different in different appearances but cannot depend on P . Given a square
matrix A, we write eig(A) for its smallest eigenvalue.

Assumption E.1 (a) Θ ⊂ Rd is a compact hyperrectangle with nonempty interior.

(b) All distributions P ∈ P satisfy the following:

(i) EP [mj(Xi, θ)] ≤ 0, j = 1, . . . , J1 and EP [mj(Xi, θ)] = 0, j = J1 + 1, . . . , J1 + J2 for some
θ ∈ Θ;

(ii) {Xi, i ≥ 1} are i.i.d.;
(iii) σ2

P,j(θ) ∈ (0,∞) for j = 1, . . . , J for all θ ∈ Θ;

(iv) For some δ > 0 and M ∈ (0,∞) and for all j, EP [supθ∈Θ |mj(Xi, θ)/σP,j(θ)|2+δ] ≤M .

Assumption E.2 The function ϕj is continuous at all x ≥ 0 and ϕj(0) = 0; κn → ∞ and
κn = o(n1/2). If Assumption E.3-2 is imposed, κn = o(n1/4).

Assumption E.1-(a) requires that Θ is a hyperrectangle, but can be replaced with the assumption
that θ is defined through a finite number of nonstochastic inequality constraints smooth in θ and
such that Θ is convex. Compactness is a standard assumption on Θ for extremum estimation.
We additionally require convexity as we use mean value expansions of EP [mj(Xi, θ)]/σP,j(θ) in θ;
see (2.9). Assumption E.1-(b) defines our moment (in)equalities model. Assumption E.2 constrains
the GMS function and the rate at which its tuning parameter diverges. Both E.1-(b) and E.2 are
based on Andrews and Soares (2010) and are standard in the literature,4 although typically with
κn = o(n1/2). The slower rate κn = o(n1/4) is satisfied for the popular choice, recommended by
Andrews and Soares (2010), of κn =

√
lnn.

Next, and unlike some other papers in the literature, we impose restrictions on the correlation
matrix of the moment functions. These conditions can be easily verified in practice because they are
implied when the correlation matrix of the moment equality functions and the moment inequality
functions specified below have a determinant larger than a predefined constant for any θ ∈ Θ.

Assumption E.3 All distributions P ∈ P satisfy one of the following two conditions for some
constants ω > 0, σ > 0, ε > 0, ε > 0,M <∞:

1. Let J (P, θ; ε) ≡ {j ∈ {1, · · · , J1} : EP [mj(Xi, θ)]/σP,j(θ) ≥ −ε}. Denote

m̃(Xi, θ) ≡
(
{mj(Xi, θ)}j∈J (P,θ;ε),mJ1+1(Xi, θ), . . . ,mJ1+J2

(Xi, θ)
)′
,

Ω̃P (θ) ≡ CorrP (m̃(Xi, θ)).

Then infθ∈ΘI(P ) eig(Ω̃P (θ)) ≥ ω.

2. The functions mj(Xi, θ) are defined on Θε = {θ ∈ Rd : d(θ,Θ) ≤ ε}. There exists R1 ∈ N,
1 ≤ R1 ≤ J1/2, and measurable functions tj : X ×Θε → [0,M ], j ∈ R1 ≡ {1, . . . , R1}, such
that for each j ∈ R1,

mj+R1
(Xi, θ) = −mj(Xi, θ)− tj(Xi, θ).(E.1)

4Continuity of ϕj for x ≥ 0 is restrictive only for GMS function ϕ(2) in Andrews and Soares (2010).
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For each j ∈ R1 ∩J (P, θ; ε) and any choice m̈j(Xi, θ) ∈ {mj(Xi, θ),mj+R1(Xi, θ)}, denoting

Ω̃P (θ) ≡ CorrP (m̃(Xi, θ)), where

m̃(Xi, θ) ≡
(
{m̈j(Xi, θ)}j∈R1∩J (P,θ;ε),

{mj(Xi, θ)}j∈J (P,θ;ε)\{1,...,2R1},mJ1+1(Xi, θ), . . . ,mJ1+J2
(Xi, θ)

)′
,

one has

inf
θ∈ΘI(P )

eig(Ω̃P (θ)) ≥ ω.(E.2)

Finally,

inf
θ∈ΘI(P )

σP,j(θ) > σ for j = 1, . . . , R1.(E.3)

Assumption E.3-1 requires that the correlation matrix of the moment functions corresponding
to close-to-binding moment conditions has eigenvalues uniformly bounded from below. This as-
sumption holds in many applications of interest, including: (i) instances when the data is collected
by intervals with minimum width;5 (ii) in treatment effect models with (uniform) overlap; (iii) in
static complete information entry games under weak solution concepts, e.g. rationality of level 1,
see Aradillas-Lopez and Tamer (2008).

We are aware of two examples in which Assumption E.3-1 may fail. One are missing data scenarios,
e.g. scalar mean, linear regression, and best linear prediction, with a vanishing probability of missing
data. The other example, which is extensively simulated in Section C, is the Ciliberto and Tamer
(2009) entry game model when the solution concept is pure strategy Nash equilibrium. We show in
Appendix F.2 that these examples satisfy Assumption E.3-2.

Remark E.1 Assumption E.3-2 weakens E.3-1 by allowing for (drifting to) perfect correlation
among moment inequalities that cannot cross. This assumption is often satisfied in moment condi-
tions that are separable in data and parameters, i.e. for each j = 1, . . . , J ,

EP [mj(Xi, θ)] = EP [hj(Xi)]− vj(θ),(E.4)

for some measurable functions hj : X → R and vj : Θ → R. Models like the one in Ciliberto and
Tamer (2009) fall in this category, and we verify Assumption E.3-2 for them in Appendix F.2. The
argument can be generalized to other separable models.

In Appendix F.2, we also verify Assumption E.3-2 for some models that are not separable in the
sense of equation (E.4), for example best linear prediction with interval outcome data. The proof can
be extended to cover (again non-separable) binary models with discrete or interval valued covariates
under the assumptions of Magnac and Maurin (2008).

5 Empirically relevant examples are that of: (a) the Occupational Employment Statistics (OES) program at the
Bureau of Labor Statistics, which collects wage data from employers as intervals of positive width, and uses these data
to construct estimates for wage and salary workers in 22 major occupational groups and 801 detailed occupations;
and (b) when, due to concerns for privacy, data is reported as the number of individuals who belong to each of a
finite number of cells (for example, in public use tax data).
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In what follows, we refer to pairs of inequality constraints indexed by {j, j +R1} and satisfying
(E.1) as “paired inequalities.” Their presence requires a modification of the bootstrap procedure.
This modification exclusively concerns the definition of Λbn(θ, ρ, c) in equation (2.11). We explain it
here for the case that the GMS function ϕj is the hard-thresholding one in footnote 8 of the main
paper, and refer to Appendix H equations (H.12)-(H.13) for the general case. If

ϕj(ξ̂n,j(θ)) = 0 = ϕj(ξ̂n,j+R1
(θ)),

we replace Gbn,j+R1
(θ) with−Gbn,j(θ) and D̂n,j+R1

(θ) with−D̂n,j(θ), so that inequality Gbn,j+R1
(θ)+

D̂n,j+R1
(θ)λ ≤ c is replaced with −Gbn,j(θ)− D̂n,j(θ)λ ≤ c in equation (2.11). In words, when hard

threshold GMS indicates that both paired inequalities bind, we pick one of them, treat it as an
equality, and drop the other one. In the proof of Theorem 3.1, we show that this tightens the
stochastic program.6 The rest of the procedure is unchanged.

Instead of Assumption E.3, BCS (Assumption 2) impose the following high-level condition: (a)
The limit distribution of their profiled test statistic is continuous at its 1−α quantile if this quantile
is positive; (b) else, their test is asymptotically valid with a critical value of zero. In Appendix G.2.2,
we show that we can replace Assumption E.3 with a weaker high level condition (Assumption E.6)
that resembles the BCS assumption but constrains the limiting coverage probability. (We do not
claim that the conditions are equivalent.) The substantial amount of work required for us to show
that Assumption E.3 implies Assumption E.6 is suggestive of how difficult these high-level conditions
can be to verify.7 Moreover, in Appendix E.3 we provide a simple example that violates Assumption
E.3 and in which all of calibrated projection, BCS-profiling, and the bootstrap procedure in Pakes,
Porter, Ho, and Ishii (2011) fail. The example leverages the fact that when binding constraints
are near-perfectly correlated, the projection may be estimated superconsistently, invalidating the
simple nonparametric bootstrap.8

Together with imposition of the ρ-box constraints, Assumption E.3 allows us to dispense with
restrictions on the local geometry of the set ΘI(P ). Restrictions of this type, which are akin to
constraint qualification conditions, are imposed by BCS (Assumption A.3-(a)), Pakes, Porter, Ho,
and Ishii (2011, Assumptions A.3-A.4), Chernozhukov, Hong, and Tamer (2007, Condition C.2),
and elsewhere. In practice, they can be hard to verify or pre-test for. We study this matter in detail
in Kaido, Molinari, and Stoye (2019).

We next lay out regularity conditions on the gradients of the moments.

Assumption E.4 All distributions P ∈ P satisfy the following conditions:
(i) For each j, there exist DP,j(·) ≡ ∇θ{EP [mj(X, ·)]/σP,j(·)} and its estimator D̂n,j(·) such that

supθ∈Θε ‖D̂n,j(θ)−DP,j(θ)‖ = oP(1).

(ii) There exist M,M̄ <∞ such that for all θ, θ̃ ∈ Θε maxj=1,...,J ‖DP,j(θ)−DP,j(θ̃)‖ ≤M‖θ− θ̃‖
and maxj=1,...,J supθ∈ΘI(P ) ‖DP,j(θ)‖ ≤ M̄ .

Assumption E.4 requires that each of the J normalized population moments is differentiable,
that its derivative is Lipschitz continuous, and that this derivative can be consistently estimated

6When paired inequalities are present, in equation (2.6) instead of σ̂n,j we use the estimator σ̂Mn,j specified in

(H.196) in Lemma H.10 p.54 of the Appendix for σP,j , j = 1, . . . , 2R1 (with R1 ≤ J1/2 defined in the assumption).
In equation (2.10) we use σ̂n,j for all j = 1, . . . , J . To ease notation, we do not distinguish the two unless it is needed.

7Assumption E.3 is used exclusively to obtain the conclusions of Lemma H.6, H.7 and H.8, hence any alternative
assumption that delivers such results can be used.

8The example we provide satisfies all assumptions explicitly stated in Pakes, Porter, Ho, and Ishii (2011), illus-
trating an oversight in their Theorem 2.
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uniformly in θ and P .9 We require these conditions because we use a linear expansion of the
population moments to obtain a first-order approximation to the nonlinear programs defining CIn,
and because our bootstrap procedure requires an estimator of DP .

A final set of assumptions is on the normalized empirical process. For this, define the variance
semimetric %P by

%P (θ, θ̃) ≡
∥∥∥{[V arP (σ−1

P,j(θ)mj(X, θ)− σ−1
P,j(θ̃)mj(X, θ̃)

)]1/2}J
j=1

∥∥∥.(E.5)

For each θ, θ̃ ∈ Θ and P , let QP (θ, θ̃) denote a J-by-J matrix whose (j, k)-th element is the
covariance between mj(Xi, θ)/σP,j(θ) and mk(Xi, θ̃))/σP,k(θ̃).

Assumption E.5 All distributions P ∈ P satisfy the following conditions:
(i) The class of functions {σ−1

P,j(θ)mj(·, θ) : X → R, θ ∈ Θ} is measurable for each j = 1, . . . , J .
(ii) The empirical process Gn with j-th component Gn,j is uniformly asymptotically %P -equicontinuous.

That is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
P∈P

P

(
sup

%P (θ,θ̃)<δ

‖Gn(θ)−Gn(θ̃)‖ > ε

)
= 0.(E.6)

(iii) QP satisfies

lim
δ↓0

sup
‖(θ1,θ̃1)−(θ2,θ̃2)‖<δ

sup
P∈P
‖QP (θ1, θ̃1)−QP (θ2, θ̃2)‖ = 0.(E.7)

Under this assumption, the class of normalized moment functions is uniformly Donsker (Bugni,
Canay, and Shi, 2015a). We use this fact to show validity of our method.

E. High Level Conditions Replacing Assumption E.3 and the ρ-Box Constraints

Next, we consider two high level assumptions. The first one aims at informally mimicking Assump-
tion A.2 in Bugni, Canay, and Shi (2017) and replaces Assumption E.3. The second one replaces
the use of the ρ-box constraints. Below, for a given set A ⊂ Rd, let ‖A‖H = supa∈A ‖a‖ denote its
Hausdorff norm.

Assumption E.6 Consider any sequence {Pn, θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} such that

κ−1
n

√
nγ1,Pn,j(θn)→ π1j ∈ R[−∞], j = 1, . . . , J,

ΩPn
u→ Ω,

DPn(θn)→ D.

Let π∗1j = 0 if π1j = 0 and π∗1j = −∞ if π1j < 0. Let Z be a Gaussian process with covariance
kernel Ω. Let

wj(λ) ≡ Zj + ρDjλ+ π∗1,j .(E.8)

9The requirements are imposed on Θε. Under Assumption E.3-1 it suffices they hold on Θ.
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Let

W(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}
,(E.9)

cπ∗ ≡ inf{c ∈ R+ : Pr(W(c) 6= ∅) ≥ 1− α}.(E.10)

Then:
1. If cπ∗ > 0, Pr (W(c) 6= ∅) is continuous and strictly increasing at c = cπ∗ .
2. If cπ∗ = 0, lim infn→∞ Pn(Un(θn, 0) 6= ∅) ≥ 1− α, where Un(θn, c), c ≥ 0 is as in (G.26).

Assumption E.7 Consider any sequence {Pn, θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} as in Assumption
E.6. Let

W̄(c) ≡
{
λ ∈ Rd : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J

}
,

which differs from (E.9) by not constraining λ to Bd
ρ, and let c̄ ≡ Φ−1(1−α/J) denote the asymptotic

Bonferroni critical value. Then for every η > 0 there exists Mη <∞ s.t. Pr(‖W̄(c̄)‖H > Mη) ≤ η.

E. Example of Methods Failure When Assumption E.3 Fails

Consider one-sided testing with two inequality constraints in R2. The constraints are
θ1 + θ2 ≤ EP (X1)

θ1 − θ2 ≤ EP (X2).
The projection of ΘI(P ) in direction p = (1, 0) is (−∞, (EP (X1) + EP (X2))/2], the support set
is H(p,ΘI) = {((EP (X1) + EP (X2))/2, (EP (X1) − EP (X2))/2)}, and the support function takes
value θ∗1 = (EP (X1) + EP (X2))/2.

The random variables (X1, X2)′ have a mixture distribution as follows:

[
X1

X2

]
∼

 N

(
0,

[
1 −1
−1 1

])
with probability 1− 1/n,

δ(1,1) (degenerate) otherwise,

hence EP (X1) = EP (X2) = θ∗1 = 1/n. Note in particular the implication that

X1 +X2

2
=

{
0 with probability 1− 1/n,
1 otherwise.

The natural estimator of θ∗1 is θ̂∗1 = (X̄1 + X̄2)/2. It is distributed as Z/n, where Z is Binomial
with parameters (1/n, n). For large n, the distribution of Z is well approximated as Poisson with
parameter 1. In particular, with probability approximately e−1 ≈ 37%, every sample realization of
(X1 +X2)/2 equals zero. In this case, the following happens: (i) The projection of the sample analog
of the identified set is (−∞, 0], so that a strictly positive critical value or level would be needed to
cover the true projection. (ii) Because the empirical distribution of (X1+X2)/2 is degenerate at zero,
the distribution of (X̄b

1 + X̄b
2)/2 is as well. Hence, all of Pakes, Porter, Ho, and Ishii (2011), Bugni,

Canay, and Shi (2017), and calibrated projection (each with either parametric or nonparametric
bootstrap) compute critical values or relaxation levels of 0.

This bounds from above the true coverage of all of these methods at e−1 ≈ 63%. Note that
(m < n)-subsampling will encounter the same problem. Next we provide some discussion of the
example.
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Violation of Assumptions. The example violates our Assumption E.3 because Cov(X1, X2)→ 1.
It also violates Assumption 2 in Bugni, Canay, and Shi (2017): Their Assumption A2-(b) should
apply, but the profiled test statistic on the true null concentrates at 1/n. The example satisfies
the assumptions explicitly stated in Pakes, Porter, Ho, and Ishii (2011), illustrating an oversight in
their Theorem 2. (We here refer to the inference part of their 2011 working paper. We identified
corresponding oversights in the proof of their Proposition 6.)

The example satisfies the assumptions of Andrews and Soares (2010) and Andrews and Guggen-
berger (2009), and both methods work here. The reason is that both focus on the distribution of

the criterion function at a fixed θ and are not affected by the irregularity of θ̂∗1 .
Relation to Mammen (1992). In this example, all of Bugni, Canay, and Shi (2017), Pakes, Porter,
Ho, and Ishii (2011), and our calibrated projection method reduce to one-sided nonparametric
percentile bootstrap confidence intervals for (EP (X1) +EP (X2))/2 estimated by (X̄1 + X̄2)/2. By
Mammen (1992, Theorem 1), asymptotic normality of an appropriately standardized estimator, i.e.

∃{an} : an
(
(X̄1 + X̄2)− (EP (X1) + EP (X2))

) d→ N(0, 1),

is necessary and sufficient for this interval to be valid. This fails (the true limit is recentered
Poisson at rate an = n), so that validity of any of the aforementioned methods would contradict
the Theorem.

F. Verification of Assumptions for the Canonical Partial Identification
Examples

In this section we verify: (i) Assumption D.1 which is the crucial condition in Theorem D.1, and
(ii) Assumption E.3-2, for the canonical examples in the partial identification literature:

1. Mean with interval data (of which missing data is a special case). Here we assume
that W0,W1 are two observable random variables such that P (W0 ≤W1) = 1. The identified
set is defined as

ΘI(P ) = {θ ∈ Θ ⊂ R : EP (W0)− θ ≤ 0, θ − EP (W1) ≤ 0}.(F.1)

2. Linear regression with interval outcome data and discrete regressors. Here the
modeling assumption is that W = Z ′θ + u, where Z = [Z1; . . . ;Zd] is a d× 1 random vector
with Z1 = 1. We assume that Z has k points of support denoted z1, . . . , zk ∈ Rd with
maxr=1,...,k ‖zr‖ < M <∞. The researcher observes {W0,W1, Z} with P (W0 ≤W ≤W1|Z =
zr) = 1, r = 1, . . . , k. The identified set is

(F.2) ΘI(P ) = {θ ∈ Θ ⊂ Rd : EP (W0|Z = zr)− zr′θ ≤ 0,

zr′θ − EP (W1|Z = zr) ≤ 0, r = 1, . . . , k}.

3. Best linear prediction with interval outcome data and discrete regressors. Here the
variables are defined as for the linear regression case. Beresteanu and Molinari (2008) show
that the identified set for the parameters of a best linear predictor of W conditional on Z is
given by the set ΘI(P ) = EP (ZZ ′)−1EP (ZW), where W = [W0,W1] is a random closed set
and, with some abuse of notation, EP (ZW) denotes the Aumann expectation of ZW.
Here we go beyond the results in Beresteanu and Molinari (2008) and derive a moment
inequality representation for ΘI(P ) when Z has a discrete distribution. We denote by ur the
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vector ur = er′(M ′PMP )−1M ′PEP (ZZ ′), r = 1, . . . , k, where er is the r-th basis vector in Rk
and MP is a d×K matrix with r-th column equal to P (Z = zr)zr; we let qr = urEP (ZZ ′)−1.
Observe that for any selection W̃ ∈W a.s. one has urEP (ZZ ′)−1EP (ZW̃ ) = er′[EP (W̃ |Z =
z1); . . . ;EP (W̃ |Z = zk)], so that the support function in direction ur is maximized/minimized
by setting EP (W̃ |Z = zr) equal to EP (W1|Z = zr) and EP (W0|Z = zr), respectively. Hence,
the identified set can be written in terms of moment inequalities as

(F.3) ΘI(P ) = {θ ∈ Θ ⊂ Rd : qr[EP (Z(Z ′θ −W0 − 1(qrZ > 0)(W1 −W0)))] ≤ 0,

− qr[EP (Z(Z ′θ −W0 − 1(qrZ < 0)(W1 −W0)))] ≤ 0, r = 1, . . . , k}.

The set is expressed through evaluation of its support function, given in Bontemps, Magnac,
and Maurin (2012, Proposition 2), at directions ±ur; these are the directions orthogonal to
the flat faces of ΘI(P ).

4. Complete information entry games with pure strategy Nash equilibrium as solu-
tion concept. Here again we assume that the vector Z has k points of support with bounded
norm, and the identified set is

(F.4) ΘI(P ) = {θ ∈ Θ ⊂ Rd : equations (C.1), (C.2), (C.3), (C.4) hold for all Z = zr,

r = 1, . . . , k}.

In the first three examples we let X ≡ (W0,W1, Z)′. In the last example we let X ≡ (Y1, Y2, Z)′.
Throughout, we propose to estimate EP (W`|Z = zr) and EP (Y1 = s, Y2 = t|Z = zr), ` = 0, 1,
(s, t) ∈ {0, 1} × {0, 1} and r = 1, . . . , k, using

Ên(W`|Z = zr) =

∑n
i=1W`,i1(Zi = zr)∑n
i=1 1(Zi = zr)

,(F.5)

Ên(Y1 = s, Y2 = t|Z = zr) =

∑n
i=1 1(Y1,i = s, Y2,i = t, Zi = zr)∑n

i=1 1(Zi = zr)
,(F.6)

as it is done in, e.g., Ciliberto and Tamer (2009). We assume that for each of the four canonical
examples under consideration, Assumption E.1 as well as one of the assumptions below hold.

Assumption F.1 The model P for P satisfies min`=0,1 minr=1,...,k V arP (W`|Z = zr) > σ > 0
and
minr=1,...,k P (Z = zr) > $ > 0.

Assumption F.2 The model P for P satisfies: (1) eig(M ′PMP ) > ς; (2) eig(EP (ZZ ′)) > ς;
(3) eig(CorrP ([vech(ZZ ′);W0])) > ς and eig(CorrP ([vech(ZZ ′);W1])) > ς; for some ς > 0, where
vech(A) denotes the half-vectorization of the matrix A.

Assumption F.3 The model P for P satisfies minr=1,...,k,(s,t)∈{0,1}×{0,1} P (Y1 = s, Y2 = t, Z =
zr) > $ > 0.

These are simple to verify low level conditions. We note that Imbens and Manski (2004) and
Stoye (2009) directly assume the unconditional version of F.1, while Beresteanu and Molinari (2008)
assume F.1 itself.
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F. Verification of Assumptions D.1 and A.2-(i)

We show that in each of the four examples
mj(x,θ)
σP,j(θ)

, j = 1, . . . , J is Lipschitz continuous in θ ∈ Θ

for all x ∈ X and that DP can be estimated at rate n−1/2. The same arguments, with small
modification, deliver verification of Assumption A.2-(i) provided σ̂n,j(θ) > 0.

1. Mean with interval data. Here σP,`(θ) = σP,`, and under Assumption F.1 it is uniformly
bounded from below. Then∣∣∣∣mj(x, θ)

σP,j
− mj(x, θ

′)

σP,j

∣∣∣∣ =
‖(θ′ − θ)‖
σP,j

, ` = 0, 1,

DP,`(θ) =
(−1)(1−`)

σP,`
, ` = 0, 1.

Assumption F.1 then guarantees that Assumption D.1 is satisfied.
2. Linear regression with interval outcome data and discrete regressors. Here again
σP,`r(θ) = σP,`r, and under Assumptions F.1-F.2 it is uniformly bounded from below. We

first consider the rescaled function (−1)j(W`1(Z=zr)/P (Z=zr)−zr′θ)
σP,`r

:∣∣∣∣ (−1)j(W`1(Z = zr)/P (Z = zr)− zr′θ)
σP,`r

− (−1)j(W`1(Z = zr)/P (Z = zr)− zr′θ′)
σP,`r

∣∣∣∣
= ‖zr‖‖(θ

′ − θ)‖
σP,`r(θ)

, ` = 0, 1,

so that Assumption D.1 is satisfied for these rescaled functions by Assumptions F.1-F.2. Next,
we observe that

DP,j =
(−1)(1−j)zr′

σP,`r
, ` = 0, 1, r = 1, . . . , k,

and it can be estimated at rate n−1/2 by Lemma H.12. Theorem D.1 then holds observing
that |P (Z = zr)/(

∑n
i=1 1(Zi = zr)/n) − 1| = OP(n−1/2) and treating this random element

similarly to how we treat ηn,j(·) in the proof of Theorem D.1.
3. Best linear prediction with interval outcome data and discrete regressors. Here

mr(Xi, θ) = qr[Zi(Z
′
iθ − (W0,i + 1(qrZi > 0)(W1,i −W0,i)))](F.7)

hence is Lipschitz in θ with constant ZiZ
′
i. Under Assumptions F.1-F.2, V arP (mr(Xi, θ))

is uniformly bounded from below, and Lipschitz in θ with a constant that depends on Z4
i .

Hence mr(Xi,θ)
σP,r(θ) is Lipschitz in θ with a constant that depends on powers of Z. Because Z

has bounded support, Assumption D.1 is satisfied. A simple argument yields that DP can be
estimated at rate n−1/2.

4. Complete information entry games with pure strategy Nash equilibrium as so-
lution concept. Here again σP,str(θ) = σP,str, and under Assumptions E.1 and F.3 it is
uniformly bounded from below. The result then follows from a similar argument as the one
used in Example 2 (Linear regression with interval outcome data and discrete regressors),
observing that the rescaled function of interest is now

1(Y1 = s, Y2 = t, Z = zr)/P (Z = zr)− gstr(θ)
σP,str

, (s, t) ∈ {0, 1} × {0, 1}, r = 1, . . . , k,
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and the gradient is

1

σP,str
∇θgstr(θ), (s, t) ∈ {0, 1} × {0, 1}, r = 1, . . . , k,

where gstr(θ) are model-implied entry probabilities, and hence taking their values in [0, 1].
The entry models typically posited assume that payoff shocks have smooth distributions (e.g.,
multivariate normal), yielding that ∇θgstr(θ) is well defined and bounded.

F. Verification of Assumption E.3-2

Here we verify Assumption E.3-2 for the canonical examples in the moment (in)equalities literature:

1. Mean with interval data. In the generalization of this example in Imbens and Manski
(2004) and Stoye (2009), equations (E.1)-(E.2) are satisfied by construction, equation (E.3)
is directly assumed.

2. Linear regression with interval outcome data and discrete regressors. Equation
(E.1) is satisfied by construction. Given the estimator that we use for the population moment
conditions, we verify equation (E.3) for the variances of the limit distribution of the vector
[
√
n(Ên(W`|Z = zr)−EP (W`|Z = zr))]`∈{0,1},r=1,...,k. We then have that equation (E.3) fol-

lows from Assumption F.1. Concerning equation (E.3), this needs to be verified for the corre-
lation matrix of the limit distribution of a r×1 random vector that for each r = 1, . . . , k equals
any choice in {

√
n(Ên(W0|Z = zr) − EP (W0|Z = zr)),

√
n(Ên(W1|Z = zr) − EP (W1|Z =

zr))}, which suffices for our results to hold. We then have that (E.2) holds because the cor-
relation matrix is diagonal.

3. Best linear prediction with interval outcome data and discrete regressors. Equation
(E.1) is again satisfied by construction. Equation (E.2) holds under Assumptions F.1-F.2.
Equation (E.3) is verified to hold under Assumption F.1 in Beresteanu and Molinari (2008,
p. 808).

4. Complete information entry games with pure strategy Nash equilibrium as so-
lution concept. In this case equations (C.3) and (C.4) are paired, but the corresponding
moment functions differ by the model implied probability of the region of multiplicity, hence
equation (E.1) is satisfied by construction. Given the estimator that we use for the population
moment conditions, we verify equations (E.2) and (E.3) for the variances and for the correla-
tion matrix of the limit distribution of the vector

√
n(Ên(Y1 = s, Y2 = t|Z = zr)− EP (Y1 =

s, Y2 = t|Z = zr)(s,t)∈{0,1}×{0,1},r=1,...,k), which suffices for our results to hold. Equation
(E.2) holds provided that |Corr(Yi1(1 − Yi2), Yi1Yi2)| < 1 − ε for some ε > 0 and Assump-
tion F.3 holds.10 To see that equation (E.3) also holds, note that Assumption F.3 yields that
P (Yi1 = 1, Yi2 = 0, Zi = zr) is uniformly bounded away from 0 and 1, thereby implying that
for each (s, t) ∈ {0, 1} × {0, 1}, r = 1, . . . , k, (P (Y1 = s, Y2 = t|Z = zr)(1 − P (Y1 = s, Y2 =
t|Z = zr)))/(P (Z = zr)(1− P (Z = zr))) is uniformly bounded away from zero.

10In more general instances with more than two players, it follows if the multinomial distribution of outcomes of
the game (reduced by one element) has a correlation matrix with eigenvalues uniformly bounded away from zero.
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G. Proof of Theorem 3.1

G. Notation and Structure of the Proof of Theorem 3.1

For any sequence of random variables {Xn} and a positive sequence an, we write Xn = oP(an) if for
any ε, η > 0, there is N ∈ N such that supP∈P P (|Xn/an| > ε) < η,∀n ≥ N . We write Xn = OP(an)
if for any η > 0, there is a M ∈ R+ and N ∈ N such that supP∈P P (|Xn/an| > M) < η,∀n ≥ N .

TABLE G.1

Important notation. Here (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} is a subsequence as defined in (G.3)-(G.4) below,

θ′n ∈ (θn + ρ/
√
nBd) ∩Θ, Bd = {x ∈ Rd : |xi| ≤ 1, i = 1, . . . , d}, Bdn,ρ ≡

√
n
ρ

(Θ− θn) ∩Bd, Bdρ = limn→∞Bdn,ρ, and λ ∈ Rd.

Gn,j(·) =
√
n(m̄n,j(·)−EP (mj(Xi,·)))

σP,j(·) , j = 1, . . . , J Sample empirical process.

Gbn,j(·) =
√
n(m̄bn,j(·)−m̄n,j(·))

σ̂n,j(·) , j = 1, . . . , J Bootstrap empirical process.

ηn,j(·) =
σP,j(·)
σ̂n,j(·) − 1, j = 1, . . . , J Estimation error in sample moments’ asymptotic standard deviation.

DP,j(·) = ∇θ
(
EP (mj(Xi,·))

σP,j(·)

)
, j = 1, . . . , J Gradient of population moments w.r.t. θ, with estimator D̂n,j(·).

γ1,Pn,j(·) =
EPn (mj(Xi,·))

σPn,j(·)
, j = 1, . . . , J Studentized population moments.

π1,j = limn→∞ κ−1
n

√
nγ1,Pn,j(θ

′
n) Limit of rescaled population moments, constant ∀θ′n ∈ (θn + ρ/

√
nBd) ∩Θ

by Lemma H.5.

π∗1,j =

{
0, if π1,j = 0,
−∞, if π1,j < 0.

“Oracle” GMS.

ξ̂n,j(·) =

{
κ−1
n

√
nm̄n,j(·)/σ̂n,j(·), j = 1, . . . , J1

0, j = J1 + 1, . . . , J
Rescaled studentized sample moments, set to 0 for equalities.

ϕ∗j (ξ) =


ϕj(ξ) π1,j = 0

−∞ π1,j < 0

0 j = J1 + 1, . . . , J.

Infeasible GMS that is less conservative than ϕj .

un,j,θn(λ) = {Gn,j(θn + λρ√
n

) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn + λρ√
n

)) Mean value expansion of nonlinear constraints with sample empirical process

and “oracle” GMS, with θ̄n componentwise between θn and θn + λρ√
n

.

Un(θn, c) =
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
Feasible set for nonlinear sample problem intersected with p′λ = 0.

wj(λ) = Zj + ρDjλ+ π∗1,j Linearized constraints with a Gaussian shift and “oracle” GMS.

W(c) =
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}

Feasible set for linearized limit problem intersected with p′λ = 0.

cπ∗ = inf{c ∈ R+ : Pr(W(c) 6= ∅) ≥ 1− α}. Limit problem critical level.

vbn,j,θ′n(λ) = Gbn,j(θ′n) + ρD̂n,j(θ
′
n)λ+ ϕj(ξ̂n,j(θ

′
n)) Linearized constraints with bootstrap empirical process and sample GMS.

V bn (θ′n, c) =
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ vbn,j,θ′n(λ) ≤ c, ∀j = 1, . . . , J

}
Feasible set for linearized bootstrap problem with sample GMS and p′λ = 0.

vIn,j,θ′n(λ) = Gbn,j(θ′n) + ρD̂n,j(θ
′
n)λ+ ϕ∗j (ξ̂n,j(θ

′
n)) Linearized constraints with bootstrap empirical process and infeasible sample GMS.

V In (θ′n, c) =
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ vIn,j,θ′n(λ) ≤ c, ∀j = 1, . . . , J

}
Feasible set for linearized bootstrap problem with infeasible sample GMS and p′λ = 0.

ĉn(θ) = inf{c ∈ R+ : P ∗(V bn (θ, c) 6= ∅) ≥ 1− α} Bootstrap critical level.

ĉn,ρ(θ) = infλ∈Bdn,ρ ĉn(θ + λρ√
n

) Smallest value of the bootstrap critical level in a Bdn,ρ neighborhood of θ.

σ̂Mn,j(θ) = µ̂n,j(θ)σ̂n,j(θ) + (1− µ̂n,j(θ))σ̂n,j+R1(θ) Weighted sum of the estimators of the standard deviations of paired inequalities
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TABLE G.2

Heuristics for the role of each Lemma in the proof of Theorem 3.1. Notes: (i) Uniformity in Theorem 3.1 is enforced arguing
along subsequences; (ii) When needed, random variables are realized on the same probability space as shown in Lemma H.1 and

Lemma H.17 (see Appendix H.3 for details); (iii) Here (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} is a subsequence as defined in
(G.3)-(G.4) below; (iv) All results hold for any θ′n ∈ (θn + ρ/

√
nBd) ∩Θ.

Theorem 3.1 Pn(p′θn ∈ CI) ≥ Pn (Un(θn, ĉn,ρ(θn)) 6= ∅) .
Coverage is conservatively estimated by the probability that Un is nonempty.

Lemma H.1 lim inf Pn (Un(θn, ĉn,ρ(θn)) 6= ∅) ≥ 1− α.
Lemma H.2 Pn(U(θn, c

I
n(θn)) 6= ∅,W(cπ∗) = ∅) + Pn(U(θn, c

I
n(θn)) = ∅,W(cπ∗) 6= ∅) = oP(1).

Argued by comparing Un and its limit W (after coupling).

Lemma H.3 P ∗n(V In (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)→ 0 and cIn(θ′n)
Pn→ cπ∗ if cπ∗ > 0.

The bootstrap critical value that uses the less conservative GMS yileds a convergent critical value.

Lemma H.4 supλ∈Bd |maxj(un,j,θn(λ)− cIn(θn))−maxj(wj(λ)− cπ∗)| = oP(1), and similarly for wj and vIn,j,θ′n .

The criterion functions entering Un and W converge to each other.

Lemma H.5 Local-to-binding constraints are selected by GMS uniformly over the ρ-box (intuition: ρn−1/2 = oP(κ−1
n )),

and ‖ξ̂n(θ′n)− κ−1
n

√
nσ−1

Pn,j
(θ′n)EPn [mj(Xi, θ

′
n)]‖ = oP(1).

Lemma H.6 ∀η > 0 ∃δ > 0, : Pr({W(c) 6= ∅} ∩ {W−δ(c) = ∅}) < η, and similarly for V In .
It is unlikely that these sets are nonempty but become empty upon slightly tightening stochastic constraints.

Lemma H.7 Intersections of constraints whose gradients are almost linearly dependent are unlikely to realize inside W.
Hence, we can ignore irregularities that occur as linear dependence is approached.

Lemma H.8 If there are weakly more equality constraints than parameters, then c is uniformly bounded away from zero.
This simplifies some arguments.

Lemma H.9 If two paired inequalities are local to binding, then they are also asymptotically identical up to sign.
This justifies “merging” them.

Lemma H.10 ηn,j(·) converges to zero uniformly in P and θ.
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Figure G.1: Structure of Lemmas used in the proof of Theorem 3.1-(I).

Theorem 3.1
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G. Proof of Theorem 3.1

G. Main Proofs

Proof of Theorem 3.1-(I).
Following Andrews and Guggenberger (2009), we index distributions by a vector of nuisance

parameters relevant for the asymptotic size. For this, let γP ≡ (γ1,P , γ2,P , γ3,P ), where γ1,P =
(γ1,P,1, . . . , γ1,P,J) with

γ1,P,j(θ) = σ−1
P,j(θ)EP [mj(Xi, θ)], j = 1, . . . , J,(G.1)

γ2,P = (s(p,ΘI(P )), vech(ΩP (θ)), vec(DP (θ))), and γ3,P = P . We proceed in steps.
Step 1. Let {Pn, θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} be a sequence such that

(G.2) lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) = lim inf
n→∞

Pn(p′θn ∈ CIn),

with CIn = [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))]. We then let {ln} be a subsequence of {n} such that

(G.3) lim inf
n→∞

Pn(p′θn ∈ CIn) = lim
n→∞

Pln(p′θln ∈ CIln).

Then there is a further subsequence {an} of {ln} such that

lim
an→∞

κ−1
an

√
anσ

−1
Pan ,j

(θan)EPan [mj(Xi, θan)] = π1,j ∈ R[−∞], j = 1, . . . , J.(G.4)

To avoid multiple subscripts, with some abuse of notation we write (Pn, θn) to refer to (Pan , θan)
throughout this Appendix. We let

π∗1,j =

{
0 if π1,j = 0,
−∞ if π1,j < 0.

(G.5)

The projection of θn is covered when

− s(−p, Cn(ĉn)) ≤ p′θn ≤ s(p, Cn(ĉn))

⇔

{
inf p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j

}
≤ p′θn ≤

{
sup p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j

}

⇔

 infλ p
′λ

s.t. λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉn(θn + λρ√

n
),∀j

 ≤ 0

≤

 supλ p
′λ

s.t. λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉn(θn + λρ√

n
),∀j

(G.6)

⇔


infλ p

′λ

s.t. λ ∈
√
n
ρ (Θ− θn),

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn+ λρ√

n
)}(1+ηn,j(θn+ λρ√

n
))≤ĉn(θn+ λρ√

n
),∀j

 ≤ 0

≤


supλ p

′λ

s.t. λ ∈
√
n
ρ (Θ− θn),

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1+ηn,j(θn+ λρ√

n
))≤ĉn(θn+ λρ√

n
),∀j

 ,(G.7)
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with ηn,j(·) ≡ σP,j(·)/σ̂n,j(·)− 1 and where we localized ϑ in a
√
n/ρ-neighborhood of Θ− θn and

we took a mean value expansion yielding, for all j,

√
nm̄n,j(θn + λρ√

n
)

σ̂n,j(θn + λρ√
n

)
=
{
Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)

}(
1 + ηn,j(θn + λρ√

n
)
)
.(G.8)

Denote Bdn,ρ ≡
√
n
ρ (Θ − θn) ∩ Bd, with Bd = {x ∈ Rd : |xi| ≤ 1, i = 1, . . . , d}. Then the event in

(G.7) is implied by
infλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1+ηn,j(θn+ λρ√

n
))≤ĉn(θn+ λρ√

n
),∀j

 ≤ 0(G.9)

≤


supλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1+ηn,j(θn+ λρ√

n
))≤ĉn(θn+ λρ√

n
),∀j

 .

Step 2. This step is used only when Assumption E.3-2 is invoked. When this assumption is invoked,
recall that in equation (2.6) we use the estimator specified in Lemma H.10 equation (H.196) for
σP,j , j = 1, . . . , 2R1 (with R1 ≤ J1/2 defined in the statement of the assumption). In equation (2.11)
we use the sample analog estimators of σP,j for all j = 1, . . . , J . To keep notation manageable, we
explicitly denote the estimator used in (2.6) by σ̂Mj only in this step but in almost all other parts
of this Appendix we use the generic notation σ̂j .

For each j = 1, . . . , R1 such that

π∗1,j = π∗1,j+R1
= 0,(G.10)

where π∗1 is defined in (G.5). Let Ej be the statement γ1,Pn,j(θn) = γ1,Pn,j+R1
(θn) = 0 and let

µ̃j =

 1 if Ej is true,
γ1,Pn,j+R1

(θn)(1+ηn,j+R1
(θn+ λρ√

n
))

γ1,Pn,j+R1
(θn)(1+ηn,j+R1

(θn+ λρ√
n

))+γ1,Pn,j(θn)(1+ηn,j(θn+ λρ√
n

))
otherwise,

(G.11)

µ̃j+R1
=

 0 if Ej is true,
γ1,Pn,j(θn)(1+ηn,j(θn+ λρ√

n
))

γ1,Pn,j+R1
(θn)(1+ηn,j+R1

(θn+ λρ√
n

))+γ1,Pn,j(θn)(1+ηn,j(θn+ λρ√
n

))
otherwise,

(G.12)

For each j = 1, . . . , R1, replace the constraint indexed by j, that is

√
nm̄n,j(θn + λρ√

n
)

σ̂Mn,j(θn + λρ√
n

)
≤ ĉn(θn + λρ√

n
),(G.13)

with the following weighted sum of the paired inequalities

µ̃j

√
nm̄n,j(θn + λρ√

n
)

σ̂Mn,j(θn + λρ√
n

)
− µ̃j+R1

√
nm̄j+R1,n(θn + λρ√

n
)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ ĉn(θn + λρ√

n
),(G.14)
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and for each j = 1, . . . , R1, replace the constraint indexed by j +R1, that is

√
nm̄j+R1,n(θn + λρ√

n
)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ ĉn(θn + λρ√

n
),(G.15)

with

−µ̃j

√
nm̄n,j(θn + λρ√

n
)

σ̂Mn,j(θn + λρ√
n

)
+ µ̃j+R1

√
nm̄j+R1,n(θn + λρ√

n
)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ ĉn(θn + λρ√

n
),(G.16)

It then follows from Assumption E.3-2 that these replacements are conservative because

m̄j+R1,n(θn + λρ√
n

)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ −

m̄n,j(θn + λρ√
n

)

σ̂Mn,j(θn + λρ√
n

)
,

and therefore (G.14) implies (G.13) and (G.16) implies (G.15).
Step 3. Next, we make the following comparisons:

π∗1,j = 0⇒ π∗1,j ≥
√
nγ1,Pn,j(θn),(G.17)

π∗1,j = −∞⇒
√
nγ1,Pn,j(θn)→ −∞.(G.18)

For any constraint j for which π∗1,j = 0, (G.17) yields that replacing
√
nγ1,Pn,j(θn) in (G.9) with

π∗1,j introduces a conservative distortion. Under Assumption E.3-2, for any j such that (G.10) holds,
the substitutions in (G.14) and (G.16) yield

(G.19) µ̃j
√
nγ1,Pn,j(θn)(1 + ηn,j(θn + λρ√

n
))− µ̃j+R1

√
nγ1,Pn,j+R1

(θn)(1 + ηn,j+R1
(θn + λρ√

n
)) = 0,

and therefore replacing this term with π∗1,j = 0 = π∗1,j+R1
is inconsequential.

For any j for which π∗1,j = −∞, (G.18) yields that for n large enough,
√
nγ1,Pn,j(θn) can be

replaced with π∗1,j . To see this, note that by the Cauchy-Schwarz inequality, Assumption E.4 (i)-

(ii), and λ ∈ Bdn,ρ, it follows that

ρDPn,j(θ̄n)λ ≤ ρ
√
d(‖DPn,j(θ̄n)−DPn,j(θn)‖+ ‖DPn,j(θn)‖) ≤ ρ

√
d(ρM/

√
n+ M̄),(G.20)

where M̄ and M are as defined in Assumption E.4-(i) and (ii) respectively, and we used that θ̄n lies
component-wise between θn and θn + λρ√

n
. Using that Gn,j is asymptotically tight by Assumption

E.5, we have that for any τ > 0, there exists a T > 0 and N1 ∈ N such that for all n ≥ N1,

(G.21) Pn

(
max

j:π∗1,j=−∞
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λρ√

n
)) ≤ 0,

∀λ ∈ Bdn,ρ
)
> 1 − τ/2.

To see this, note that π∗ij = −∞ if and only if limn→∞
√
n

κn
γ1Pnj(θn) = π1j ∈ [−∞, 0). Suppose first

that π1j > −∞. Then for all ε > 0 there exists N2 ∈ N such that
∣∣∣√nκn γ1Pnj(θn) − π1j

∣∣∣ ≤ ε, for all
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n ≥ N2. Choose ε > 0 such that π1j + ε < 0. Let N = max{N1, N2}. Then we have

Pn

(
max

j:π∗1,j=−∞

{
Gn,j(θn+

λρ√
n

)+ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)

}
(1+ηn,j(θn+

λρ√
n

))≤0, ∀λ∈Bdn,ρ

)
≥ Pn

(
max

j:π∗1,j=−∞

{
T+ρ(M̄+

ρM√
n

)+
√
nγ1,Pn,j(θn)

}
(1+ηn,j(θn+

λρ√
n

))≤0 ∩ max
j:π∗1,j=−∞

Gn,j(θn+
λρ√
n

)≤T

)
≥ Pn

(
max

j:π∗1,j=−∞

{
T+ρ(M̄+

ρM√
n

)+κn(π1j+ε)
}

(1+ηn,j(θn+
λρ√
n

))≤0 ∩ max
j:π∗1,j=−∞

Gn,j(θn+
λρ√
n

)≤T

)
= Pn

(
max

j:π∗1,j=−∞

{
T
κn

+ ρ
κn

(M̄+
ρM√
n

)+(π1j+ε)

}
(1+ηn,j(θn+

λρ√
n

))≤0 ∩ max
j:π∗1,j=−∞

Gn,j(θn+
λρ√
n

)≤T

)
= Pn

(
max

j:π∗1,j=−∞
Gn,j(θn + λρ√

n
) ≤ T

)
> 1− τ/2, ∀n ≥ N.

If π1j = −∞ the same argument applies a fortiori. We therefore have that for n ≥ N ,

Pn

(
infλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1+ηn,j(θn+ λρ√

n
))≤ĉn(θn+ λρ√

n
),∀j

 ≤ 0

≤


supλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1+ηn,j(θn+ λρ√

n
))≤ĉn(θn+ λρ√

n
),∀j


)

(G.22)

≥ Pn

(
infλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+π∗1,j}(1+ηn,j(θn+ λρ√
n

))≤ĉn(θn+ λρ√
n

),∀j

 ≤ 0

≤


supλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+π∗1,j}(1+ηn,j(θn+ λρ√
n

))≤ĉn(θn+ λρ√
n

),∀j


)
− τ/2.(G.23)

Since the choice of τ is arbitrary, the limit of the term in (G.22) is not smaller than the limit of
the first term in (G.23). Hence, we continue arguing for the event whose probability is evaluated in
(G.23).

Finally, by definition ĉn(·) ≥ 0 and therefore infλ∈Bdn,ρ ĉn(θn + λρ√
n

) exists. Therefore, the event

whose probability is evaluated in (G.23) is implied by the event
infλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+π∗1,j}(1+ηn,j(θn+ λρ√
n

))≤inf
λ∈Bdn,ρ

ĉn(θn+ λρ√
n

),∀j

 ≤ 0

≤


supλ p

′λ
s.t. λ ∈ Bdn,ρ,

{Gn,j(θn+ λρ√
n

)+ρDPn,j(θ̄n)λ+π∗1,j}(1+ηn,j(θn+ λρ√
n

))≤inf
λ∈Bdn,ρ

ĉn(θn+ λρ√
n

),∀j

(G.24)

For each λ ∈ Rd, define

un,j,θn(λ) ≡
{
Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+ π∗1,j

}(
1 + ηn,j(θn + λρ√

n
)
)
,(G.25)
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where under Assumption E.3-2 when π∗1,j = 0 and π∗1,j+R1
= 0 the substitutions of equation (G.13)

with equation (G.14) and of equation (G.15) with equation (G.16) have been performed. Let

Un(θn, c) ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
,(G.26)

and define

ĉn,ρ ≡ inf
λ∈Bdn,ρ

ĉn(θ + λρ√
n

).(G.27)

Then by (G.24) and the definition of Un, we obtain

(G.28) Pn(p′θn ∈ CIn) ≥ Pn (Un(θn, ĉn,ρ) 6= ∅) .

By passing to a further subsequence, we may assume that

DPn(θn)→ D,(G.29)

for some J × d matrix D such that ‖D‖ ≤ M and ΩPn
u→ Ω for some correlation matrix Ω. By

Lemma 2 in Andrews and Guggenberger (2009) and Assumption E.5 (i), uniformly in λ ∈ Bd,

Gn(θn + λρ√
n

)
d→ Z for a normal random vector with the correlation matrix Ω. By Lemma H.1,

lim inf
n→∞

Pn (Un(θn, ĉn,ρ) 6= ∅) ≥ 1− α.(G.30)

The conclusion of the theorem then follows from (G.2), (G.3), (G.28), and (G.30). Q.E.D.

Proof of Theorem 3.1-(II).
The result follows immediately from the same steps as in the proof of Theorem 3.1-(I). Q.E.D.

Proof of Theorem 3.1-(III)
The argument of proof is the same as for Theorem 3.1-(I), with the following modification. Take

(Pn, θn) as defined following equation (G.4). Then f(θn) is covered when{
inf f(ϑ)

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉfn(ϑ),∀j

}
≤ f(θn) ≤

{
sup f(ϑ)

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉfn(ϑ),∀j

}

⇔

 infλ∇f(θ̃n)λ

s.t. λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉfn(θn + λρ√

n
),∀j

 ≤ 0

≤

 supλ∇f(θ̃n)λ

s.t. λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉfn(θn + λρ√

n
),∀j

 ,

where we took a mean value expansion yielding

f(θn + λρ√
n

) = f(θn) +
ρ√
n
∇f(θ̃n)λ,(G.31)
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for θ̃n a mean value that lies componentwise between θn and θn + λρ√
n

, and we used that the sign of

the last term in (G.31) is the same as the sign of ∇f(θ̃n)λ. With the objective function in (G.31)
so redefined, all expression in the proof of Theorem 3.1-(I) up to (G.25) continue to be valid. We
can then redefine the set Un(θn, c) in (G.26) as

Un(θn, c) ≡
{
λ ∈ Bdn,ρ : ‖∇f(θ̃n)‖−1∇f(θ̃n)λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
.

Replace p′ with ‖∇f(θ̃n)‖−1∇f(θ̃n) in all expressions involving the set Un(θn, ĉ
f
n,ρ(θn)), and replace

p′ with ‖∇f(θn)′‖−1∇f(θ′n) in all expressions for the sets V In (θ′n, ĉ
f
n(θ′n)), and in all the almost sure

representation counterparts of these sets. Observe that we can select a convergent subsequence from
{‖∇f(θn)′‖−1∇f(θ′n)} that converges to some p in the unit sphere, so that the form of W(cπ∗) in
(H.17) is unchanged. This yields the result, noting that by the assumption ‖∇f(θ̃n) −∇f(θ′n)‖ =
OP(ρ/

√
n). Q.E.D.

G. Proof of Theorem 3.1-(I) with High Level Assumption E.6 Replacing Assumption E.3, and
Dropping the ρ-Box Constraints Under Assumption E.7

Lemma G.1 Suppose that Assumption E.1, E.2, E.4 and E.5 hold.
(I) Let also Assumption E.6 hold. Let 0 < α < 1/2. Then,

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) ≥ 1− α.

(II) Let also Assumption E.7 and either Assumption E.3 or E.6 hold. Let ĉn = inf{c ∈ R+ :
P ∗({Λbn(θ,+∞, c) ∩ {p′λ = 0}} 6= ∅) ≥ 1 − α}, where Λbn is defined in equation (2.11) and
CIn ≡ [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))] with s(q, Cn(ĉn)), q ∈ {p,−p} defined in equation (2.6).
Then

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) ≥ 1− α.

Proof: We establish each part of the Lemma separately.
Part I. This part of the lemma replaces Assumptions E.3 with Assumption E.6. Hence we

establish the result by showing that all claims that were made under Assumption E.3 remain valid
under Assumption E.6. We proceed in steps.

Step 1. Revisiting the proof of Lemma H.6, equation (H.139).
Let J ∗ be as defined in (H.29). If J ∗ = ∅ we immediately have that Lemma H.6 continues to hold.

Hence we assume that J ∗ 6= ∅. To keep the notation simple, below we argue as if all j = 1, . . . , J
belong to J ∗.

Consider the case that cπ∗ > 0. For some cπ∗ > δ > 0, let

W(c− δ) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c− δ, ∀j = 1, . . . , J
}
,(G.32)

where we emphasize that the set W(c−δ) is obtained by a δ-contraction of all constraints, including
those indexed by j = J1 + 1, . . . , J . By Assumption E.6, for any η > 0 there exists a δ such that

η ≥ |Pr (W(cπ∗) 6= ∅)− Pr (W(cπ∗ − δ) 6= ∅)| = Pr ({W(cπ∗) 6= ∅} ∩ {W(cπ∗ − δ) = ∅}) ,
η ≥ |Pr (W(cπ∗ + δ) 6= ∅)− Pr (W(cπ∗) 6= ∅)| = Pr ({W(cπ∗ + δ) 6= ∅} ∩ {W(cπ∗) = ∅}) .
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The result follows.

Step 2. Revisiting the proof of Lemma H.2.
Case 1 of Lemma H.2 is unaltered. Case 2 of Lemma H.2 follows from the same argument as

used in Case 1 of Lemma H.2, because under Assumption E.6 as shown in step 1 of this proof
all inequalities are tightened. In Case 3 of Lemma H.2 the result in (G.30) holds automatically by
Assumption E.6-(ii). (As a remark, Lemmas H.7-H.8 are no longer needed to establish Lemma H.2.)

Step 3. Revisiting the proof of Lemma H.3. Under Assumption E.6 we do not need to merge paired
inequalities. Hence, part (iii) of Lemma H.3 holds automatically because ϕ∗j (ξ) ≤ ϕj(ξ) for any j
and ξ. We are left to establish parts (i) and (ii) of Lemma H.3. These follow immediately, because
Lemma H.6 remains valid as shown in step 1 and by Assumption E.6, Pr(W(c) 6= ∅) is strictly
increasing at c = cπ∗ if cπ∗ > 0. (As a remark, Lemma H.9 is no longer needed to establish Lemma
H.3.)

In summary, the desired result follows by applying Lemma H.1 in the proof of Theorem 3.1-(I)
as Lemmas H.2, H.3 and H.6 remain valid, Lemmas H.4, H.5, H.10 and the Lemmas in Appendix
H.3 are unaffected, and Lemmas H.7, H.8, H.9 are no longer needed.
Part II. This is established by adapting the proof of Theorem 3.1-(I) as follows:
In the main proof, we pass to an a.s. representation early on, so that W realizes jointly with other

random variables (we denote almost sure representations adding a superscript “∗” on the original
variable). At the same time, we entirely drop ρ. This means that algebraic expressions, e.g. in the
main proof, simplify as if ρ = 1, but it also removes any constraints along the lines of λ ∈ Bdn,ρ in
equation (G.9). Indeed, (G.9) is replaced by:

· · · ⇐

 infλ p
′λ

s.t. λ ∈ W̄∗(c̄),
{G∗n,j(θn+λ/

√
n)+DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1+ηn,j(θn+λ/

√
n))≤ĉn(θn+λ/

√
n),∀j

 ≤ 0

≤

 supλ p
′λ

s.t. λ ∈ W̄∗(c̄),
{G∗n,j(θn+λ/

√
n)+DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1+ηn,j(θn+λ/

√
n))≤ĉn(θn+λ/

√
n),∀j

 ,

yielding a new definition of the set U∗n as

U∗n(θn, c) ≡
{
λ ∈ W̄∗(c̄) : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
.

Subsequent uses of ρ in the main proof use that ‖λ‖ ≤
√
dρ = OP(1). For example, consider the

argument following equation (G.20) or the argument just preceding equation (G.30), and so on. All
these continue to go through because W̄∗(c̄) = O(1) by assumption.

Similar uses occur in Lemma H.1. The next major adaptation is that in (H.27) and (H.28):
we again drop ρ but nominally introduce the constraint that λ ∈ W̄∗(c̄). However, for c ≤ c̄, this
condition cannot constrain W∗(c), and so we can as well drop it: The modified W∗(c) equals W̄∗(c).

Next we argue that Lemma H.7 continues to hold, now claimed for W̄∗. To verify that this is the
case, replace Bd with W̄(c̄) throughout in Lemma H.7. This requires straightforward adaptation of
algebra as W̄(c̄) is only stochastically and not deterministically bounded.

Finally, in Lemma H.3 we remove the ρ-constraint from V bn and V In without replacement, and
note that the lemma is now claimed for θ′n ∈ θ + ‖W̄(c̄)‖H/

√
nBd. Recall that in the lemma

the a.s. representation of a set A is denoted by Ã, and with some abuse of notation let the a.s.
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representation of W̄ be denoted ˜̄W. Now we compare Ṽ bn and Ṽ In with ˜̄W. To ensure that λ is
uniformly stochastically bounded in expressions like (H.98), we verify that the modified Ṽ bn and Ṽ In
inherit the property in Assumption E.7. To see this, fix any unit vector t ⊥ p and notice that any

t = λ/‖λ‖ for λ ∈ ˜̄W(c) or for λ ∈ Ṽ bn (θ′n, c) or for λ ∈ Ṽ In (θ′n, c), 0 < c ≤ c̄, satisfies this condition.
By Assumption E.7 and the Cauchy-Schwarz inequality, max

λ∈˜̄W(c)
t′λ = O(1) for any c ≤ c̄. Since

the value of this program is necessarily attained by a basic solution whose associated gradients span
t, it must be the case that such solution is itself O(1). Formally, let C be the index set characterizing
the solution, ZCi be the vector of realizations Zji corresponding to j ∈ C, and KC(θ′n) the matrix
that stacks the corresponding gradients; then (KC(θ′n))−1(c̄1−ZCi ) = O(1). By Lemma H.7 and the

fact that D̂n(θ′n)
P→ D by Assumption E.4, we then also have that (K̂C(θ′n))−1(c̄1−Gbn,j) = OP(1),

and so for c ≤ c̄, V b is bounded in this same direction. It follows that, by similar reasoning to
the preceding paragraph, the comparison between V In (θ′n, c) and W̄(c) in Lemma H.3 goes through.
Q.E.D.

G. An Extension of Theorem 3.1

In this subsection, we establish that, under the assumptions of Theorem 3.1, we actually have

(G.33) lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ {p′ϑ : ϑ ∈ Cn(ĉn)}) ≥ 1− α.

In words, the mathematical projection of Cn(ĉn), which will asymptotically pick up gaps in the
projection of ΘI , is a uniformly asymptotically valid confidence region. This strengthens Theorem
3.1 because {p′ϑ : ϑ ∈ Cn(ĉn)} ⊆ CIn.

To prove this extension, we modify the proof of Theorem 3.1 after (G.5) as follows: The projection
of θn is covered when

∃ϑ ∈ Θ : p′ϑ = p′θn,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j(G.34)

⇐⇒ ∃λ ∈
√
n
ρ (Θ− θn) : p′λ = 0,

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉn(θn + λρ√

n
),∀j(G.35)

⇐⇒ ∃λ ∈
√
n
ρ (Θ− θn) :(G.36)

p′λ = 0,
(
Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)

)(
1 + ηn,j(θn + λρ√

n
)
)

(G.37)

≤ ĉn(θn + λρ√
n

),∀j

where the last line corresponds to (G.7) and intermediate steps that are exactly analogous to the
previous proof were skipped. Subsequent proof steps go through as before until, comparing (G.26)
to (G.37), we find (compare to (G.28), noting the change from inequality to equality)

(G.38) Pn
(
p′θn ∈ {p′ϑ : ϑ ∈ Cn(ĉn)}

)
= Pn

(
Un(θn, ĉn,ρ) 6= ∅

)
.

The proof then continues as before.
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H. Auxiliary Lemmas

H. Lemmas Used to Prove Theorem 3.1

Throughout this Appendix, we let (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} be a subsequence as
defined in the proof of Theorem 3.1-(I). That is, along (Pn, θn), one has

κ−1
n

√
nγ1,Pn,j(θn)→ π1j ∈ R[−∞], j = 1, . . . , J,(H.1)

ΩPn
u→ Ω,(H.2)

DPn(θn)→ D.(H.3)

Fix c ≥ 0. For each λ ∈ Rd and θ ∈ (θn + ρ/
√
nBd) ∩Θ, let

wj(λ) ≡ Zj + ρDjλ+ π∗1,j ,(H.4)

where π∗1,j is defined in (G.5) and we used Lemma H.5. Under Assumption E.3-2 if

π∗1,j = 0 = π∗1,j+R1
,(H.5)

we replace the constraints

Zj + ρDjλ ≤ c,(H.6)

Zj+R1 + ρDj+R1λ ≤ c,(H.7)

with

µj(θ){Zj + ρDjλ} − µj+R1
(θ){Zj+R1

+ ρDj+R1
λ} ≤ c,(H.8)

−µj(θ){Zj + ρDjλ}+ µj+R1
(θ){Zj+R1

+ ρDj+R1
λ} ≤ c,(H.9)

where

µj(θ) =

{
1 if γ1,Pn,j(θ) = 0 = γ1,Pn,j+R1

(θ),
γ1,Pn,j+R1

(θ)

γ1,Pn,j+R1
(θ)+γ1,Pn,j(θ)

otherwise,
(H.10)

µj+R1
(θ) =

{
0 if γ1,Pn,j(θ) = 0 = γ1,Pn,j+R1

(θ),
γ1,Pn,j(θ)

γ1,Pn,j+R1
(θ)+γ1,Pn,j(θ)

otherwise,
(H.11)

When Assumption E.3-2 is invoked with hard-threshold GMS, replace constraints j and j + R1

in the definition of Λbn(θ′n, ρ, c), θ
′
n ∈ (θn + ρ/

√
nBd) ∩Θ in equation (2.11) as described on p.11 of

the paper; when it is invoked with a GMS function ϕ that is smooth in its argument, replace them,
respectively, with

µ̂n,j(θ
′
n){Gbn,j(θ′n) + D̂n,j(θ

′
n)λ} − µ̂n,j+R1

(θ′n){Gbn,j+R1
(θ′n) + D̂n,j+R1

(θ′n)λ}(H.12)

+ ϕj(ξ̂n,j(θ
′
n)) ≤ c,

−µ̂n,j(θ′n){Gbn,j(θ′n) + D̂n,j(θ
′
n)λ}+ µ̂n,j+R1

(θ′n){Gbn,j+R1
(θ′n) + D̂n,j+R1

(θ′n)λ}(H.13)

+ ϕj+R1
(ξ̂n,j+R1

(θ′n)) ≤ c,
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where

µ̂n,j+R1(θ′n) = min

max

0,

m̄n,j(θ
′
n)

σ̂n,j(θ′n)

m̄n,j+R1
(θ′n)

σ̂n,j+R1
(θ′n) +

m̄n,j(θ′n)
σ̂n,j(θ′n)

 , 1

 ,(H.14)

µ̂n,j(θ
′
n) = 1− µ̂n,j+R1

(θ′n).(H.15)

Let Bd
ρ = limn→∞Bdn,ρ. Let the intersection of {λ ∈ Bd

ρ : p′λ = 0} with the level set associated
with the so defined function wj(λ) be

W(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}
.(H.16)

Due to the substitutions in equations (H.6)-(H.9), the paired inequalities (i.e., inequalities for which
(H.5) holds under Assumption E.3-2) are now genuine equalities relaxed by c. With some abuse of
notation, we index them among the j = J1 +1, . . . , J . With that convention, for given δ ∈ R, define

Wδ(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c+ δ, ∀j = 1, . . . , J1,

∩wj(λ) ≤ c, ∀j = J1 + 1, . . . , J
}
.(H.17)

Define the (J + 2d+ 2)× d matrix

KP (θ, ρ) ≡


[ρDP,j(θ)]

J1+J2
j=1

[−ρDP,j−J2(θ)]Jj=J1+J2+1

Id
−Id
p′

−p′

 .(H.18)

Given a square matrix A, we let eig(A) denote its smallest eigenvalue. In all Lemmas below, we
assume α < 1/2.

Lemma H.1 Let Assumptions E.1, E.2, E.3, E.4, and E.5 hold. Let {Pn, θn} be a sequence such
that Pn ∈ P and θn ∈ ΘI(Pn) for all n and κ−1

n

√
nγ1,Pn,j(θn) → π1j ∈ R[−∞], j = 1, . . . , J,

ΩPn
u→ Ω, and DPn(θn)→ D. Then,

lim inf
n→∞

Pn (Un(θn, ĉn,ρ) 6= ∅) ≥ 1− α.(H.19)

Proof: We consider a subsequence along which lim infn→∞ Pn(Un(θn, ĉn,ρ 6= ∅) is achieved as a
limit. For notational simplicity, we use {n} for this subsequence below.

Below, we construct a sequence of critical values such that

ĉn(θ′n) ≥ cIn(θ′n) + oPn(1),(H.20)

and cIn(θ′n)
Pn→ cπ∗ for any θ′n ∈ (θn + ρ/

√
nBd) ∩Θ. The construction is as follows. When cπ∗ = 0,

let cIn(θ′n) = 0 for all θ′n ∈ (θn + ρ/
√
nBd) ∩ Θ, and hence cIn(θ′n)

Pn→ cπ∗ . If cπ∗ > 0, let cIn(θn) ≡
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inf{c ∈ R+ : P ∗n(V In (θn, c)) ≥ 1 − α}, where V In is defined as in Lemma H.3. By Lemma H.3 (iii),
this critical value sequence satisfies (H.20) with probability approaching 1. Further, by Lemma H.3

(ii), cIn(θ′n)
Pn→ cπ∗ for any θ′n ∈ (θn + ρ/

√
nBd) ∩Θ.

For each θ ∈ Θ, let

cIn,ρ(θ) ≡ inf
λ∈Bdn,ρ

cIn(θ + λρ√
n

).(H.21)

Since the oPn(1) term in (H.20) does not affect the argument below, we redefine cIn,ρ(θn) as cIn,ρ(θn)+
oPn(1). By (H.20) and simple addition and subtraction,

Pn

(
Un(θn,ĉn,ρ(θn)) 6= ∅

)
≥ Pn

(
Un(θn, c

I
n,ρ(θn)) 6= ∅

)
= Pr(W(cπ∗) 6= ∅) +

[
Pn

(
Un(θn, c

I
n,ρ(θn)) 6= ∅

)
− Pr

(
W(cπ∗) 6= ∅

)]
.(H.22)

As previously argued, Gn(θn+ λρ√
n

)
d→ Z. Moreover, by Lemma H.10, supθ∈Θ ‖ηn(θ)‖ p→ 0 uniformly

in P, and by Lemma H.3, cIn,ρ(θn)
p→ cπ∗ . Therefore, uniformly in λ ∈ Bd, the sequence {(Gn(θn +

λρ√
n

), ηn(θn + λρ√
n

), cIn,ρ(θn))} satisfies

(
Gn(θn + λρ√

n
), ηn(θn + λρ√

n
), cIn,ρ(θn)

) d→ (Z, 0, cπ∗).(H.23)

In what follows, using Lemma 1.10.4 in van der Vaart and Wellner (2000) we take (G∗n(θn +
λρ√
n

), η∗n, c
∗
n) to be the almost sure representation of (Gn(θn + λρ√

n
), ηn(θn + λρ√

n
), cIn,ρ(θn)) defined

on some probability space (Ω,F ,P) such that (G∗n(θn + λρ√
n

), η∗n, c
∗
n)

a.s.→ (Z∗, 0, cπ∗), where Z∗ d
= Z.

For each λ ∈ Rd, we define analogs to the quantities in (G.25) and (H.4) as

u∗n,j,θn(λ) ≡
{
G∗n,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+ π∗1,j

}
(1 + η∗n,j),(H.24)

w∗j (λ) ≡ Z∗j + ρDjλ+ π∗1,j .(H.25)

where we used that by Lemma H.5, κ−1
n

√
nγ1,P,j(θn) − κ−1

n

√
nγ1,P,j(θ

′
n) = o(1) uniformly over

θ′n ∈ (θn + ρ/
√
nBd) ∩ Θ and therefore π∗1,j is constant over this neighborhood, and we applied

a similar replacement as described in equations (H.6)-(H.9) for the case that π∗1,j = 0 = π∗1,j+R1
.

Similarly, we define analogs to the sets in (G.26) and (H.16) as

U∗n(θn, c
∗
n) ≡

{
λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c∗n, ∀j = 1, . . . , J

}
,(H.26)

W∗(cπ∗) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩w∗j (λ) ≤ cπ∗ , ∀j = 1, . . . , J
}
.(H.27)

It then follows that equation (H.22) can be rewritten as

Pn

(
Un(θn, ĉn,ρ(θn)) 6= ∅

)
≥ P(W∗(cπ∗) 6= ∅) +

[
P
(
U∗n(θn, c

∗
n) 6= ∅

)
−P

(
W∗(cπ∗) 6= ∅

)]
.(H.28)

By the definition of cπ∗ , we have P(W∗(cπ∗) 6= ∅) ≥ 1− α. Therefore, we are left to show that the
second term on the right hand side of (H.28) tends to 0 as n→∞.

Define

(H.29) J ∗ ≡ {j = 1, . . . , J : π∗1,j = 0}.
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Case 1. Suppose first that J ∗ = ∅, which implies J2 = 0 and π∗1,j = −∞ for all j. Then we have

U∗n(θn, c
∗
n) = {λ ∈ Bdn,ρ : p′λ = 0}, W∗(cπ∗) = {λ ∈ Bd

ρ : p′λ = 0},(H.30)

with probability 1, and hence

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗(cπ∗) 6= ∅}

)
= 1.(H.31)

This in turn implies that∣∣∣P(U∗n(θn, c
∗
n) 6= ∅}

)
−P

(
W∗(cπ∗) 6= ∅}

)∣∣∣ = 0,(H.32)

where we used |P(A)−P(B)| ≤ P(A∆B) ≤ 1−P(A ∩B) for any pair of events A and B. Hence,
the term in the square brackets in (H.28) is 0.
Case 2. Now consider the case that J ∗ 6= ∅. We show that the term in the square brackets in
(H.28) converges to 0. To that end, note that for any events A,B,∣∣∣P(A 6= ∅)−P(B 6= ∅)

∣∣∣ ≤ ∣∣∣P({A = ∅} ∩ {B 6= ∅}) + P({A 6= ∅} ∩ {B = ∅})
∣∣∣(H.33)

Hence, we aim to establish that for A = U∗n(θn, c
∗
n), B = W∗(cπ∗), the right hand side of equation

(H.33) converges to zero. But this is guaranteed by Lemma H.2. Therefore, the conclusion of the
lemma follows. Q.E.D.

Lemma H.2 Let Assumptions E.1, E.2, E.3, E.4, and E.5 hold. Let (Pn, θn) have the almost sure
representations given in Lemma H.1, and let J ∗ be defined as in (H.29). Assume that J ∗ 6= ∅.
Then for any η > 0, there exists N ∈ N such that

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
≤ η/2,(H.34)

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗(cπ∗) 6= ∅}

)
≤ η/2,(H.35)

for all n ≥ N , where the sets in the above expressions are defined in equations (H.26) and (H.27).

Proof: We begin by observing that for j /∈ J ∗, π∗1,j = −∞, and therefore the corresponding
inequalities(

G∗n,j(θn + λρ√
n

) + ρDPn,j(θ̄n)λ+ π∗1,j

)
(1 + η∗n,j) ≤ c∗n,

Z∗j + ρDjλ+ π∗1,j ≤ cπ∗

are satisfied with probability approaching one by similar arguments as in (G.21). Hence, we can
redefine the sets of interest as

U∗n(θn, c
∗
n) ≡

{
λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c∗n, ∀j ∈ J ∗

}
,(H.36)

W∗(cπ∗) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩w∗j (λ) ≤ cπ∗ , ∀j ∈ J ∗
}
.(H.37)
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We first show (H.34). For this, we start by defining the events

An ≡
{

sup
λ∈Bd

max
j∈J ∗

∣∣(u∗n,j,θn(λ)− c∗n)− (w∗j (λ)− cπ∗)
∣∣ ≥ δ} .(H.38)

By Lemma H.4, using the assumption that J ∗ 6= ∅, for any η > 0 there exists N ∈ N such that

P(An) < η/2, ∀n ≥ N.(H.39)

Define the sets of λs, U∗,+δn and W∗,+δ by relaxing the constraints shaping U∗n and W∗ by δ:

U∗,+δn (θn, c) ≡ {λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c+ δ, j ∈ J ∗},(H.40)

W∗,+δ(c) ≡ {λ ∈ Bd
ρ : p′λ = 0 ∩w∗j (λ) ≤ c+ δ, j ∈ J ∗}.(H.41)

Compared to the set in equation (H.17), here we replace u∗n,j,θn(λ) for un,j,θn(λ) and w∗j (λ) for
wj(λ), we retain only constraints in J ∗, and we relax all such constraints by δ > 0 instead of
relaxing only those in {1, . . . , J1}. Next, define the event Ln ≡ {U∗n(θn, c

∗
n) ⊂W∗,+δ(cπ∗)} and note

that Acn ⊆ Ln.
We may then bound the left hand side of (H.34) as

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
≤ P

(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗,+δ(cπ∗) = ∅}

)
+ P

(
{W∗,+δ(cπ∗) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
,(H.42)

where we used P (A ∩ B) ≤ P (A ∩ C) + P (B ∩ Cc) for any events A,B, and C. The first term on
the right hand side of (H.42) can further be bounded as

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗,+δ(cπ∗) = ∅}

)
≤ P

(
{U∗n(θn, c

∗
n) 6⊆W∗,+δ(cπ∗)}

)
= P(Lcn) ≤ P(An) < η/2, ∀n ≥ N ,(H.43)

where the penultimate inequality follows from Acn ⊆ Ln as argued above, and the last inequality
follows from (H.39). For the second term on the left hand side of (H.42), by Lemma H.6, there
exists N ′ ∈ N such that

P
(
{W∗,+δ(cπ∗) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
≤ η/2, ∀n ≥ N ′.(H.44)

Hence, (H.34) follows from (H.42), (H.43), and (H.44).
To establish (H.35), we distinguish three cases.

Case 1. Suppose first that J2 = 0 (recalling that under Assumption E.3-2 this means that there
is no j = 1, . . . , R1 such that π∗1,j = 0 = π∗1,j+R1

), and hence one has only moment inequalities. In
this case, by (H.36) and (H.37), one may write

U∗n(θn, c) ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c, j ∈ J ∗

}
,(H.45)

W∗,−δ(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩w∗j (λ) ≤ c− δ, j ∈ J ∗
}
,(H.46)

where W∗,−δ, δ > 0, is obtained by tightening the inequality constraints shaping W∗. Define the
event

R2n ≡ {W∗,−δ(cπ∗) ⊂ U∗n(θn, c
∗
n)},(H.47)
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and note that Acn ⊆ R2n. The result in equation (H.35) then follows by Lemma H.6 using again
similar steps to (H.42)-(H.44).

Case 2. Next suppose that J2 ≥ d. In this case, we define W∗,−δ to be the set obtained by tightening
by δ the inequality constraints as well as each of the two opposing inequalities obtained from the
equality constraints. That is,

W∗,−δ(cπ∗) ≡ {λ ∈ Bd
ρ : p′λ = 0 ∩w∗j (λ) ≤ c− δ, j ∈ J ∗},(H.48)

that is, the same set as in (H.139) with w∗j (λ) replacing wj(λ) and defining the set using only

inequalities in J ∗. Note that, by Lemma H.8, there exists N ∈ N such that for all n ≥ N cIn(θ)
is bounded from below by some c > 0 with probability approaching one uniformly in P ∈ P and
θ ∈ ΘI(P ). This ensures cπ∗ is bounded from below by c > 0. This in turn allows us to construct a
non-empty tightened constraint set with probability approaching 1. Namely, for δ < c, W∗,−δ(cπ∗)
is nonempty with probability approaching 1 by Lemma H.6, and hence its superset W∗(cπ∗) is also
non-empty with probability approaching 1. However, note that Acn ⊆ R2n, where R2n is in (H.47)
now defined using the tightened constraint set W∗,−δ(cπ∗) being defined as in (H.48), and therefore
the same argument as in the previous case applies.

Case 3. Finally, suppose that 1 ≤ J2 < d. Recall that, with probability 1 (under P),

cπ∗ = lim
n→∞

c∗n,(H.49)

and note that by construction cπ∗ ≥ 0. Consider first the case that cπ∗ > 0. Then, by taking δ < cπ∗ ,
the argument in Case 2 applies.

Next consider the case that cπ∗ = 0. Observe that

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗(cπ∗) 6= ∅}

)
(H.50)

≤ P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗,−δ(0) 6= ∅}

)
+ P

(
{W∗,−δ(0) = ∅} ∩ {W∗(0) 6= ∅}

)
,(H.51)

with W∗,−δ(0) defined as in (H.17) with c = 0 and with w∗j (λ) replacing wj(λ). By Lemma H.6, for
any η > 0 there exists δ > 0 and N ∈ N such that

P
(
{W∗,−δ(0) = ∅} ∩ {W∗(0) 6= ∅}

)
< η/3 for all n ≥ N.(H.52)

Therefore, the second term on the right hand side of (H.51) can be made arbitrarily small.

We now consider the first term on the right hand side of (H.51). Let g be a J + 2d + 2 vector
with

gj =


−Zj , j ∈ J ∗,
0, j ∈ {1, . . . , J} \ J ∗,
1, j = J + 1, . . . , J + 2d,
0, j = J + 2d+ 1, J + 2d+ 2,

(H.53)

where we used that π∗1,j = 0 for j ∈ J ∗ and where the last assignment is without loss of generality
because of the considerations leading to the sets in (H.36)-(H.37).
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For a given set C ⊂ {1, . . . , J + 2d+ 2}, let the vector gC collect the entries of gC corresponding
to indices in C. Let

K ≡


[ρDj ]

J1+J2
j=1

[−ρDj−J2
]Jj=J1+J2+1

Id
−Id
p′

−p′

 .(H.54)

Let the matrix KC collect the rows of K corresponding to indices in C.
Let C̃ collect all size d subsets C of {1, ..., J + 2d+ 2} ordered lexicographically by their smallest,

then second smallest, etc. elements. Let the random variable C equal the first element of C̃ s.t.
detKC 6= 0 and λC = (KC)−1gC ∈W∗,−δ(0) if such an element exists; else, let C = {J+1, ..., J+d}
and λC = 1d, where 1d denotes a d vector with each entry equal to 1. Recall that W∗,−δ(0) is a
(possibly empty) measurable random polyhedron in a compact subset of Rd, see, e.g., Molchanov
(2005, Definition 1.1.1). Thus, if W∗,−δ(0) 6= ∅, then W∗,−δ(0) has extreme points, each of which
is characterized as the intersection of d (not necessarily unique) linearly independent constraints
interpreted as equalities. Therefore, W∗,−δ(0) 6= ∅ implies that λC ∈ W∗,−δ(0) and therefore also
that C ⊂ J ∗ ∪ {J + 1, . . . , J + 2d+ 2}. Note that the associated random vector λC is a measurable
selection of a random closed set that equals W∗,−δ(0) if W∗,−δ(0) 6= ∅ and equals Bd

ρ otherwise,
see, e.g., Molchanov (2005, Definition 1.2.2).

Lemma H.7 establishes that for any η > 0, there exist εη > 0 and N s.t. n ≥ N implies

P
(
W∗,−δ(0) 6= ∅,

∣∣detKC
∣∣ ≤ εη) ≤ η,(H.55)

which in turn, given our definition of C, yields that there is M > 0 and N such that

P
(∣∣det

(
KC
)−1 ∣∣ ≤M) ≥ 1− η, ∀n ≥ N.(H.56)

Let gn be a J + 2d+ 2 vector with

gn,j(θ + λ/
√
n) ≡


c∗n/(1 + η∗n,j)−G∗n,j(θ + λρ√

n
) if j ∈ J ∗,

0, if j ∈ {1, . . . , J} \ J ∗,
1, if j = J + 1, . . . , J + 2d,
0, if j = J + 2d+ 1, J + 2d+ 2,

(H.57)

using again that π∗1,j = 0 for j ∈ J ∗. For each P ∈ P, let

KP (θ, ρ) ≡


[ρDP,j(θ)]

J1+J2
j=1

[−ρDP,j−J2
(θ)]Jj=J1+J2+1

Id
−Id
p′

−p′

 .(H.58)

For each n and λ ∈ Bd, define the mapping φn : Bd → Rd[±∞] by

φn(λ) ≡
(
KCPn(θ̄(θn, λ), ρ)

)−1
gCn(θn + λρ√

n
),(H.59)
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where the notation θ̄(θn, λ) emphasizes that θ̄ depends on θn and λ because it lies component-wise
between θn and θn + λρ√

n
. We show that φn is a contraction mapping and hence has a fixed point.

For any λ, λ′ ∈ Bd write

‖φn(λ)− φn(λ′)‖ =
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1
gCn(θn + λρ√

n
)−

(
KCPn(θ̄(θn, λ

′), ρ)
)−1

gCn(θn + λ′ρ√
n

)
∥∥∥

≤
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2

∥∥∥gCn(θn + λρ√
n

)− gCn(θn + λ′ρ√
n

)
∥∥∥

+
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1 −
(
KCPn(θ̄(θn, λ

′), ρ)
)−1
∥∥∥

2

∥∥∥gCn(θn + λ′ρ√
n

)
∥∥∥,(H.60)

where ‖ · ‖2 denotes the spectral norm (induced by the Euclidean norm).
By Assumption E.5 (ii), for any η > 0, k > 0, there is N ∈ N such that

P
(∥∥∥gCn(θn + λρ√

n
)− gCn(θn + λ′ρ√

n
)
∥∥∥ ≤ k‖λ− λ′‖)(H.61)

= P
(∥∥∥G∗,Cn (θn + λρ√

n
)−G∗,Cn (θn + λ′ρ√

n
)
∥∥∥ ≤ k‖λ− λ′‖) ≥ 1− η, ∀n ≥ N.(H.62)

Moreover, by arguing as in equation (G.21), for any η there exist 0 < L <∞ and N ∈ N such that
∀n ≥ N

P

(
sup
λ′∈Bd

∥∥∥gCn(θn + λ′ρ√
n

)
∥∥∥ ≤ L) ≥ 1− η.(H.63)

For any invertible matrix K, ‖K−1‖2 = (min{
√
α : α is an eigenvalue of KK ′})−1

. Hence, by the
proof of Lemma H.7 and the definition of C, for any η > 0, there exist 0 < L <∞ and N ∈ N such
that

P
(∥∥(KC)−1∥∥

2
≤ L

)
≥ 1− η, ∀n ≥ N,(H.64)

By Horn and Johnson (1985, ch. 5.8), for any invertible matrices K, K̃ such that ‖K̃−1(K−K̃)‖2 <
1,

‖K−1 − K̃−1‖2 ≤
‖K̃−1(K − K̃)‖2

1− ‖K̃−1(K − K̃)‖2
‖K̃−1‖2.(H.65)

By the assumption that DPn(θn)→ D and Assumption E.4, for any η > 0, there exists N ∈ N such
that

sup
λ∈Bd

‖KCPn(θ̄(θn, λ), ρ)−KC‖2 ≤ η, ∀n ≥ N.(H.66)

By (H.65), the definition of the spectral norm, and the triangle inequality, for any η > 0, there exist
0 < L1, L2 <∞ and N ∈ N such that

P
(

sup
λ∈Bd

∥∥(KCPn(θ̄(θn, λ), ρ))−1
∥∥

2
≤ 2L1

)
≥ P

(∥∥(KC)−1∥∥
2

+ sup
λ∈Bd

‖KCPn(θ̄(θn, λ), ρ)−1 − (KC)−1‖2 ≤ 2L1

)
≥ P

(∥∥(KC)−1∥∥
2
≤L1,

∥∥(KC)−1

∥∥2

2

1−
∥∥

(KC)−1(KC
Pn

(θ̄(θn,λ),ρ)−KC)

∥∥
2

≤L2, sup
λ∈Bd ‖K

C
Pn

(θ̄(θn,λ),ρ)−KC‖2≤L1
L2

)
≥ 1− 2η, ∀n ≥ N,(H.67)
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Again by applying (H.65), for any k > 0, there exists N ∈ N such that

P
(∥∥(KCPn(θ̄(θn, λ))

)−1 −
(
KCPn(θ̄(θn, λ

′))
)−1∥∥

2
≤ k‖λ− λ′‖

)
(H.68)

≥ P
(

sup
λ∈Bd

∥∥(KCPn(θ̄(θn, λ))
)−1∥∥2

2
Mρ‖θ̄(θn, λ)− θ̄(θn, λ′)‖ ≤ k‖λ− λ′‖

)
≥ 1− η, ∀n ≥ N,(H.69)

where the first inequality follows from ‖KCPn(θ̄(θn, λ))−KCPn(θ̄(θn, λ
′))‖2 ≤Mρ‖θ̄(θn, λ)−θ̄(θn, λ′)‖ ≤

Mρ2/
√
n‖λ− λ′‖ by Assumption E.4 (ii), and the last inequality follows from (H.67).

By (H.60)-(H.63) and (H.67)-(H.69), it then follows that there exists β ∈ [0, 1) such that for any
η > 0, there exists N ∈ N such that

P
(
|φn(λ)− φn(λ′)| ≤ β‖λ− λ′‖, ∀λ, λ′ ∈ Bd

)
≥ 1− η, ∀n ≥ N.(H.70)

This implies that with probability approaching 1, each φn(·) is a contraction, and therefore by the
Contraction Mapping Theorem it has a fixed point (e.g., Pata (2014, Theorem 1.3)). This in turn
implies that for any η > 0 there exists a N ∈ N such that

P
(
∃λfn : λfn = φn(λfn)

)
≥ 1− η, ∀n ≥ N.(H.71)

Next, define the mapping

(H.72) ψn(λ) ≡
(
KC
)−1

gC .

This map is constant in λ and hence is uniformly continuous and a contraction with Lipschitz
constant equal to zero. It therefore has λCn as its fixed point. Moreover, by (H.59) and (H.72)
arguing as in (H.60), it follows that for any λ ∈ Bd,

(H.73) ‖ψn(λ)− φn(λ)‖ ≤
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2

∥∥∥gC − gCn(θn + λρ√
n

)
∥∥∥

+
∥∥∥(KC)−1 −

(
KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2

∥∥gC∥∥.
By (H.53) and (H.57)∥∥∥gC − gCn(θn + λρ√

n
)
∥∥∥ ≤ max

j∈J ∗
| − Z∗j − c∗n/(1 + η∗n,j) + G∗n,j(θn + λρ√

n
)|

≤ max
j∈J ∗

|Z∗j −G∗n,j(θn + λρ√
n

)|+ max
j∈J ∗

|c∗n/(1 + η∗n,j)|.(H.74)

We note that when Assumption E.3-2 is used, for each j = 1, . . . , R1 such that π∗1,j = 0 = π∗1,j+R1

we have that |µ̃j − µj | = oP(1) because supθ∈Θ |ηj(θ)| = oP(1), where µ̃j and µj were defined in

(G.11)-(G.12) and (H.10)-(H.11) respectively. Moreover, G∗n,j(θn + λρ√
n

)
a.s.→ Z∗ and (H.49) implies

c∗n → 0 so that we have

sup
λ∈Bd

∥∥∥gC − gCn(θn + λρ√
n

)
∥∥∥ a.s.→ 0.(H.75)

Further, by (H.65), DPn → D and, Assumption E.4-(ii), for any η > 0, there exists N ∈ N such
that

sup
λ∈Bd

∥∥∥(KC)−1 −
(
KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2
≤ η, ∀n ≥ N.(H.76)
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In sum, by (H.63), (H.67), and (H.74)-(H.76), for any η, ν > 0, there exists N ≥ N such that

P

(
sup
λ∈Bd

‖ψn(λ)− φn(λ)‖ < ν

)
≥ 1− η, ∀n ≥ N.(H.77)

Hence, for a specific choice of ν = κ(1 − β), where β is defined in equation (H.70), we have that
supλ∈Bd ‖ψn(λ)− φn(λ)‖ < κ(1− β) implies

‖λCn − λfn‖ = ‖ψn(λCn)− φn(λfn)‖
≤ ‖ψn(λCn)− φn(λCn)‖+ ‖φn(λCn)− φn(λfn)‖
≤ κ(1− β) + β‖λCn − λfn‖(H.78)

Rearranging terms, we obtain ‖λCn − λfn‖ ≤ κ. Note that by Assumptions E.4 (i) and E.5 (i), for
any δ > 0, there exists κδ > 0 and N ∈ N such that

P
(

sup
‖λ−λ′‖≤κδ

|u∗n,j,θn(λ)− u∗n,j,θn(λ′)| < δ
)
≥ 1− η, ∀n ≥ N.(H.79)

For λCn ∈W∗,−δ(0), one has

w∗j (λ
C
n) + δ ≤ 0, j ∈ {1, . . . , J1} ∩ J ∗.(H.80)

Hence, by (H.39), (H.49), and (H.79)-(H.80), ‖λCn − λfn‖ ≤ κδ/4, for each j ∈ {1, . . . , J1} ∩ J ∗ we
have

u∗n,j,θn(λfn)− c∗n(θn) ≤ u∗n,j,θn(λCn)− c∗n(θn) + δ/4 ≤ w∗j (λ
C
n) + δ/2 ≤ 0.(H.81)

For j ∈ {J1 + 1, . . . , 2J2} ∩ J ∗, the inequalities hold by construction given the definition of C.
In sum, for any η > 0 there exists δ > 0 and N ∈ N such that for all n ≥ N we have

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗,−δ(0) 6= ∅}

)
≤ P

(
@λfn ∈ U∗n(θn, c

∗
n),∃λCn ∈W∗,−δ(0)

)
≤ P

({
sup
λ∈Bd

‖ψn(λ)− φn(λ)‖ < κδ(1− β) ∩An
}c)

≤ η/3,(H.82)

where Ac denotes the complement of the set A, and the last inequality follows from (H.39) and
(H.77). Q.E.D.

Lemma H.3 Suppose Assumptions E.1, E.2, E.3, E.4, and E.5 hold. Let {Pn, θn} ∈ {(P, θ) : P ∈
P, θ ∈ ΘI(P )} be a sequence satisfying (H.1)-(H.3). For each j, let

vIn,j,θn(λ) ≡ Gbn,j(θn) + ρD̂n,j(θn)λ+ ϕ∗j (ξ̂n,j(θn)),(H.83)

wj(λ) ≡ Zj + ρDjλ+ π∗1,j ,(H.84)

where

ϕ∗j (ξ) =


ϕj(ξ) π1,j = 0

−∞ π1,j < 0

0 j = J1 + 1, . . . , J.

(H.85)
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For each c ≥ 0, define

V In (θn, c) ≡ {λ ∈ Bdn,ρ : p′λ = 0 ∩ vIn,j,θn(λ) ≤ c, j = 1, . . . , J},(H.86)

W(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}
.(H.87)

We then let cIn(θn) ≡ inf{c ∈ R+ : P ∗n(V In (θn, c) 6= ∅) ≥ 1− α} and cπ∗ ≡ inf{c ∈ R+ : Pr(W(c) 6=
∅) ≥ 1− α}.

Then, (i) for any c > 0 and {θ′n} ⊂ Θ such that θ′n ∈ (θn + ρ/
√
nBd) ∩Θ for all n,

P ∗n(V In (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)→ 0,(H.88)

with probability approaching 1;

(ii) If cπ∗ > 0, cIn(θ′n)
Pn→ cπ∗ ;

(iii) For any {θ′n} ⊂ Θ such that θ′n ∈ (θn + ρ/
√
nBd) ∩Θ for all n,

ĉn(θ′n) ≥ cIn(θ′n) + oPn(1).(H.89)

Proof: Throughout, let c > 0 and let {θ′n} ⊂ Θ be a sequence such that θ′n ∈ (θn+ρ/
√
nBd)∩Θ

for all n. By Lemma H.15, in l∞(Θ) uniformly in P conditional on {Xi}∞i=1, and by Assumption

E.4 ‖D̂n(θ′n)−DPn(θn)‖ p→ 0. Further, by Lemma H.5, ξ̂n,j(θ
′
n)

Pn→ π1,j . Therefore,

(Gbn(θ′n), D̂n(θ′n), ξ̂n(θ′n))|{Xi}∞i=1
d→ (Z, D, π1).(H.90)

for almost all sample paths {Xi}∞i=1. By Lemma H.17, conditional on the sample path, there ex-

ists an almost sure representation (G̃bn(θ′n), D̃n, ξ̃n) of (Gbn(θ′n), D̂n(θ′n), ξ̂n(θ′n)) defined on another

probability space (Ω̃, F̃ , P̃) such that (G̃bn(θ′n), D̃n, ξ̃n)
d
= (Gbn(θ′n), D̂n(θ′n), ξ̂n(θ′n)) conditional on

the sample path. In particular, conditional on the sample, (D̂n(θ′n), ξ̂n(θ′n)) are non-stochastic.

Therefore, we set (D̃n, ξ̃n) = (D̂n(θ′n), ξ̂n(θ′n)), P̃ − a.s. The almost sure representation satisfies

(G̃bn(θ′n), D̃n, ξ̃n,j)
a.s.→ (Z̃, D, π1) for almost all sample paths, where Z̃ d

= Z. The almost sure repre-

sentation (G̃bn, D̃n, ξ̃n) is defined for each sample path x∞ = {xi}∞i=1, but we suppress its dependence
on x∞ for notational simplicity (see Appendix H.3 for details). Using this representation, define

ṽIn,j,θ′n(λ) ≡ G̃bn,j(θ′n) + ρD̃nλ+ ϕ∗j (ξ̃n,j),(H.91)

and

w̃j(λ) ≡ Z̃j + ρDjλ+ π∗1,j ,(H.92)

where Z̃ d
= Z, and G̃bn(θ′n) → Z̃, P̃ − a.s. conditional on {Xi}∞i=1. With this construction, one may

write

(H.93) |P ∗n(V In (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)| = |P̃(Ṽ In (θ′n, c) 6= ∅)− P̃(W̃(c) 6= ∅)|
≤ |P̃(Ṽ In (θ′n, c) = ∅ ∩ W̃(c) 6= ∅) + P̃(Ṽ In (θ′n, c) 6= ∅ ∩ W̃(c) = ∅)|,

where the inequality is due to (H.33). First, we bound the first term on the right hand side of
(H.93). Note that

(H.94) P̃(Ṽ In (θ′n, c) = ∅ ∩ W̃(c) 6= ∅)
≤ P̃(Ṽ I,+δn (θ′n, c) = ∅ ∩ W̃(c) 6= ∅) + P̃(Ṽ I,+δn (θ′n, c) 6= ∅ ∩ Ṽ In (θ′n, c) = ∅),
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where Ṽ I,+δn is defined as

Ṽ I,+δn ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ ṽIn,j,θ′n(λ) ≤ c+ δ, j ∈ J ∗

}
.(H.95)

Let

An ≡
{
ω̃ ∈ Ω̃ : sup

λ∈Bd
max
j∈J ∗

|ṽIn,j,θ′n(λ)− w̃j(λ)| ≥ δ
}
.(H.96)

Let

E ≡ {{xi}∞i=1 : ‖D̂n(θ′n)−D‖ < η, max
j∈J ∗

|ϕ∗j (ξ̂n,j(θ′n))− π∗1,j | < η}.(H.97)

Note that, Pn(E) ≥ 1 − η for all n sufficiently large by Assumption E.4 and Lemma H.5. On E,
we therefore have ‖D̃n − D‖ < η and maxj∈J ∗ |ξ̃n,j − π∗1,j | < η, P̃ − a.s. Below, we condition on
{Xi}∞i=1 ∈ E. For any j ∈ J ∗,

|ṽIn,j,θ′n(λ)− w̃j(λ)| ≤ |G̃bn,j(θ′n)− Z̃j |+ ρ‖D̃j,n −Dj‖‖λ‖+ |ϕ∗j (ξ̃n,j)− π∗1,j | ≤ (2 + ρ)η,(H.98)

uniformly in λ ∈ Bd, where we used G̃bn → Z̃, P̃− a.s. Since η can be chosen arbitrarily small, this
in turn implies

P̃
(
An
)
< η/2,

for all n sufficiently large. Note also that supλ∈Bd maxj∈J ∗ |ṽIn,j,θ′n(λ)− w̃j(λ)| < δ implies W̃(c) ⊆
Ṽ I,+δn (θ′n, c), and hence Acn is a subset of

Ln ≡
{
ω̃ ∈ Ω̃ : W̃(c) ⊆ Ṽ I,+δn (θ′n, c)

}
.(H.99)

Using this,

P̃(Ṽ I,+δn (θ′n, c) = ∅ ∩ W̃(c) 6= ∅) ≤ P̃(W̃(c) 6⊆ Ṽ I,+δn (θ′n, c)) = P̃(Lcn) ≤ P̃(An) < η/2,(H.100)

for all n sufficiently large. Also, by Lemma H.6,

P̃(Ṽ I,+δn (θ′n, c) 6= ∅ ∩ Ṽ In (θ′n, c) = ∅) < η/2,(H.101)

for all n sufficiently large.
Combining (H.94), (H.96), (H.100), (H.101), and using Pn(E) ≥ 1− η for all n, we have

(H.102)∫
E

P̃(Ṽ In (θ′n, c) = ∅∩W̃(c) 6= ∅)dPn+

∫
Ec

P̃(Ṽ In (θ′n, c) = ∅∩W̃(c) 6= ∅)dPn ≤ η(1−η)+η ≤ 2η.

The second term of the right hand side of (H.93) can be bounded similarly. Therefore, |P ∗(V In (θ′n, c) 6=
∅)−Pr(W(c) 6= ∅)| → 0 with probability (under Pn) approaching 1. This establishes the first claim.

(ii) By Part (i), for c > 0, we have

P ∗n(V In (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)→ 0.(H.103)
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Fix c > 0, and set

gj =

 c− Zj , j = 1, . . . , J,
1, j = J + 1, . . . , J + 2d,
0, j = J + 2d+ 1, J + 2d+ 2.

(H.104)

Mimic the argument following (H.143). Then, this yields

|Pr (W(c) 6= ∅)− Pr (W(c− δ) 6= ∅)| = Pr ({W(c) 6= ∅} ∩ {W(c− δ) = ∅}) ≤ η,(H.105)

|Pr (W(c+ δ) 6= ∅)− Pr (W(c) 6= ∅)| = Pr ({W(c+ δ) 6= ∅} ∩ {W(c) = ∅}) ≤ η,(H.106)

which therefore ensures that c 7→ Pr(W(c) 6= ∅) is continuous at c > 0.
Next, we show c 7→ Pr (W(c) 6= ∅) is strictly increasing at any c > 0. For this, consider c > 0 and

c− δ > 0 for δ > 0. Define the J vector e to have elements ej = c− Zj , j = 1, . . . , J . Suppose for
simplicity that J ∗ contains the first J∗ inequality constraints. Let e[1:J∗] denote the subvector of e
that only contains elements corresponding to j ∈ J ∗, define D[1:J∗,:] correspondingly, and write

K =


D[1:J∗,:]

Id
−Id
p′

−p′

 , g =


e[1:J∗]

ρ · 1d
ρ · 1d

0
0

 , τ =


1J∗

0d
0d
0
0

 .(H.107)

By Farkas’ lemma (Rockafellar, 1970, Theorem 22.1) and arguing as in (H.148),

Pr ({W(c) 6= ∅} ∩ {W(c− δ) = ∅}) = Pr ({µ′g ≥ 0,∀µ ∈M} ∩ {µ′(g − δτ) < 0,∃µ ∈M}) ,(H.108)

where M = {µ ∈ RJ
∗+2d+2

+ : µ′K = 0}. By Minkowski-Weyl’s theorem (Rockafellar and Wets,
2005, Theorem 3.52), there exists {νt ∈M, t = 1, . . . , T}, for which one may write

M = {µ : µ = b

T∑
t=1

atν
t, b > 0, at ≥ 0,

T∑
t=1

at = 1}.(H.109)

This implies

µ′g ≥ 0, ∀µ ∈M ⇔ νt′g ≥ 0, ∀t ∈ {1, . . . , T}(H.110)

µ′(g − δτ) < 0, ∃µ ∈M ⇔ νt′g < δνt′τ, ∃t ∈ {1, . . . , T}.(H.111)

Hence,

(H.112) Pr ({µ′g ≥ 0,∀µ ∈M} ∩ {µ′(g − δτ) < 0,∃µ ∈M})
= Pr

(
0 ≤ νs′g, 0 ≤ νt′g < δνt′τ, ∀s,∃t

)
Note that by (H.107), for each s ∈ {1, . . . , T},

νs′g = νs,[1:J∗]′(c1J ∗ − ZJ ∗) + ρ

J∗+2d∑
j=J∗+1

νs,[j],(H.113)

νs′τ =

J∗∑
j=1

νs,[j].(H.114)
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For each s ∈ {1, . . . , T}, let

hUs ≡ c
J∗∑
j=1

νs,[j] + ρ

J∗+2d∑
j=J∗+1

νs,[j](H.115)

hLs ≡ (c− δ)
J∗∑
j=1

νs,[j],(H.116)

where 0 ≤ hLs < hUs for all s ∈ {1, . . . , T} due to 0 < c − δ < c and νs ∈ RJ
∗+2d+2

+ . One may
therefore rewrite the probability on the right hand side of (H.112) as

(H.117) Pr
(
0 ≤ νs′g, 0 ≤ νt′g < δνt′τ, ∀s,∃t

)
= Pr

(
νs,[1:J∗]′ZJ ∗ ≤ hUs , hLt < νt,[1:J∗]′ZJ ∗ ≤ hUt ∀s,∃t

)
> 0,

where the last inequality follows because ZJ ∗ ’s correlation matrix Ω has an eigenvalue bounded
away from 0 by Assumption E.3. By (H.108), (H.112), and (H.117), c 7→ Pr (W(c) 6= ∅) is strictly
increasing at any c > 0.

Suppose that cπ∗ > 0, then arguing as in Lemma 5.(i) of Andrews and Guggenberger (2010), we

obtain cIn(θ′n)
Pn→ cπ∗ .

(iii) Begin with observing that one can equivalently express ĉn (originally defined in (2.13)) as
ĉn(θ) = inf{c ∈ R+ : P ∗n(V bn (θ, c) 6= ∅) ≥ 1− α}.

Suppose first that Assumption E.3-1 holds. In this case, there are no paired inequalities, and V In
differs from V bn only in terms of the function ϕ∗j in (H.85) used in place of the GMS function ϕj . In

particular, ϕ∗j (ξ) ≤ ϕj(ξ) for any j and ξ, and therefore ĉn(θn) ≥ cIn(θn) by construction.

Next, suppose Assumption E.3-2 holds and V In (θ′n, c) is defined with hard threshold GMS, i.e.
with GMS function ϕ1 in AS. The only case that might create concern is one in which

π1,j ∈ [−1, 0) and π1,j+R1
= 0.(H.118)

In this case, only the j + R1-th inequality binds in the limit, but with probability approaching 1,
GMS selects both of the pair. Therefore, we have

π∗1,j = −∞, and π∗1,j+R1
= 0,(H.119)

ϕj(ξ̂n,j(θ
′
n)) = 0, and ϕj+R1(ξ̂n,j+R1(θ′n)) = 0,(H.120)

so that in V In (θ′n, c), inequality j +R1, which is

Gbn,j+R1
(θ′n) + ρD̂n,j+R1

(θ′n)λ ≤ c,(H.121)

is replaced with inequality

−Gbn,j(θ′n)− ρD̂n,j(θ
′
n)λ ≤ c,(H.122)

as explained in Section E.1. In this case, ĉn(θn) ≥ cIn(θn) is not guaranteed in finite sample.
However, let vIPn be as in (H.83) but replacing j+R1-th component Gbn,j+R1

(θn) + D̂n,j+R1(θn)λ+
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ϕ∗j+R1
(ξ̂n,j+R1(θn)) with−Gbn,j(θn)−D̂n,j(θn)λ−ϕ∗j (ξ̂n,j(θn)).Define V IPn as in (H.86) but replacing

vIn with vIPn . Define cIPn (θn) ≡ inf{c ∈ R+ : P ∗(V IPn (θn, c)) ≥ 1 − α}. By construction, ĉn(θ′n) ≥
cIPn (θ′n) for any θ′n ∈ (θn + ρ/

√
nBd) ∩Θ. Therefore, it suffices to show that cIPn (θ′n)− cIn(θ′n)

Pn→ 0.
For this, note that Lemma H.9-(3) establishes

sup
λ∈Bdn,ρ

‖Gbn,j+R1
(θ′n) + ρD̂n,j+R1

(θ′n)λ+ Gbn,j(θ′n) + ρD̂n,j(θ
′
n)λ‖ = oP∗(1),(H.123)

for almost all sample paths {Xi}∞i=1. Therefore, replacing the j + R1-th inequality with the j-th
inequality in V IPn is asymptotically negligible. Mimicking the arguments in Parts (i) and (ii) then
yields

cIPn (θ′n)
Pn→ cπ∗ .(H.124)

This therefore ensures cIPn (θ′n)− cIn(θ′n)
Pn→ 0.

If the set V In (θ′n, c) is defined with a GMS function satisfying Assumption E.2 and continuous in its
argument, we can mimic the above argument using the replacements in (H.12)-(H.13) with µ̂n,j+R1

as defined in (H.14) and µ̂n,j(θ
′
n) as in (H.15). Then when both πj ∈ (−∞, 0] and πj+R1 ∈ (−∞, 0]

we have:

∆(µ, µ̂) ≡
∥∥∥µ̂n,j(θ′n){Gbn,j(θ′n) + ρD̂n,j(θ

′
n)λ} − µ̂n,j+R1

(θ′n){Gbn,j+R1
(θ′n) + ρD̂n,j+R1

(θ′n)λ}

−µj(θ′n){Gbn,j(θ′n) + ρD̂n,j(θ
′
n)λ}+ µj+R1

(θ′n){Gbn,j+R1
(θ′n) + ρD̂n,j+R1

(θ′n)λ}
∥∥∥(H.125)

= oP(1),

where µj , µj+R1 are defined in equations (H.10)-(H.11) for θ ∈ θn + (θn + ρ/
√
nBd)∩Θ. Replacing

µ̂n,j = 1− µ̂n,j+R1 and µj = 1− µj+R1 in the definition of ∆(µ, µ̂), we have

(H.126) ∆(µ, µ̂) ≤
∣∣µ̂n,j+R1

(θ′n)− µj+R1
(θ′n)

∣∣∣
×
∥∥{Gbn,j+R1

(θ′n) + ρD̂n,j+R1
(θ′n)λ}+ {Gbn,j(θ′n) + ρD̂n,j(θ

′
n)λ}

∥∥∥.
If both πj ∈ (−∞, 0], πj+R1 ∈ (−∞, 0], the result follows by the fact that λ ∈ Bdn,ρ and µ̂n,j , µ̂n,j+R1 ,
µj , µj+R1

are bounded in [0, 1], by Lemma H.9-(3)-(4), and by Assumption E.4-(i). The rest of the
argument follows similarly as for the case of hard-threshold GMS. Q.E.D.

Lemma H.4 Let Assumptions E.1, E.2, E.4, and E.5 hold. Let (Pn, θn) be the sequence satisfying
(H.1)-(H.3), let J ∗ be defined as in (H.29), and assume that J ∗ 6= ∅. Then, for any ε, η > 0 and
θ′n ∈ (θn + ρ/

√
nBd) ∩Θ, there exists N ′ ∈ N and N

′′ ∈ N such that for all n ≥ max{N ′, N ′′},

P

(
sup
λ∈Bd

∣∣∣∣ max
j=1,...,J

(u∗n,j,θn(λ)− c∗n)− max
j=1,...,J

(w∗j (λ)− cπ∗)
∣∣∣∣ ≥ ε

)
< η,(H.127)

P̃

(
sup
λ∈Bd

∣∣∣∣ max
j=1,...,J

w̃j(λ)− max
j=1,...,J

ṽIn,j,θ′n(λ)

∣∣∣∣ ≥ ε
)
< η, w.p.1,(H.128)

where the functions u∗n,w
∗, ṽn, w̃ are defined in equations (H.24),(H.25), (H.91), and (H.92).
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Proof: We first establish (H.127). By definition, π∗1,j = −∞ for all j /∈ J ∗ and therefore

P
(

sup
λ∈Bd

| max
j=1,...,J

(u∗n,j,θn(λ)− c∗n)− max
j=1,...,J

(w∗j (λ)− cπ∗)| ≥ ε
)

(H.129)

= P
(

sup
λ∈Bd

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j (λ)− cπ∗)| ≥ ε
)
.(H.130)

Hence, for the conclusion of the lemma, it suffices to show, for any ε > 0,

lim
n→∞

P
(

sup
λ∈Bd

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j (λ)− cπ∗)| ≥ ε
)

= 0.

For each λ ∈ Rd, define rn,j,θn(λ) ≡ (u∗n,j,θn(λ)− c∗n)− (w∗j (λ)− cn). Using the fact that π∗1,j = 0

for j ∈ J ∗, and the triangle and Cauchy-Schwarz inequalities, for any λ ∈ Bd ∩
√
n
ρ (Θ − θn) and

j ∈ J ∗, we have

|rn,j,θn(λ)| ≤ |G∗n,j(θn + λρ√
n

)− Z∗j |+ ρ‖DPn,j(θ̄n)−Dj‖‖λ‖+ |G∗n,j(θn + λρ√
n

)(H.131)

+ ρDPn,j(θ̄n)λ| η∗n,j + |c∗n − cπ∗ |

= |G∗n,j(θn + λρ√
n

)− Z∗j |+ o(1) + {OP(1) +O(1)})η∗n,j + oP(1)

= oP(1)(H.132)

where the first equality follows from ‖λ‖ ≤
√
d, DPn(θ̄n) → D due to DPn(θn) → D, Assumption

E.4-(ii), and θ̄n being a mean value between θn and θn + λρ/
√
n. We also note that ‖Gn,j(θ +

λ/
√
n)‖ = OP(1), ‖DP,j(θ)‖ being uniformly bounded for θ ∈ ΘI(P ) (Assumption E.4-(i)), and

c∗n
a.s.→ cπ∗ . The last equality follows from G∗n,j(θn + λρ√

n
)−Z∗j

a.s.→ 0 and supθ∈Θ |ηn,j(θ)| = oP(1) by

Lemma H.10.
We note that when paired inequalities are merged, for each j = 1, . . . , R1 such that π∗1,j = 0 =

π∗1,j+R1
we have that |µ̃j − µj | = oP(1) because supθ∈Θ |ηj(θ)| = oP(1), where µ̃j and µj were

defined in (G.11)-(G.12) and (H.10)-(H.11) respectively.
By (H.132) and the fact that j ∈ J ∗, we have

sup
λ∈Bd

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j (λ)− cπ∗)| ≤ sup
λ∈Bd

max
j∈J ∗

|rn,j,θn(λ)| = oP(1).(H.133)

The conclusion of the lemma then follows from (H.130) and (H.133).
The result in (H.128) follows from similar arguments. Q.E.D.

Lemma H.5 Let Assumptions E.1, E.2, E.4, and E.5 hold. Given a sequence {Qn, ϑn} ∈ {(P, θ) :
P ∈ P, θ ∈ ΘI(P )} such that limn→∞ κ−1

n

√
nγ1,Qn,j(ϑn) exists for each j = 1, . . . , J , let χj({Qn, ϑn})

be a function of the sequence {Qn, ϑn} defined as

χj({Qn, ϑn}) ≡
{

0, if limn→∞ κ−1
n

√
nγ1,Qn,j(ϑn) = 0,

−∞, if limn→∞ κ−1
n

√
nγ1,Qn,j(ϑn) < 0.

(H.134)

Then for any θ′n ∈ θn + ρ√
n
Bd for all n, one has: (i) κ−1

n

√
nγ1,Pn,j(θn)− κ−1

n

√
nγ1,Pn,j(θ

′
n) = o(1);

(ii) χ({Pn, θn}) = χ({Pn, θ′n}) = π∗1,j; and (iii) κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n) − κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n) = oP(1).
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Proof: For (i), the mean value theorem yields

(H.135) sup
P∈P

sup
θ∈ΘI(P ),θ′∈θ+ρ/

√
nBd

∣∣∣∣∣
√
nEP (mj(X, θ))

κnσP,j(θ)
−
√
nEP (mj(X, θ

′))

κnσP,j(θ′)

∣∣∣∣∣
≤ sup

P∈P
sup

θ∈ΘI(P ),θ′∈θ+ρ/
√
nBd

√
n‖DP,j(θ̃)‖‖θ′ − θ‖

κn
= o(1),

where θ̃ represents a mean value that lies componentwise between θ and θ′ and where we used the
fact that DP,j(θ) is Lipschitz continuous and supP∈P supθ∈ΘI(P ) ‖DP,j(θ)‖ ≤ M̄ . Result (ii) then
follows immediately from (H.134). For (iii), note that

(H.136) sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n)
− κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

∣∣∣
≤ sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
n(m̄n,j(θ

′
n)− EPn [mj(Xi, θ

′
n)])

σn,j(θ′n)
(1 + ηn,j(θ

′
n))

+ κ−1
n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣

≤ sup
θ′n∈θn+ρ/

√
nBd
|κ−1
n Gn(θ′n)(1 + ηn,j(θ

′
n))|+

∣∣∣√nEPn [mj(Xi, θ
′
n)]

κnσPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣ = oP(1),

where the last equality follows from supθ∈Θ |Gn(θ)| = OP(1) due to asymptotic tightness of {Gn}
(uniformly in P ) by Lemma D.1 in Bugni, Canay, and Shi (2015b), Theorem 3.6.1 and Lemma 1.3.8
in van der Vaart and Wellner (2000), and supθ∈Θ |ηn,j(θ)| = oP(1) by Lemma H.10-(i). Q.E.D.

Lemma H.6 Let Assumptions E.1, E.2, E.3, E.4, and E.5 hold. For any θ′n ∈ (θn+ρ/
√
nBd)∩Θ,

(i) For any η > 0, there exist δ > 0 such that

sup
c≥0

Pr({W(c) 6= ∅} ∩ {W−δ(c) = ∅}) < η.(H.137)

Moreover, for any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥0

P ∗n({V In (θ′n, c) 6= ∅} ∩ {V I,−δn (θ′n, c) = ∅}) < η, ∀n ≥ N.(H.138)

(ii) Fix c > 0 and redefine

W−δ(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c− δ, ∀j = 1, . . . , J
}
,(H.139)

and

V I,−δn (θ′n, c) ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ vIn,j,θ′n(λ) ≤ c− δ, ∀j = 1, . . . , J

}
.(H.140)

Then for any η > 0, there exists δ > 0 such that

sup
c≥c

Pr({W(c) 6= ∅} ∩ {W−δ(c) = ∅}) < η.(H.141)
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with W−δ(c) defined in (H.139). Moreover, for any η > 0, there exist δ > 0 and N ∈ N such
that

sup
c≥c

P ∗n({V In (θ′n, c) 6= ∅} ∩ {V I,−δn (θ′n, c) = ∅}) < η, ∀n ≥ N,(H.142)

with V −δn (θ′n, c) defined in (H.140).

Proof: We first show (H.137). If J ∗ = ∅, with J ∗ as defined in (H.29), then the result is
immediate. Assume then that J ∗ 6= ∅. Any inequality indexed by j /∈ J ∗ is satisfied with probability
approaching one by similar arguments as in (G.21) (both with c and with c− δ). Hence, one could
argue for sets W(c),W−δ(c) defined as in equations (H.16) and (H.17) but with j ∈ J ∗. To keep
the notation simple, below we argue as if all j = 1, . . . , J belong to J ∗. Let c ≥ 0 be given. Let g
be a J + 2d+ 2 vector with entries

gj =

 c− Zj , j = 1, . . . , J,
1, j = J + 1, . . . , J + 2d,
0, j = J + 2d+ 1, J + 2d+ 2,

(H.143)

recalling that π∗1,j = 0 for j = J1 + 1, . . . , J . Let τ be a (J + 2d+ 2) vector with entries

τj =

{
1, j = 1, . . . , J1,
0, j = J1 + 1, . . . , J + 2d+ 2.

(H.144)

Then we can express the sets of interest as

W(c) = {λ : Kλ ≤ g},(H.145)

W−δ(c) = {λ : Kλ ≤ g − δτ}.(H.146)

By Farkas’ Lemma, e.g. Rockafellar (1970, Theorem 22.1), a solution to the system of linear in-
equalities in (H.145) exists if and only if for all µ ∈ RJ+2d+2

+ such that µ′K = 0, one has µ′g ≥ 0.
Similarly, a solution to the system of linear inequalities in (H.146) exists if and only if for all
µ ∈ RJ+2d+2 such that µ′K = 0, one has µ′(g − δτ) ≥ 0. Define

M≡ {µ ∈ RJ+2d+2
+ : µ′K = 0}.(H.147)

Then, one may write

Pr({W(c) 6= ∅} ∩ {W−δ(θ′n, c) = ∅})
= Pr({µ′g ≥ 0,∀µ ∈M} ∩ {µ′(g − δτ) < 0,∃µ ∈M})
= Pr({µ′g ≥ 0,∀µ ∈M} ∩ {µ′g < δµ′τ,∃µ ∈M}).(H.148)

Note that the setM is a non-stochastic polyhedral cone which may change with n. By Minkowski-
Weyl’s theorem (see, e.g. Rockafellar and Wets (2005, Theorem 3.52)), for each n there exist {νt ∈
M, t = 1, . . . , T}, with T <∞ a constant that depends only on J and d, such that any µ ∈M can
be represented as

µ = b

T∑
t=1

atν
t,(H.149)
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where b > 0 and at ≥ 0, t = 1, . . . , T,
∑T
t=1 at = 1. Hence, if µ ∈M satisfies µ′g < δµ′τ , denoting

νt′ the transpose of vector νt, we have

T∑
t=1

atν
t′g < δ

T∑
t=1

atν
t′τ.(H.150)

However, due to at ≥ 0,∀t and νt ∈ M, this means νt′g < δνt′τ for some t ∈ {1, . . . , T}. Further-
more, since νt ∈M, we have 0 ≤ νt′g. Therefore,

(H.151) Pr ({µ′g ≥ 0,∀µ ∈M} ∩ {µ′g < δµ′τ,∃µ ∈M})

≤ Pr
(
0 ≤ νt′g < δνt′τ,∃t ∈ {1, . . . , T}

)
≤

T∑
t=1

Pr
(
0 ≤ νt′g < δνt′τ

)
.

Case 1. Consider first any t = 1, . . . , T such that νt assigns positive weight only to constraints in
{J + 1, . . . , J + 2d+ 2}. Then

νt′g =

J+2d∑
j=J+1

νtj ,

δνt′τ = δ

J+2d+2∑
j=J+1

νtjτj = 0,

where the last equality follows by (H.144). Therefore Pr (0 ≤ νt′g < δνt′τ) = 0.
Case 2. Consider now any t = 1, . . . , T such that νt assigns positive weight also to constraints
in {1, . . . , J}. Recall that indices j = J1 + 1, . . . , J1 + 2J2 correspond to moment equalities, each
of which is written as two moment inequalities, therefore yielding a total of 2J2 inequalities with
Dj+J2 = −Dj for j = J1 + 1, . . . , J1 + J2, and:

(H.152) g =

{
c− Zj j = J1 + 1, . . . , J1 + J2,
c+ Zj−J2

j = J1 + J2 + 1, . . . , J.

For each νt, (H.152) implies

J1+2J2∑
j=J1+1

νtjgj = c

J1+2J2∑
j=J1+1

νtj +

J1+J2∑
j=J1+1

(νtj − νtj+J2
)Zj .(H.153)

For each j = 1, . . . , J1 + J2, define

ν̃tj ≡

{
νtj j = 1, . . . , J1

νtj − νtj+J2
j = J1 + 1, . . . , J1 + J2.

.(H.154)

We then let ν̃t ≡ (ν̃tn,1, . . . , ν̃
t
n,J1+J2

)′ and have

νt′g =

J1+J2∑
j=1

ν̃tjZj + c

J∑
j=1

νtj +

J+2d∑
j=J+1

νtj .(H.155)
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Case 2-a. Suppose ν̃t 6= 0. Then, by (H.155), νt′g
νt′τ is a normal random variable with variance

(ν̃t′τ)−2ν̃′tΩν̃t. By Assumption E.3, there exists a constant ω > 0 such that the smallest eigenvalue
of Ω is bounded from below by ω for all θ′n. Hence, letting ‖ · ‖p denote the p-norm in RJ+2d+2, we
have

ν̃′tΩν̃t

(ν̃t′τ)2
≥ ω‖ν̃t‖22

(J + 2d+ 2)2‖ν̃t‖22
≥ ω

(J + 2d+ 2)2
.(H.156)

Therefore, the variance of the normal random variable in (H.151) is uniformly bounded away from

0, which in turn allows one to find δ > 0 such that Pr(0 ≤ νt′g
νt′τ < δ) ≤ η/T .

Case 2-b. Next, consider the case ν̃t = 0. Because we are in the case that νt assigns positive weight
also to constraints in {1, . . . , J}, this must be because νtj = 0 for all j = 1, . . . , J1 and νtj = νtj+J2

for all j = J1 + 1, . . . , J1 + J2, while νtj 6= 0 for some j = J1 + 1, . . . , J1 + J2. Then we have∑J
j=1 ν

t
jg ≥ 0, and

∑J
j=1 ν

t
jτj = 0 because τj = 0 for each j = J1 + 1, . . . , J . Hence, the argument

for the case that νt assigns positive weight only to constraints in {J + 1, . . . , J + 2d + 2} applies
and again Pr (0 ≤ νt′g < δνt′τ) = 0. This establishes equation (H.137).

To see why equation (H.138) holds, observe that the bootstrap distribution is conditional on
X1, . . . , Xn. Therefore, the matrix K̂n, defined as the matrix in equation (H.58) but with D̂n

replacing DP , can be treated as nonstochastic. This implies that the set M̂n, defined as the set in
equation (H.147) but with K̂n replacing K, can be treated as nonstochastic as well.

By an application of Lemma D.2.8 in Bugni, Canay, and Shi (2015b) together with Lemma H.17

(through an argument similar to that following equation (H.90)), Gbn
d→ GP in l∞(Θ) uniformly in

P conditional on {X1, . . . , Xn}, and by Assumption E.4 D̂n(θ′n)
Pn→ D, for almost all sample paths.

Set

gPn,j(θ
′
n) =


c− ϕ∗j (ξn,j(θ′n))−Gbn,j(θ′n), j = 1, . . . , J,
1, j = J + 1, . . . , J + 2d,
0, j = J + 2d+ 1, J + 2d+ 2,

(H.157)

and note that |ϕ∗j (ξn,j(θ′n))| < η for all j ∈ J ∗, and Gbn,j(θ′n)|{Xi}∞i=1
d→ N(0,Ω). Then one can

mimic the argument following (H.143) to conclude (H.138).

The results in (H.141)-(H.142) follow by similar arguments, with proper redefinition of τ in
equation (H.144). Q.E.D.

Lemma H.7 Let Assumptions E.3 and E.5 hold. Let (Pn, θn) have the almost sure representations

given in Lemma H.1, let J ∗ be defined as in (H.29), and assume that J ∗ 6= ∅. Let C̃ collect
all size d subsets C of {1, ..., J + 2d + 2} ordered lexicographically by their smallest, then second

smallest, etc. elements. Let the random variable C equal the first element of C̃ s.t. detKC 6= 0 and
λC = (KC)−1gC ∈W∗,−δ(0) if such an element exists; else, let C = {J + 1, ..., J + d} and λC = 1d,
where 1d denotes a d vector with each entry equal to 1, and K, g and W∗,−δ are as defined in
Lemma H.2. Then, for any η > 0, there exist 0 < εη <∞ and N ∈ N s.t. n ≥ N implies

(H.158) P
(
W∗,−δ(0) 6= ∅,

∣∣detKC
∣∣ ≤ εη) ≤ η.
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Proof: We bound the probability in (H.158) as follows:

P
(
W∗,−δ(0) 6= ∅,

∣∣detKC
∣∣ ≤ εη) ≤ P

(
∃C ∈ C̃ : λC ∈ Bd,

∣∣detKC
∣∣ ≤ εη)(H.159)

≤
∑

C∈C̃:|detKC |≤εη
P
(
λC ∈ Bd

)
(H.160)

≤
∑

C∈C̃:|αC |≤ε2/dη

P
(
λC ∈ Bd

)
,(H.161)

where αC denote the smallest eigenvalue ofKCKC′. Here, the first inequality holds because W∗,−δ ⊆
Bd and so the event in the first probability implies the event in the next one; the second inequality is
Boolean algebra; the last inequality follows because |detKC | ≥ |αC |d/2. Noting that C̃ has

(
J+2d+2

d

)
elements, it suffices to show that∣∣αC∣∣ ≤ ε2/d

η =⇒ P
(
λC ∈ Bd

)
≤ η ≡ η(

J+2d+2
d

) .
Thus, fix C ∈ C̃. Let qC denote the eigenvector associated with αC and recall that because KCKC′

is symmetric, ‖qC‖ = 1. Thus the claim is equivalent to:

(H.162) |qC′KCKC′qC | ≤ ε2/d
η =⇒ P((KC)−1gC ∈ Bd

ρ) ≤ η.

Now, if |qC′KCKC′qC | ≤ ε2/d
η and (KC)−1gC ∈ Bd

ρ, then the Cauchy-Schwarz inequality yields

(H.163)
∣∣qC′gCPn∣∣ =

∣∣qC′KC
(
KC

)−1
gC
∣∣ < √dε1/d

η ,

hence

(H.164) P((KC)−1gC ∈ Bd
ρ) ≤ P

(
|qC′gC | <

√
dε1/d
η

)
.

If qC assigns non-zero weight only to non-stochastic constraints, the result follows immediately. If
qC assigns non-zero weight also to stochastic constraints, Assumptions E.3 and E.5 (iii) yield

eig(Ω̃) ≥ ω
=⇒ V arP(qC′gC) ≥ ω

=⇒ P
(
|qC′gC | <

√
dε1/d
η

)
= P

(
−
√
dε1/d
η < qC′gC <

√
dε1/d
η

)
<

2
√
dε

1/d
η√

2ωπ
,(H.165)

where the result in (H.165) uses that the density of a normal r.v. is maximized at the expected
value. The result follows by choosing

εη =

(
η
√

2ωπ

2
√
d

)d
.

Q.E.D.
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Lemma H.8 Let Assumptions E.1, E.2, E.3, E.4, and E.5 hold. If J2 ≥ d, then ∃c > 0 s.t.

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (cIn(θ) ≥ c) = 1.

Proof: Fix any c ≥ 0 and restrict attention to constraints {J1 + 1, ..., J1 + d, J1 + J2 + 1, ..., J1 +
J2 + d}, i.e. the inequalities that jointly correspond to the first d equalities. We separately analyze
the case when (i) the corresponding estimated gradients {D̂n,j(θ) : j = J1 + 1, ..., J1 + d} are

linearly independent and (ii) they are not. If {D̂n,j(θ) : j = J1 + 1, ..., J1 + d} converge to linearly
independent limits, then only the former case occurs infinitely often; else, both may occur infinitely
often, and we conduct the argument along two separate subsequences if necessary.

For the remainder of this proof, because the sequence {θn} is fixed and plays no direct role in
the proof, we suppress dependence of D̂n,j(θ) and Gbn,j(θ) on θ. Also, if C is an index set picking

certain constraints, then D̂C
n is the matrix collecting the corresponding estimated gradients, and

similarly for Gb,Cn .
Suppose now case (i), then there exists an index set C̄ ⊂ {J1+1, ..., J1+d, J1+J2+1, . . . , J1+J2+

d} picking one direction of each constraint s.t. p is a positive linear combination of the rows of D̂C̄
P .

(This choice ensures that a Karush-Kuhn-Tucker condition holds, justifying the step from (H.167)
to (H.168) below.) Then the coverage probability P ∗(V In (θ, c) 6= ∅) is asymptotically bounded above
by

P ∗
(

sup
λ∈ρBdn,ρ

{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ J ∗

}
≥ 0
)

(H.166)

≤ P ∗
(

sup
λ∈Rd

{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄

}
≥ 0
)

(H.167)

= P ∗
(
p′(D̂C̄

n )−1(c1d −Gb,C̄n ) ≥ 0
)

(H.168)

= P ∗
(
p′(D̂C̄

n )−1(c1d −Gb,C̄n )√
p′(D̂C̄

n )−1ΩCP (D̂C̄
n )−1p

≥ 0

)
(H.169)

= P ∗
(

p′adj(D̂C̄
n )(c1d −Gb,C̄n )√

p′(adj(D̂C̄
n )ΩCP adj(D̂

C̄
n )p
≥ 0

)
(H.170)

= Φ

(
p′adj(D̂C̄

n )c1d√
p′(adj(D̂C̄

n )ΩCP adj(D̂
C̄
n )p

)
+ oP(1)(H.171)

≤ Φ(dω−1/2c) + oP(1).(H.172)

Here, (H.167) removes constraints and hence enlarges the feasible set; (H.168) solves in closed form;
(H.169) divides through by a positive scalar; (H.170) eliminates the determinant of D̂C̄

n , using
that rows of D̂C̄

n can always be rearranged so that the determinant is positive; (H.171) follows
by Assumption E.5, using that the term multiplying Gb,C̄n is OP(1); and (H.172) uses that by
Assumption E.3, there exists a constant ω > 0 that does not depend on θ such that the smallest
eigenvalue of ΩP is bounded from below by ω. The result follows for any choice of c ∈ (0,Φ−1(1−
α)× ω1/2/d).

In case (ii), there exists an index set C̄ ⊂ {J1 + 2, ..., J1 +d, J1 +J2 + 2, ..., J1 +J2 +d} collecting
d− 1 or fewer linearly independent constraints s.t. D̂n,J1+1 is a positive linear combination of the
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rows of D̂C̄
P . (Note that C̄ cannot contain J1 + 1 or J1 + J2 + 1.) One can then write

P ∗
(

sup
λ∈ρBdn,ρ

{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄ ∪ {J1 + J2 + 1}

}
≥ 0
)

(H.173)

≤ P ∗
(
∃λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄ ∪ {J1 + J2 + 1}

)
(H.174)

≤ P ∗

(
sup

λ∈ρBdn,ρ

{
D̂n,J1+1λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄

}
(H.175)

≥ inf
λ∈ρBdn,ρ

{
D̂n,J1+1λ : D̂n,J1+J2+1λ ≤ c−Gbn,J1+J2+1

})
(H.176)

= P ∗
(
D̂n,J1+1D̂

C̄′
n (D̂C̄

n D̂
C̄′
n )−1(c1d̄ −Gb,C̄n ) ≥ −c+ Gbn,J1+J2+1

)
.(H.177)

Here, the reasoning from (H.173) to (H.176) holds because we evaluate the probability of increasingly
larger events; in particular, if the event in (H.176) fails, then the constraint sets corresponding to
the sup and inf can be separated by a hyperplane with gradient D̂n,J1+1 and so cannot intersect.
The last step solves the optimization problems in closed form, using (for the sup) that a Karush-
Kuhn-Tucker condition again holds by construction and (for the inf) that D̂n,J1+J2+1 = −D̂n,J1+1.
Expression (H.177) resembles (H.169), and the argument can be concluded in analogy to (H.170)-
(H.172). Q.E.D.

Lemma H.9 Let Assumptions E.1, E.2, E.3-2, E.4, and E.5 hold. Suppose that both π1,j and
π1,j+R1

are finite, with π1,j , j = 1, . . . , J , defined in (G.4). Let (Pn, θn) be the sequence satisfying
the conditions of Lemma H.3. Then for any θ′n ∈ (θn + ρ/

√
nBd) ∩Θ,

(1) σ2
Pn,j

(θ′n)/σ2
Pn,j+R1

(θ′n)→ 1 for j = 1, . . . , R1.
(2) CorrPn(mj(Xi, θ

′
n),mj+R1(Xi, θ

′
n))→ −1 for j = 1, . . . , R1.

(3) |Gn,j(θ′n) + Gn,j+R1
(θ′n)| Pn→ 0, and |Gbn,j(θ′n) + Gbn,j+R1

(θ′n)| P
∗
n→ 0 for almost all {Xi}∞i=1.

(4) ρ‖DPn,j+R1
(θ′n) +DPn,j(θ

′
n)‖ → 0.

Proof: By Lemma H.5, for each j, limn→∞ κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n) = π1,j , and hence the condition

that π1,j , π1,j+R1 are finite is inherited by the limit of the corresponding sequences κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n)

and κ−1
n

√
nEPn [mj+J11(Xi,θ

′
n)]

σPn,j+J11(θ′n) .

We first establish Claims 1 and 2. We consider two cases.
Case 1.

lim
n→∞

κn√
n
σPn,j(θ

′
n) > 0,(H.178)

which implies that σPn,j(θ
′
n)→∞ at rate

√
n/κn or faster. Claim 1 then holds because

σ2
Pn,j+R1

(θ′n)

σ2
Pn,j

(θ′n)
=
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n)) + 2CovPn(mj(Xi, θ

′
n), tj(Xi, θ

′
n))

σ2
Pn,j

(θ′n)
→ 1,(H.179)

where the convergence follows because V arPn(tj(Xi, θ
′
n)) is bounded due to Assumption E.3-2,

|CovPn(mj(Xi, θ
′
n), tj(Xi, θ

′
n))/σ2

Pn,j(θ
′
n)| ≤ (V arPn(tj(Xi, θ

′
n)))1/2/σPn,j(θ

′
n),



52 H. KAIDO, F. MOLINARI, AND J. STOYE

and the fact that σPn,j(θ
′
n)→∞. A similar argument yields Claim 2.

Case 2.

lim
n→∞

κn√
n
σPn,j(θ

′
n) = 0.(H.180)

In this case, π1,j being finite implies that EPnmj(Xi, θ
′
n) → 0. Again using the upper bound on

tj(Xi, θ
′
n) similarly to (H.179), it also follows that

lim
n→∞

κn√
n
σPn,j+R1

(θ′n) = 0,(H.181)

and hence that EPn(tj(Xi, θ
′
n))→ 0. We then have, using Assumption E.3-2 again,

V arPn(tj(Xi, θ
′
n)) =

∫
tj(x, θ

′
n)2dPn(x)− EPn [tj(Xi, θ

′
n)]2

≤M
∫
tj(x, θ

′
n)dPn(x)− EPn [tj(Xi, θ

′
n)]2 → 0.(H.182)

Hence,

σ2
Pn,j+R1

(θ′n)

σ2
Pn,j

(θ′n)
=
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n)) + 2CovPn(mj(Xi, θ

′
n), tj(Xi, θ

′
n))

σ2
Pn,j

(θ′n)

≤
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n))

σ2
Pn,j

(θ′n)
+

2(V arPn(tj(Xi, θ
′
n)))1/2

σPn,j(θ
′
n)

→ 1,(H.183)

and the first claim follows.
To obtain claim 2, note that

CorrPn(mj(Xi, θ
′
n),mj+R1

(Xi, θ
′
n)) =

−σ2
Pn,j

(θ′n)− CovPn(mj(Xi, θ
′
n), tj(Xi, θ

′
n))

σPn,j(θ
′
n)σPn,j+R1(θ′n)

→ −1,(H.184)

where the result follows from (H.182) and (H.183).
To establish Claim 3, consider Gn below. Note that, for j = 1, . . . , R1,

[
Gn,j(θ′n)

Gn,j+R1(θ′n)

]
=

 1√
n

∑n
i=1(mj(Xi,θ

′
n)−EPn [mj(Xi,θ

′
n)])

σPn,j(θ
′
n)

− 1√
n

∑n
i=1(mj(Xi,θ

′
n)−EPn [mj(Xi,θ

′
n)])+ 1√

n

∑n
i=1(tj(Xi,θ

′
n)−EPn [tj(Xi,θ

′
n)])

σPn,j+R1
(θ′n)

 .(H.185)

Under the conditions of Case 1 above, we immediately obtain

|Gn,j(θ′n) + Gn,j+R1
(θ′n)| Pn→ 0.(H.186)

Under the conditions in Case 2 above, 1√
n

∑n
i=1(tj(Xi, θ

′
n) − EPn [tj(Xi, θ

′
n)] = oP(1) due to the

variance of this term being equal to V arPn(tj(Xi, θ
′
n))→ 0 and Chebyshev’s inequality. Therefore,

(H.186) obtains again. These results imply that Zj + Zj+R1 = 0, a.s. By Lemma H.15, {Gbn}
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converges in law to the same limit as {Gn} for almost all sample paths {Xi}∞i=1. This and (H.186)
then imply the second half of Claim 3.

To establish Claim 4, finiteness of π1,j and π1,j+R1
implies that

EPn

(
mj(X, θ

′
n)

σPn,j(θ
′
n)

+
mj+R1

(X, θ′n)

σPn,j+R1
(θ′n)

)
= OP

(
κn√
n

)
.(H.187)

Define the 1× d vector

qn ≡ DPn,j+R1
(θ′n) +DPn,j(θ

′
n).(H.188)

Suppose by contradiction that

ρqn → ς 6= 0,

where ‖ς‖ might be infinite. Write

r̃n =
q′n
‖qn‖

.(H.189)

Let

rn = r̃nρκ
2
n/
√
n.(H.190)

Using a mean value expansion, where θ̄n and θ̃n in the expressions below are two potentially different
vectors that lie component-wise between θ′n and θ′n + rn, we obtain

EPn

(mj(X, θ
′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1

(X, θ′n + rn)

σPn,j+R1
(θ′n + rn)

)
= EPn

(
mj(X, θ

′
n)

σPn,j(θ
′
n)

+
mj+R1

(X, θ′n)

σPn,j+R1
(θ′n)

)
+
(
DPn,j(θ̄n) +DPn,j+R1

(θ̃n)
)
rn

= OP(
κn√
n

) + (DPn,j(θ
′
n) +DPn,j+R1

(θ′n)) rn +
(
DPn,j(θ̄n)−DPn,j(θ

′
n)
)
rn

+
(
DPn,j+R1(θ̃n)−DPn,j+R1(θ′n)

)
rn

= OP(
κn√
n

) +
ρκ2

n√
n

+OP(
ρ2κ4

n

n
).(H.191)

It then follows that there exists N ∈ N such that for all n ≥ N , the right hand side in (H.191) is
strictly greater than zero.

Next, observe that

EPn

(mj(X, θ
′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1

(X, θ′n + rn)

σPn,j+R1(θ′n + rn)

)
= EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1

(X, θ′n + rn)

σPn,j(θ
′
n + rn)

)
−
(
σPn,j+R1(θ′n + rn)

σPn,j(θ
′
n + rn)

− 1

)
EPn(mj+R1(X, θ′n + rn))

σPn,j+R1
(θ′n + rn)

= EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1

(X, θ′n + rn)

σPn,j(θ
′
n + rn)

)
− oP(

ρκ2
n√
n

).(H.192)
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Here, the last step is established as follows. First, using that σPn,j(θ
′
n + rn) is bounded away from

zero for n large enough by the continuity of σ(·) and Assumption E.3-2, we have

σPn,j+R1
(θ′n + rn)

σPn,j(θ
′
n + rn)

− 1 =
σPn,j+R1

(θ′n)

σPn,j(θ
′
n)

− 1 + oP(1) = oP(1),(H.193)

where we used Claim 1. Second, using Assumption E.4, we have that

(H.194)
EPn(mj+R1

(X, θ′n + rn))

σPn,j+R1(θ′n + rn)
=
EPn(mj+R1

(X, θ′n))

σPn,j+R1(θ′n)
+DPn,j+R1(θ̃n)rn

= OP(
κn√
n

) + OP(
ρκ2

n√
n

).

The product of (H.193) and (H.194) is therefore oP(
ρκ2
n√
n

) and (H.192) follows.

To conclude the argument, note that for n large enough, mj+R1
(X, θ′n + rn) ≤ −mj(X, θ

′
n + rn)

a.s. because for any θn ∈ ΘI(Pn) and θ′n ∈ (θn + ρ/
√
nBd) ∩ Θ for n large enough, θ′n + rn ∈ Θε

and Assumption E.3-2 applies. Therefore, there exists N ∈ N such that for all n ≥ N , the left hand
side in (H.191) is strictly less than the right hand side, yielding a contradiction. Q.E.D.

Below, we let R1 = {1, . . . , R1} and R2 = {R1 + 1, . . . , 2R1}.

Lemma H.10 Suppose Assumptions E.1, E.2, and E.5 hold. For each θ ∈ Θ, let ηn,j(θ) =
σP,j(θ)/σ̂n,j(θ)− 1. Then, (i) for each j = 1, . . . , J1 + J2

inf
P∈P

P
(

sup
θ∈Θ
|ηn,j(θ)| → 0

)
= 1.(H.195)

(ii) For any j = 1, . . . , R1 let

σ̂Mn,j(θ) = σ̂Mn,j+R1
(θ) ≡ µ̂n,j(θ)σ̂n,j(θ) + (1− µ̂n,j(θ))σ̂n,j+R1

(θ).(H.196)

Let (Pn, θn) be a sequence such that Pn ∈ P, θn ∈ Θ for all n, and κ−1
n

√
nγ1,Pn,j(θn)→ π1j ∈ R[−∞].

Let J ∗ be defined as in (H.29). Then, for any η > 0, there exists N ∈ N such that

Pn

(
max

j∈(R1∪R2)∩J ∗

∣∣∣σPn,j(θn)

σ̂Mn,j(θn)
− 1
∣∣∣ > η

)
< η(H.197)

for all n ≥ N .

Proof: We first show that, for any ε > 0 and for any j = 1, . . . , J1 + J2,

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣ σ̂n,j(θ)
σP,j(θ)

− 1
∣∣∣ ≤ ε)→ 1.(H.198)

For this, define the following sets:

Mj ≡ {mj(·, θ)/σP,j(θ) : θ ∈ Θ, P ∈ P}(H.199)

Sj ≡ {(mj(·, θ)/σP,j(θ))2 : θ ∈ Θ, P ∈ P}.(H.200)
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By Assumptions E.1-(a), E.1 (iv), E.5 (i), (iii), and arguing as in the proof of Lemma D.2.2 (and
D.2.1) in Bugni, Canay, and Shi (2015b), it follows that Sj and Mj are Glivenko-Cantelli (GC)
classes uniformly in P ∈ P (in the sense of van der Vaart and Wellner, 2000, page 167).

Therefore, for any ε > 0,

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣n−1
∑n
i=1mj(Xi, θ)

2

σ2
P,j(θ)

− EP [mj(X, θ)
2]

σ2
P,j(θ)

∣∣∣ ≤ ε)→ 1(H.201)

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣m̄n,j(θ)− EP [mj(X, θ)]

σP,j(θ)

∣∣∣ ≤ ε)→ 1.(H.202)

Note that, by Assumption E.1 (iv), |EP [mj(X, θ)]/σP,j(θ)| ≤ M for some constant M > 0 that
does not depend on P and (x2−y2) ≤ |x+y||x−y| ≤ 2M |x−y| for all x, y ∈ [−M,M ]. By (H.202),
for any ε > 0, it follows that

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣m̄n,j(θ)
2 − EP [mj(X, θ)]

2

σ2
P,j(θ)

∣∣∣ ≤ ε)→ 1.(H.203)

By the uniform continuity of x 7→
√
x on R+, for any ε > 0, there is a constant η > 0 such that∣∣∣ σ̂2

n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ η ⇒ ∣∣∣ σ̂n,j(θ)

σP,j(θ)
− 1
∣∣∣ ≤ ε.(H.204)

By the definition of σ2
P,j(θ) and the triangle inequality,

∣∣∣ σ̂2
n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ ∣∣∣n−1

∑n
i=1m(Xi, θ)

2 − E[mj(Xi, θ)
2]

σ2
P,j(θ)

∣∣∣+
∣∣∣m̄n,j(θ)

2 − E[mj(Xi, θ)]
2

σ2
P,j(θ)

∣∣∣.(H.205)

By (H.204)-(H.205), bounding each of the terms on the right hand side of (H.205) by η/2 implies
|σ̂n,j(θ)/σP,j(θ) − 1| ≤ ε. This, together with (H.201) and (H.203), ensures that, for any ε > 0,
(H.198) holds.

Note that |σ̂n,j(θ)/σP,j(θ)−1| ≤ ε implies σ̂n,j(θ) > 0, and argue as in the proof of Lemma D.2.4
in Bugni, Canay, and Shi (2015b) to conclude that

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣σP,j(θ)
σ̂n,j(θ)

− 1
∣∣∣ ≤ ε)→ 1.(H.206)

Finally, recall that ηn,j(θ) = σP,j(θ)/σ̂n,j(θ)− 1 and note that for any ε > 0,

1 = lim
n→∞

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ
|ηn,j(θ)| ≤ ε

)
≤ inf
P∈P

lim
n→∞

P
( ⋂
m≥n

{
sup
θ∈Θ
|ηn,j(θ)| ≤ ε

})
= inf
P∈P

P
(

lim
n→∞

⋂
m≥n

{sup
θ∈Θ
|ηn,j(θ)| ≤ ε

})
= inf
P∈P

P
(

sup
θ∈Θ
|ηn,j(θ)| ≤ ε, for almost all n

)
,(H.207)
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where the second equality is due to the continuity of probability with respect to monotone sequences.
Therefore, the first conclusion of the lemma follows.

(ii) We first give the limit of µ̂n,j(θn). Recall the definitions of µ̂n,j+R1 and µ̂n,j(θn) in (H.14)-
(H.15).

Note that

(H.208) sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n)
− κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

∣∣∣
≤ sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
n(m̄n,j(θ

′
n)− EPn [mj(Xi, θ

′
n)])

σn,j(θ′n)
(1 + ηn,j(θ

′
n))

+ κ−1
n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣

≤ sup
θ′n∈θn+ρ/

√
nBd
|κ−1
n Gn(θ′n)(1 + ηn,j(θ

′
n))|+

∣∣∣√nEPn [mj(Xi, θ
′
n)]

κnσPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣ = oP(1),

where the last equality follows from supθ∈Θ |Gn(θ)| = OP(1) due to asymptotic tightness of {Gn}
(uniformly in P ) by Lemma D.1 in Bugni, Canay, and Shi (2015b), Theorem 3.6.1 and Lemma
1.3.8 in van der Vaart and Wellner (2000), and supθ∈Θ |ηn,j(θ)| = oP(1) by part (i) of this Lemma.
Hence,

µ̂n,j(θn)
Pn→ 1−min

{
max(0,

π1,j

π1,j+R1 + π1,j
), 1
}
,(H.209)

unless π1,j+R1
+ π1,j = 0 (this case is considered later). This implies that if π1,j ∈ (−∞, 0] and

π1,j+R1
= −∞, one has

µ̂n,j(θn)
Pn→ 1.(H.210)

Similarly, if π1,j = −∞ and π1,j+R1 ∈ (−∞, 0], one has

µ̂n,j+R1
(θn)

Pn→ 1.(H.211)

Now, one may write

(H.212)
σPn,j(θn)

σ̂Mn,j(θn)
− 1 =

σPn,j(θn)

σ̂n,j(θn)

( σ̂n,j(θn)

σ̂Mn,j(θn)
− 1
)

+
(σPn,j(θn)

σ̂n,j(θn)
− 1
)

= OPn(1)
( σ̂n,j(θn)

σ̂Mn,j(θn)
− 1
)

+ oPn(1),

where the second equality follows from the first conclusion of the lemma. Hence, for the second
conclusion of the lemma, it suffices to show σ̂n,j(θn)/σ̂Mn,j(θn) − 1 = oP(1). For this, we consider
three cases.

Suppose first j ∈ R1 ∩ J ∗ and j +R1 /∈ J ∗. Then, π∗1,j = 0 and π∗1,j+R1
= −∞. Then,

σ̂Mn,j(θn) = µ̂n,j(θn)σ̂n,j(θn) + (1− µ̂n,j(θn))σ̂n,j+R1
(θn)(H.213)

= (1 + oPn(1))σ̂n,j(θn) + (1− µ̂n,j(θn))OPn(σ̂n,j(θn)),(H.214)
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where the second equality follows from (H.210) and the fact that

(H.215) σ̂n,j+R1(θn) =
(
σ̂2
n,j(θn) + 2Ĉovn(mj(Xi, θ), tj(Xi, θ)) + V̂ arn(tj(Xi, θ))

)1/2

=
(
σ̂2
n,j(θn) + OPn(σ̂n,j(θn)) + OPn(1)

)1/2

= OPn(σ̂n,j(θn)),

where the second equality follows from, V arPn(tj(Xi, θ)) being bounded by Assumption E.3-(II)
and

V̂ arn(tj(Xi, θ)) = V arPn(tj(Xi, θ)) + oPn(1)(H.216)

Ĉovn(mj(Xi, θ), tj(Xi, θ)) ≤ σ̂n,j(θn)V̂ arn(tj(Xi, θ))
1/2,(H.217)

where the last inequality is due to the Cauchy-Schwarz inequality.

Therefore,

(H.218)
σ̂n,j(θn)

σ̂Mn,j(θn)
− 1 =

σ̂n,j(θn)− σ̂Mn,j(θn)

σ̂Mn,j(θn)

=
(1− µ̂n,j(θn))OPn(σ̂n,j(θn))

(1 + oPn(1))σ̂n,j(θn) + (1− µ̂n,j(θn))OPn(σ̂n,j(θn))
= oPn(1),

where we used σ̂−1
n,j(θn) = OPn(1) by equation (E.3) and part (i) of the lemma. By (H.212) and

(H.218), σPn,j(θn)/σ̂Mn,j(θn) − 1 = oPn(1). Using a similar argument, the same conclusion follows
when j ∈ R1, j /∈ J ∗, but j +R1 ∈ R2 ∩ J ∗.

Now consider the case j ∈ R1 ∩ J ∗ and j + R1 ∈ R2 ∩ J ∗. Then, π∗1,j = 0 and π∗1,j+R1
= 0. In

this case, µ̂n,j(θn) ∈ [0, 1] for all n and by Lemma H.9 (1),∣∣∣ σPn,j(θn)

σPn,j+R1(θn)
− 1
∣∣∣ = oPn(1), for j = 1, . . . , R1,(H.219)

and therefore,

σPn,j(θn)

σ̂Mn,j(θn)
− 1 =

σPn,j(θn)− σ̂Mn,j(θn)

σ̂Mn,j(θn)

=
[µ̂n,j(θn) + (1− µ̂n,j(θn))]σPn,j(θn)− [µ̂n,j(θn)σ̂n,j(θn) + (1− µ̂n,j(θn))σ̂n,j+R1

(θn)]

σ̂Mn,j(θn)

=
µ̂n,j(θn)[σPn,j(θn)− σ̂n,j(θn)]

σ̂Mn,j(θn)
+

(1− µ̂n,j(θn))[σPn,j+R1
(θn)− σ̂n,j+R1

(θn) + oPn(1)]

σ̂Mn,j(θn)
,(H.220)

where the second equality follows from the definition of σ̂Mn,j(θn), and the third equality follows
from (H.219) and σPn,j+R1

bounded away from 0 due to (E.3). Note that

µ̂n,j(θn)[σPn,j(θn)− σ̂n,j(θn)]

σ̂Mn,j(θn)
= µ̂n,j(θn)

σ̂n,j(θn)

σ̂Mn,j(θn)

(σPn,j(θn)

σ̂n,j(θn)
− 1
)

= oPn(1),(H.221)
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where the second equality follows from the first conclusion of the lemma. Similarly,

(H.222)
(1− µ̂n,j(θn))[σPn,j+R1

(θn)− σ̂n,j+R1
(θn) + oPn(1)]

σ̂Mn,j(θn)

= (1− µ̂n,j(θn))
σ̂n,j+R1

(θn)

σ̂Mn,j(θn)

(σPn,j+R1
(θn)

σ̂n,j+R1
(θn)

− 1 + oPn(1)
)

= oPn(1).

By (H.220)-(H.222), it follows that σPn,j(θn)/σ̂Mn,j(θn)−1 = oPn(1). Therefore, the second conclusion
holds for all subcases. Q.E.D.

H. Lemmas Used to Prove Theorem D.1

Let {Xb
i }ni=1 denote a bootstrap sample drawn randomly from the empirical distribution. Define

Gbn,j(θ) ≡
1√
n

n∑
i=1

(
mj(X

b
i , θ)− m̄n(θ)

)
/σP,j(θ)

=
1√
n

n∑
i=1

(Mn,i − 1)mj(Xi, θ)/σP,j(θ),(H.223)

where {Mn,i}ni=1 denotes the multinomial weights on the original sample, and we let P ∗n denote the
conditional distribution of {Mn,i}ni=1 given the sample path {Xi}∞i=1 (see Appendix H.3 for details
on the construction of the bootstrapped empirical process).

Lemma H.11 (i) Let MP ≡ {f : X → R : f(·) = σP,j(θ)
−1mj(·, θ), θ ∈ Θ, j = 1, . . . , J} and let F

be its envelope. Suppose that (i) there exist constants K, v > 0 that do not depend on P such that

sup
Q
N(ε‖F‖L2

Q
,MP , L

2
Q) ≤ Kε−v, 0 < ε < 1,(H.224)

where the supremum is taken over all discrete distributions; (ii) There exists a positive constant
γ > 0 such that

‖(θ1, θ̃1)− (θ2, θ̃2)‖ ≤ δ ⇒ sup
P∈P
‖QP (θ1, θ̃1)−QP (θ2, θ̃2)‖ ≤Mδγ .(H.225)

Let δn be a positive sequence tending to 0 and let εn be a positive sequence such that εn/|δγn ln δn| →
∞ as n→∞. Then,

sup
P∈P

P

(
sup

‖θ−θ′‖≤δn
‖Gn(θ)−Gn(θ′))‖ > εn

)
= o(1).(H.226)

Further,

lim
n→∞

P ∗n

(
sup

‖θ−θ′‖≤δn
‖Gbn(θ)−Gbn(θ′))‖ > εn|{Xi}∞i=1

)
= 0.(H.227)

for almost all sample paths {Xi}∞i=1 uniformly in P ∈ P.
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Proof: For the first conclusion of the lemma, it suffices to show that there is a sequence {εn}
such that, uniformly in P :

P

(
sup

‖θ−θ′‖≤δn
max

j=1,...,J
|Gn,j(θ)−Gn,j(θ′)| > εn

)
= o(1).(H.228)

For this purpose, we mostly mimic the argument required to show the stochastic equicontinuity of
empirical processes (see e.g. van der Vaart and Wellner, 2000, Ch.2.5). Before doing so, note that,
arguing as in the proof of Lemma D.1 (Part 1) in Bugni, Canay, and Shi (2015b), one has

‖θ − θ′‖ ≤ δn ⇒ %P (θ, θ′) ≤ δ̃n,(H.229)

where δ̃n = O(δγn) by assumption. Define

MP,δ̃n
= {σP,j(θ)−1mj(·, θ)− σP,j(θ′)−1mj(·, θ′)|θ, θ′ ∈ Θ, %P (θ, θ̃) < δ̃n, j = 1, . . . , J}.(H.230)

Define Zn(δ̃n) ≡ supf∈Mδ̃n
|
√
n(Pn − P )f |. Then, by (H.229), one has

P

(
sup

‖θ−θ′‖≤δn
max

j=1,...,J
|Gn,j(θ)−Gn,j(θ′))| > εn) ≤ P (Zn(δ̃n) > εn

)
.(H.231)

From here, we deal with the supremum of empirical processes though symmetrization and an appli-
cation of a maximal inequality. By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma)
in van der Vaart and Wellner (2000), one has

P (Zn(δ̃n) > εn) ≤ 2

εn
EP×PW

[
sup

f∈MP,δ̃n

∣∣∣ 1√
n

n∑
i=1

Wif(Xi)
∣∣∣] ,(H.232)

where {Wi}ni=1 are i.i.d. Rademacher random variables independent of {Xi}∞i=1 whose law is denoted

by PW . Now, fix the sample path {Xi}ni=1, and let P̂n be the empirical distribution. By Hoeffding’s
inequality, the stochastic process f 7→ {n−1/2

∑n
i=1Wif(Xi)} is sub-Gaussian for the L2

P̂n
seminorm

‖f‖L2
P̂n

= (n−1
∑n
i=1 f(Xi)

2)1/2. By the maximal inequality (Corollary 2.2.8) and arguing as in the

proof of Theorem 2.5.2 in in van der Vaart and Wellner (2000), one then has

EPW

[
sup

f∈Mδ̃n

∣∣∣ 1√
n

n∑
i=1

Wif(Xi)
∣∣∣] ≤ K ∫ δ̃n

0

√
lnN(ε,MP,δ̃n

, L2
P̂n

)dε

≤ K
∫ δ̃n/‖F‖L2

Q

0

sup
Q

√
lnN(ε‖F‖L2

Q
,MP , L2

Q)dε

≤ K ′
∫ δ̃n/‖F‖L2

Q

0

√
−v ln εdε,(H.233)

for some K ′ > 0, where the last inequality follows from (H.224). Note that
√
− ln ε ≤ − ln ε for

ε ≤ δ̃n/‖F‖L2
Q

with n sufficiently large. Hence,

EPW

[
sup

f∈Mδ̃n

∣∣∣ 1√
n

n∑
i=1

Wif(Xi)
∣∣∣] ≤ K ′v1/2

∫ δ̃n/‖F‖L2
Q

0

(− ln ε)dε = K ′v1/2(δ̃n − δ̃n ln(δ̃n)).(H.234)
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By (H.232) and taking expectations with respect to P in (H.234), it follows that

P (Zn(δ̃n) > εn) ≤ 2K ′v1/2(δ̃n − δ̃n ln(δ̃n))/εn = O(δγn/εn) +O(|δγn ln(δn)|/εn) = o(1),(H.235)

where the last equality follows from the rate condition on εn. By (H.231) and (H.235), conclude
that the first claim of the lemma holds.

For the second claim, define Z∗n(δ̃n) ≡ supf∈Mδ̃n
|
√
n(P̂ ∗n − P̂n)f |, where P̂ ∗n is the empirical

distribution of {Xb
i }ni=1. Then, by (H.229), one has

P ∗n

(
sup

‖θ−θ′‖≤δn
max

j=1,...,J
|Gbn,j(θ)−Gbn,j(θ

′)| > εn

∣∣∣{Xi}∞i=1

)
≤ P ∗n

(
Z∗n(δ̃n) > εn

∣∣{Xi}∞i=1

)
.(H.236)

By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma) in van der Vaart and Wellner
(2000), one has

P ∗n
(
Z∗n(δ̃n) > εn

∣∣{Xi}∞i=1

)
≤ 2

εn
EP∗n×PW

[
sup

f∈MP,δ̃n

∣∣∣ 1√
n

n∑
i=1

Wif(Xb
i )
∣∣∣∣∣∣∣∣{Xi}∞i=1

]
(H.237)

=
2

εn
EP∗n

[
EPW

[
sup

f∈MP,δ̃n

∣∣∣ 1√
n

n∑
i=1

Wif(Xb
i )
∣∣∣∣∣∣∣∣{Xb

i }, {Xi}∞i=1

]∣∣∣∣∣{Xi}∞i=1

]
,(H.238)

where {Wi}ni=1 are i.i.d. Rademacher random variables independent of {Xi}∞i=1 and {Mn,i}ni=1.
Argue as in (H.232)-(H.235). Then, it follows that

P ∗n(Z∗n(δ̃n) > εn|{Xi}∞i=1) = O(δγn/εn) +O(−δγn ln(δn)/εn) = o(1),

for almost all sample paths. Hence, the second claim of the lemma follows. Q.E.D.

Lemma H.12 Suppose Assumptions E.1, E.2, and E.5 hold. Let SP ≡ {f : X → R : f(·) =
σP,j(θ)

−2m2
j (·, θ), θ ∈ Θ, j = 1, . . . , J} and let F be its envelope. (i) If SP is Donsker and pre-

Gaussian uniformly in P ∈ P, then

sup
θ∈Θ
|ηn,j(θ)|∗ = OP(1/

√
n);(H.239)

(ii) If |σP,j(θ)−1mj(x, θ) − σP,j(θ
′)−1mj(x, θ

′)| ≤ M̄(x)‖θ − θ′‖ with EP [M̄(X)2] < M for all
θ, θ′ ∈ Θ, x ∈ X , j = 1, . . . , J , and P ∈ P, then, for any η > 0, there exists a constant C > 0 such
that

lim sup
n→∞

sup
P∈P

P
(

max
j=1,...,J

sup
‖θ−θ′‖<δ

|ηn,j(θ)− ηn,j(θ′)| > Cδ
)
< η.(H.240)

Proof: We show the claim by first showing that, for any δ > 0, there exist M > 0 and N ∈ N
such that

inf
P∈P

P∞
(

sup
θ∈Θ

∣∣∣ σ̂n,j(θ)
σP,j(θ)

− 1
∣∣∣ ≤M/

√
n
)
≥ 1− δ, ∀n ≥ N.(H.241)

By Assumptions E.1 (iv), E.5 and Theorem 2.8.2 in van der Vaart and Wellner (2000), MP is a
Donsker class uniformly in P ∈ P. By hypothesis, SP is a Donsker class uniformly in P ∈ P.
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Therefore, by the continuous mapping theorem, for any ε > 0,∣∣∣P(√n sup
θ∈Θ

∣∣∣n−1
∑n
i=1mj(Xi, θ)

2

σ2
P,j(θ)

− EP [mj(X, θ)
2]

σ2
P,j(θ)

∣∣∣ ≤ C1

)
− Pr(sup

θ∈Θ
|HP,j(θ)| ≤ C1)

∣∣∣ ≤ ε(H.242) ∣∣∣P(√n sup
θ∈Θ

∣∣∣m̄n,j(θ)− EP [mj(X, θ)]

σP,j(θ)

∣∣∣ ≤ C2

)
− Pr(sup

θ∈Θ
|GP,j(θ)| ≤ C2)

∣∣∣ ≤ ε.(H.243)

for n sufficiently large uniformly in P ∈ P, where HP,j and GP,j are tight Gaussian processes, and
C1 and C2 are the continuity points of the distributions of supθ∈Θ |HP,j(θ)| and supθ∈Θ |GP,j(θ)|
respectively. As in the proof of Lemma H.10 (i), bounding each term of the right hand side of

(H.205) by C1/
√
n and C2/

√
n implies that supθ∈Θ

∣∣∣ σ̂2
n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ C/√n for some constant C > 0.

Now choose C1 > 0 and C2 > 0 so that

Pr(sup
θ∈Θ
|HP,j(θ)| ≤ C1) > 1− δ/3 and Pr(sup

θ∈Θ
|GP,j(θ)| ≤ C2) > 1− δ/3(H.244)

and set ε > 0 sufficiently small so that 1 − 2δ/3 − 2ε ≥ 1 − δ. The existence of such continuity
points C1, C2 > 0 is due to Theorem 11.1 in Davydov, Lifshitz, and Smorodina (1995) applied to
supθ∈Θ |HP,j(θ)| and supθ∈Θ |GP,j(θ)| respectively. Then, for sufficiently large n,

1− δ ≤ P
(√

n sup
θ∈Θ

∣∣∣n−1
∑n
i=1mj(Xi, θ)

2

σ2
P,j(θ)

− EP [mj(X, θ)
2]

σ2
P,j(θ)

∣∣∣ ≤ C1,(H.245)

√
n sup
θ∈Θ

∣∣∣m̄n,j(θ)− EP [mj(X, θ)]

σP,j(θ)

∣∣∣ ≤ C2

)
≤ P

(
sup
θ∈Θ

∣∣∣ σ̂2
n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ C/√n),(H.246)

uniformly in P ∈ P.
Next, note that, for x > 0 and 0 < η < 1, |x2 − 1| ≤ η implies |x− 1| ≤ 1− (1− η)1/2 ≤ η, and

hence by (H.246), for sufficiently large n,

1− δ ≤ P
(

sup
θ∈Θ

∣∣∣ σ̂n,j(θ)
σP,j(θ)

− 1
∣∣∣ ≤ C/√n),(H.247)

uniformly in P ∈ P. Finally, note again that |σ̂n,j(θ)/σP,j(θ) − 1| ≤ ε implies σ̂n,j(θ) > 0, and by
the local Lipshitz continuity of x 7→ 1/x on a neighborhood around 1, there is a constant C ′ such
that

P
(

sup
θ∈Θ
|ηn,j(θ)| ≤ C ′/

√
n
)
≥ 1− δ,(H.248)

uniformly in P ∈ P for all n sufficiently large. This establishes the first claim of the lemma.
(ii) First, consider

σ̂2
n,j(θ)

σ2
P,j(θ)

= n−1
n∑
i=1

(
m(Xi, θ)

σP,j(θ)

)2

−

(
n−1

n∑
i=1

m(Xi, θ)

σP,j(θ)

)2

.(H.249)
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We claim that this function is Lipschitz with probability approaching 1. To see this, note that, for
any θ, θ′ ∈ Θ,∣∣∣∣∣n−1

n∑
i=1

(
m(Xi, θ)

σP,j(θ)

)2

− n−1
n∑
i=1

(
m(Xi, θ

′)

σP,j(θ′)

)2∣∣∣∣∣
=

∣∣∣∣∣n−1
n∑
i=1

(
m(Xi, θ)

σP,j(θ)
+
m(Xi, θ

′)

σP,j(θ′)

)(
m(Xi, θ)

σP,j(θ)
− m(Xi, θ

′)

σP,j(θ′)

)∣∣∣∣∣
≤ n−1

n∑
i=1

2 sup
θ∈Θ

∣∣∣m(Xi, θ)

σP,j(θ)

∣∣∣M̄(Xi)‖θ − θ′‖.(H.250)

Define Bn ≡ n−1
∑n
i=1 2 supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣M̄(Xi). By Markov and Cauchy-Schwarz inequalities,

P (Bn > C) ≤ E[Bn]

C
≤

2EP

[
supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣2]1/2

EP

[
M̄(Xi)

2
]1/2

C
≤ 2M

C
,(H.251)

where the third inequality is due to Assumptions E.1 (iv) and the assumption on M̄ . Hence, for
any η > 0, one may find C > 0 such that supP∈P P (Bn > C) < η for all n.

Similarly, for any θ, θ′ ∈ Θ,∣∣∣∣∣
(
n−1

n∑
i=1

m(Xi, θ)

σP,j(θ)

)2

−

(
n−1

n∑
i=1

m(Xi, θ
′)

σP,j(θ′)

)2∣∣∣∣∣
=

∣∣∣∣∣n−1
n∑
i=1

m(Xi, θ)

σP,j(θ)
+ n−1

n∑
i=1

m(Xi, θ
′)

σP,j(θ′)

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

m(Xi, θ)

σP,j(θ)
− n−1

n∑
i=1

m(Xi, θ
′)

σP,j(θ′)

∣∣∣∣∣
≤ n−1

n∑
i=1

2 sup
θ∈Θ

∣∣∣∣∣m(Xi, θ)

σP,j(θ)

∣∣∣∣∣n−1
n∑
i=1

M̄(Xi)‖θ − θ′‖.(H.252)

Define B̃n ≡ n−1
∑n
i=1 2 supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣n−1
∑n
i=1 M̄(Xi). By Markov, Cauchy-Schwarz, and Jensen’s

inequalities,

(H.253) P (B̃n > C) ≤ E[B̃n]

C
≤

2EP

[(
n−1

∑
supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣)2]1/2
EP

[(
n−1

∑
M̄(Xi)

)2]1/2
C

≤
2EP

[
supθ∈Θ

∣∣m(Xi,θ)
σP,j(θ)

∣∣2]1/2EP [M̄(Xi)
2]1/2

C
≤ 2M

C
,

where the last inequality is due to Assumptions E.1 (iv) and the assumption on M̄ . Hence, for any
η > 0, one may find C > 0 such that supP∈P P (B̃n > C) < η for all n.

Finally, let g(y) ≡ y−1/2 − 1 and note that |g(y) − g(y′)| ≤ 1
2 supȳ∈(1−ε,1+ε) |ȳ|−3/2|y − y′| on

(1 − ε, 1 + ε). As shown in (H.247), σ̂2
n,j(θ)/σ

2
P,j(θ) converges to 1 in probability, and g is locally

Lipschitz on a neighborhood of 1. Combining this with (H.249)-(H.253) yields the desired result.
Q.E.D.



CONFIDENCE INTERVALS FOR PROJECTIONS OF PARTIALLY IDENTIFIED PARAMETERS 63

Lemma H.13 Suppose Assumption E.1 holds. Suppose further that |σP,j(θ)−1mj(x, θ)−σP,j(θ′)−1

mj(x, θ
′)| ≤ M̄(x)‖θ− θ′‖ with EP [M̄(X)2] < M for all θ, θ′ ∈ Θ, x ∈ X , j = 1, . . . , J , and P ∈ P.

Then,

sup
P∈P
‖QP (θ1, θ̃1)−QP (θ2, θ̃2)‖ ≤M‖(θ1, θ̃1)− (θ2, θ̃2)‖,(H.254)

for some M > 0 and for all θ1, θ̃1, θ2, θ̃2 ∈ Θ.

Proof: Recall that

[QP (θ1, θ̃1)]j,k = EP

[mj(Xi, θ1)

σP,j(θ1)

mk(Xi, θ̃1)

σP,k(θ̃1)

]
− EP

[mj(Xi, θ1)

σP,j(θ1)

]
EP

[mk(Xi, θ̃1)

σP,k(θ̃1)

]
.(H.255)

For any θ1, θ̃1, θ2, θ̃2 ∈ Θ,

∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

mk(Xi, θ̃1)

σP,k(θ̃1)

]
− EP

[mj(Xi, θ2)

σP,j(θ2)

mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣
≤
∣∣∣EP [(mj(Xi, θ1)

σP,j(θ1)
− mj(Xi, θ2)

σP,j(θ2)

)mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣(H.256)

+
∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

(mk(Xi, θ̃1)

σP,k(θ̃1)
− mk(Xi, θ̃2)

σP,k(θ̃2)

)]∣∣∣
≤ EP

[
sup
θ∈Θ

∣∣∣mk(Xi, θ)

σP,k(θ)

∣∣∣M̄(Xi)
]
‖θ1 − θ2‖+ EP

[
sup
θ∈Θ

∣∣∣mj(Xi, θ)

σP,j(θ)

∣∣∣M̄(Xi)
]
‖θ̃1 − θ̃2‖

≤ M(‖θ1 − θ2‖+ ‖θ̃1 − θ̃2‖),(H.257)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption E.1 (iv), and the
assumption on M̄ .

Similarly, for any θ1, θ̃1, θ2, θ̃2 ∈ Θ,

∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

]
EP

[mk(Xi, θ̃1)

σP,k(θ̃1)

]
− EP

[mj(Xi, θ2)

σP,j(θ2)

]
EP

[mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣
≤
∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)
− mj(Xi, θ2)

σP,j(θ2)

]∣∣∣∣∣∣EP [mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣
+
∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

]∣∣∣∣∣∣EP [mk(Xi, θ̃1)

σP,k(θ̃1)
− mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣
≤ EP

[
sup
θ∈Θ

∣∣∣mk(Xi, θ)

σP,k(θ)

∣∣∣]EP [M̄(Xi)]‖θ1 − θ2‖+ EP

[
sup
θ∈Θ

∣∣∣mj(Xi, θ)

σP,j(θ)

∣∣∣]EP [M̄(Xi)]‖θ̃1 − θ̃2‖

≤ M(‖θ1 − θ2‖+ ‖θ̃1 − θ̃2‖),(H.258)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption E.1 (iv), and the
assumption on M̄ . The conclusion of the lemma then follows from (H.255)-(H.258). Q.E.D.



64 H. KAIDO, F. MOLINARI, AND J. STOYE

H. Almost Sure Representation Lemma and Related Results

In this appendix, we provide details on the almost sure representation used in Lemmas H.3, H.4,
H.6, and H.9. We start with stating a uniform version of the bootstrap consistency in van der Vaart
and Wellner (2000). For this, we define the original sample X∞ = (X1, X2, . . . ) and a n-dimensional
multinomial vector Mn on a common probability space (X∞,A∞, P∞) × (Z, C, Q). We then view
X∞ as the coordinate projection on the first∞ coordinates of the probability space above. Similarly,
we view Mn as the coordinate projection on Z. Here, Mn follows a multinomial distribution with
parameter (n; 1/n, . . . , 1/n) and is independent of X∞. We then let EM [·|X∞ = x∞] denote the
conditional expectation of Mn given X∞ = x∞. Throughout, we let `∞(Θ,RJ) denote uniformly
bounded RJ -valued functions on Θ. We simply write `∞(Θ) when J = 1.

Using the multinomial weight, we rewrite the empirical bootstrap process as

Gbn,j(·) = gj(X
∞,Mn) ≡ 1√

n

n∑
i=1

(Mn,i − 1)mj(Xi, ·)/σ̂n,j(·), j = 1, . . . , J,(H.259)

where gj : X∞ ×Z → `∞(Θ) is a function that maps the sample path and the multinomial weight
(X∞,Mn) to the empirical bootstrap process Gbn,j . We then let g : X∞×Z → `∞(Θ,RJ) be defined

by g = (g1, . . . , gJ)′. For any function f : `∞(Θ,RJ) → R, the conditional expectation of f(Gbn)
given the sample path X∞ is

EM [f(Gbn)|X∞ = x∞] =

∫
f ◦ g(x∞,mn)dQ(mn),(H.260)

where, with a slight abuse of notation, we use Q for the induced law of Mn.
Let F be the function space {f(·) = (m1(·, θ)/σP,1(θ), . . . ,mJ(·, θ)/σP,J(θ)), θ ∈ Θ, P ∈ P}. For

each j, define a bootstrapped empirical process standardized by σP,j as follows:

Gbn,j(θ) ≡
1√
n

n∑
i=1

(
mj(X

b
i , θ)− m̄n(θ)

)
/σP,j(θ)

=
1√
n

n∑
i=1

(Mn,i − 1)mj(Xi, θ)/σP,j(θ).(H.261)

The following result was shown in the proof of Lemma D.2.8 in Bugni, Canay, and Shi (2015b),
which is a uniform version of (a part of) Theorem 3.6.2 in van der Vaart and Wellner (2000). For
the definition of a uniform version of Donskerness and pre-Gaussianity, we refer to van der Vaart
and Wellner (2000) pages 168-169. Below, we let P ∗ denote the outer probability of P and let T ∗

denote the minimal measurable majorant of any (not necessarily measurable) random element T .

Lemma H.14 Let F be a class of measurable functions with finite envelope function. Suppose F is
such that (i) F is Donsker and pre-Gaussian uniformly in P ∈ P; and (ii) supP∈P P

∗‖f −Pf‖2F <
∞. Then,

sup
h∈BL1

|EM [h(Gbn)|X∞]− E[h(GP )]| as∗→ 0,(H.262)

uniformly in P ∈ P.
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The result above gives uniform consistency of the standardized bootstrap process Gbn. We now
extend this to the studentized bootstrap process Gbn.

Lemma H.15 Suppose Assumptions E.1, E.2, and E.5 hold. Then,

sup
h∈BL1

|EM [h(Gbn)|X∞]− E[h(GP )]| as∗→ 0,(H.263)

uniformly in P ∈ P.

Proof: By Assumptions E.1 (iv) and E.5, Assumptions A.1-A.4 in Bugni, Canay, and Shi (2015b)
hold, which in turn implies that, by their Lemma D.1.2, F is Donsker and pre-Gaussian uniformly
in P ∈ P. Further, by Assumption E.1 (iv) again, supP∈P P

∗‖f − Pf‖F < ∞. Hence, by Lemma
H.14,

inf
P∈P

P∞
(

sup
h∈BL1

|EM [h(Gbn)|X∞]− E[h(GP )]|∗ → 0
)

= 1.(H.264)

For later use, we define the following set of sample paths, which has probability 1 uniformly in
P ∈ P.

A ≡
{
x∞ ∈ X∞ : sup

h∈BL1

|EM [h(Gbn)|X∞ = x∞]− E[h(GP )]|∗ → 0
}
.(H.265)

Note that Gbn,j and Gbn,j are related to each other by the following relationship:

Gbn,j(θ)−Gbn,j(θ) = Gbn,j(θ)

(
σP,j(θ)

σ̂n,j(θ)
− 1

)
= Gbn,j(θ)ηn,j(θ), θ ∈ Θ.(H.266)

By Assumptions E.1, E.2, and E.5, Lemma H.10 applies. Hence,

inf
P∈P

P∞
(

sup
θ∈Θ
|ηn,j(θ)|∗ → 0

)
= 1.(H.267)

Define the following set of sample paths:

B ≡
{
x∞ ∈ X∞ : sup

θ∈Θ
|ηn,j(θ)|∗ → 0,∀j = 1, . . . , J

}
.(H.268)

For any x∞ ∈ A ∩B, it then follows that

sup
h∈BL1

∣∣EM [h(Gbn)|X∞ = x∞]− E[h(GP )]
∣∣∗ → 0,(H.269)

due to (H.264) and (H.266), h being Lipschitz, Gbn,j being bounded (given x∞), and supθ∈Θ |ηn,j(θ)|∗ →
0 for all j. Finally, note that infP∈P P

∞(A∩B) = 1 due to (H.264), (H.267), and De Morgan’s law.
This establishes the conclusion of the lemma. Q.E.D.

The following lemma shows that, for almost all sample path x∞, one can find an almost sure
representation of the bootstrapped empirical process that is convergent.
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Lemma H.16 Suppose Assumptions E.1, E.2, and E.5 hold. Then, for each x∞ ∈ X∞, there exists
a sequence {G̃n,x∞ ∈ `(Θ,RJ), n ≥ 1} and a random element G̃P,x∞ ∈ `(Θ,RJ) defined on some

probability space (Ω̃, Ã, P̃) such that∫
h ◦ g(x∞,mn)dQ(mn) =

∫
h(G̃n,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1(H.270) ∫

h(GP (ω))dP (ω) =

∫
h(G̃P,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1,(H.271)

for all x∞ ∈ C for some set C ⊂ X∞ such that infP∈P P
∞(C) = 1 and

inf
P∈P

P∞
({
x∞ ∈ X∞ : G̃n,x∞

P̃−as∗→ G̃P,x∞
})

= 1.(H.272)

Proof: Define the following set of sample paths:

C ≡
{
x∞ ∈ X∞ : sup

h∈BL1

|EM [h(Gbn,j)|X∞ = x∞]− E[h(GP )]|∗ → 0
}
.(H.273)

By Lemma H.15, infP∈P P
∞(C) = 1.

For each fixed sample path x∞ ∈ C, consider the bootstrap empirical process g(x∞,Mn) in
(H.259). This is a random element in `∞(Θ,RJ) with a law governed by Q. For each x∞ ∈ C, by
Lemma H.15,

sup
h∈BL1

∣∣∣∣∫ h ◦ g(x∞,mn)dQ(mn)− E[h(GP )]

∣∣∣∣∗ → 0.(H.274)

Hence, by Theorem 1.10.4 in van der Vaart and Wellner (2000), for each x∞ ∈ C, one may find an
almost sure representation G̃n,x∞ of g(x∞,Mn) on some probability space (Ω̃, Ã, P̃) such that∫

h ◦ g(x∞,mn)dQ(mn) =

∫
h(G̃n,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1.(H.275)

In particular, the proof of Theorem 1.10.4 in van der Vaart and Wellner (2000) (see also Addendum
1.10.5) allows us to take G̃n,x∞ to be defined for each ω̃ ∈ Ω̃ as

G̃n,x∞(ω̃) = g(x∞,Mn(φn(ω̃))),(H.276)

for some perfect map φn : Ω̃ → Z (see the construction of φα in the middle of page 61 in VW).
One may define G̃n,x∞ arbitrarily for any x∞ /∈ C. The almost sure representation G̃P,x∞ of GP,j
is defined similarly.

By Theorem 1.10.4 in van der Vaart and Wellner (2000), Eq. (H.269), and infP∈P P (C) = 1, it
follows that

inf
P∈P

P∞
({
x∞ ∈ X∞ : G̃n,x∞

P̃−as∗→ G̃P,x∞
})

= 1.(H.277)

This establishes the claim of the lemma. Q.E.D.
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Lemma H.17 Suppose Assumptions E.1, E.2, and E.5 hold. Let Wn ≡ (Gbn, Yn) be a sequence in
W ≡ `(Θ,RJ)× RdY such that Yn = g̃(X∞,Mn) for some map g̃ : X∞ ×Z → RdY and

inf
P∈P

P∞
(

sup
h∈BL1

|EM [h(Wn)|X∞ = x∞]− E[h(W )]|∗ → 0
)

= 1,(H.278)

where W = (G, Y ) is a Borel measurable random element in W.
Then, for each x∞ ∈ X∞, there exists a sequence {W ∗n,x∞ ∈ W, n ≥ 1} and a random element

W ∗x∞ ∈ W defined on some probability space (Ω̃, Ã, P̃) such that

EM [h(Wn)|X∞ = x∞] =

∫
h(W ∗n,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1(H.279)

E[h(W )] =

∫
h(W ∗x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1,(H.280)

for all x∞ ∈ C for some set C ⊂ X∞ such that infP∈P P
∞(C) = 1, and

inf
P∈P

P∞
({
x∞ ∈ X∞ : W ∗n,x∞

P̃−as∗→ W̃ ∗x∞
})

= 1.(H.281)

Proof: Let C ≡ {x∞ : suph∈BL1
|EM [h(Wn)|X∞ = x∞]−E[h(W )]|∗ → 0}. The rest of the proof

is the same as the one for Lemma H.16 and is therefore omitted. Q.E.D.

Remark H.1 When called by the Lemmas in Appendix H, Lemma H.17 is applied, for example,
with Yn = (vec(D̂n(θ′n)), ξ̂n(θ′n)) and Y = (vec(D), π1).
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