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Abstract 

 
We study rounding of numerical expectations in the Health and Retirement Study (HRS) between 2002 
and 2014. We document that respondent-specific rounding patterns across questions in individual waves 
are quite stable across waves. We discover a tendency by about half of the respondents to provide more 
refined responses in the tails of the 0-100 scale than the center. In contrast, only about five percent of the 
respondents give more refined responses in the center than the tails. We find that respondents tend to 
report the values 25 and 75 more frequently than other values ending in 5. We also find that rounding 
practices vary somewhat across question domains and respondent characteristics. We propose an 
inferential approach that assumes stability of response tendencies across questions and waves to infer 
person-specific rounding in each question domain and scale segment and that replaces each point-response 
with an interval representing the range of possible values of the true latent belief. Using expectations from 
the 2016 wave of the HRS, we validate our approach. To demonstrate the consequences of rounding on 
inference, we compare best-predictor estimates from face-value expectations with those implied by our 
intervals. 
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1. Introduction 

Judgements about the likelihood of future events are an important input for predictions and decisions by 

citizens, policy makers, and researchers. From the early 1990s on, surveys designed by economists have 

increasingly measured respondents’ subjective expectations for future events using a 0-100 scale of 

percent chance. 

Research using numerical survey expectations has devoted substantial effort to evaluating how persons 

respond to the questions posed in specific domains. Manski (2004, 2018), Attanasio (2009), Hurd (2009), 

van der Klaauw (2012), Armantier et al. (2013), Delavande (2014), Schotter and Trevino (2014), 

Giustinelli and Manski (2018), and Altig et al. (2019) review the large literature from various perspectives. 

Questions eliciting expectations on a 0-100 percent-chance scale enable respondents to report beliefs 

to the nearest 1 percent. But how do respondents use the scale in practice? The accumulated evidence 

reveals that respondents tend to round their responses. Responses that are not a multiple of 5 or 10 percent 

occur infrequently. When observed, they tend to occur near the endpoints of the scale to convey very small 

or large probabilities. 

Rounding of survey expectations and other survey data poses a series of challenges for inference. First, 

rounding generates measurement error. The measurement error induced by rounding is not the classical 

type where observed data equal true values plus white noise. Hence, econometric analysis based on the 

familiar errors-in-variables framework is not appropriate. Indeed, no general theoretical predictions can 

be made on the direction of the bias of estimates obtained using rounded data.  

Second, the extent of rounding underlying each response is not directly observable and may vary 

across respondents and questions. Surveys do not instruct respondents as to what degree of rounding they 

should apply when answering specific questions; hence, there may not exist consensus rounding norms. 

Respondents may vary in their rounding practices, which are unknown to data users.  

Third, the reasons why respondents round when reporting numerical expectations are incompletely 

understood. Manski and Molinari (2010) hypothesize that respondents may round to simplify 
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communication and/or to convey partial knowledge. Giustinelli, Manski, and Molinari (2020) design and 

analyze question sequences that substantiate both reasons for rounding. 

Observed response patterns across questions carry information about respondents’ rounding practices, 

although they do not reveal why respondents round. Manski and Molinari (2010) studied respondent-

specific response patterns across all expectations questions asked in the 2006 wave of the Health and 

Retirement Study (HRS). They found strong evidence of rounding, with the extent differing across 

respondents. They proposed use of a person’s response pattern across questions to infer the person’s 

rounding practice, the result being interpretation of reported numerical values as interval data. 

In this paper, we significantly expand study of respondent-specific rounding patterns by analyzing 

responses across all expectations questions asked in the core HRS questionnaire between 2002 and 2014. 

This enables us to learn important new features of rounding practices.  

Section 2 explains the basic themes of our approach to analysis of rounding. Whereas it is common 

for researchers to focus on a survey item of interest and study responses to this question across 

respondents, we propose to study each respondent’s answers to the entire set of probabilistic expectations 

questions she was surveyed about. For each respondent, we use the response pattern across these multiple 

questions to infer the extent to which the respondent rounds responses to specific questions. The key 

assumption is stability of respondent-specific rounding across responses.  

The remainder of the paper applies the approach to the HRS. Users of HRS data should find this 

application of direct interest. Others should find it helpful as a case study of the general framework 

presented in Section 2 providing lessons for applications to other datasets. 

Section 3 presents the main findings of our data analysis, with Supplementary Appendices reporting 

further details. We document that respondent-specific rounding patterns across questions in individual 

waves are quite stable across waves. We discover a tendency by about half of the respondents to provide 

more refined responses in the tails of the 0-100 scale than the center. In contrast, only about five percent 

of the respondents give more refined responses in the center than the tails. We find that respondents tend 
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to report the values 25 and 75 more frequently than other values ending in 5. We also find that rounding 

practices vary somewhat across question domains, which range in the HRS from personal health to 

personal finances to macroeconomic events. 

Based on our examination of rounding practices in Section 3, Section 4 specifies and implements a 

version of the general framework introduced in Section 2, featuring stability of rounding across waves 

and heterogeneous rounding across scale locations and question domains. 

Our framework interprets each numerical response given by a respondent as an interval and has a two-

stage structure. The first stage classifies each respondent into one of a set of mutually exclusive and 

exhaustive rounding types and places an upper bound on the amount of rounding each respondent is 

inferred to apply when reporting their expectations. The second stage assigns an interval to each of the 

respondent’s original point responses, which represents the range of values in which the respondent’s 

underlying true belief is plausibly deemed to lie based on the respondent’s inferred rounding type. 

Our approach accommodates substantial heterogeneity in rounding practices. Within a specific 

question domain, a respondent’s rounding type is a bivariate vector of the form (tail, center) rounding, 

partitioning the 0-100 scale into two symmetric tails (0-24 and 76-100) and a center (25-75). Thus, in 

addition to being person specific, the inferred degree of rounding may differ between tails and center and 

may vary across question domains. The assigned intervals vary across respondents and across values of 

the observed point responses. 

We use our framework to study how rounding tendencies vary with observable characteristics of the 

respondents. We find that higher levels of educational attainment and of cognition are associated with a 

tendency to give more refined responses (less rounding) across all scale segments and question domains. 

We also examine how rounding tendencies vary across cohorts of HRS respondents.  

We use survival expectations, working expectations, and stock market expectations observed in the 

2016 wave of the HRS to validate our approach. Specifically, for each of these three questions and for 

each scale segment we compute the proportion of respondents who gave a response in 2016 that is 
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consistent with the respondent’s rounding type in the relevant domain and scale segment predicted by our 

algorithm on the basis of the 2002-2014 data. We find that 93.39% of tail responses and 88.25% of center 

responses to the survival question in 2016 are consistent with the predictions generated by our algorithm 

based on the 2002-2014 data. We observe similar (or slightly higher) fractions of valid cases for the 

working and stock market questions.  

While this paper studies rounding as a subject of intrinsic interest, a reader may naturally ask how the 

interval data that our proposed approach generates from point responses may be used in statistical 

analyses. This matter has been addressed in the econometric literature studying conditional prediction with 

interval measurement of outcomes and/or covariates; see Manski and Tamer (2002) and Beresteanu and 

Molinari (2008).  

Section 5 demonstrates how interval data on subjective expectations can be employed as either an 

outcome variable or a covariate in prediction analyses of substantive interest, and how exclusion 

restrictions can be incorporated into the analysis to sharpen the inference. One application considers best 

linear prediction of the labor supply expectations of working HRS respondents, conditional on specified 

covariates. A second application uses longevity expectations and other covariates to predict hours worked. 

Both applications bring to bear partial identification analysis. This analysis enables one to bound the 

maximum bias of point predictions made under the conventional assumption that persons do not round 

responses. 

As far as we are aware, only two previous papers systematically study rounding of responses to 

probabilistic expectations questions. One is Manski and Molinari (2010), on whose work we build. The 

other is Kleinjans and van Soest (2014), who develop and estimate a panel-data structural econometric 

model to analyze response patterns to each of six expectations questions in the HRS. Their analysis aims 

to investigate the extent to which probability reports are determined by genuine underlying probabilistic 

beliefs, rounding, a tendency to give so-called “focal” responses of (0, 50, 100), and selective item non-
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response. Despite the very different approaches taken, they find, as we do, that tendencies to round, give 

“focal” responses, and not respond tend to be persistent over time. 

Some authors have devoted special attention to responses of 0, 50, and 100 percent. Fischhoff and 

Bruine de Bruin (1999) and Bruine de Bruin et al. (2002) hypothesize that some respondents use 50 

percent to signal epistemic uncertainty. Lillard and Willis (2001) and Hudomiet and Willis (2013) 

conjecture that respondents form full subjective distributions for the probability of an event and then report 

whichever of the values (0, 50, 100) is closest to the mode of their distribution. We analyze each 

individual’s reports of (0, 50, 100) percent jointly with that individual’s responses to the entire set of 

expectations questions asked, and we find that a small fraction of respondents in any wave give responses 

that are exclusively in the (0, 50, 100) group (between 2% and 4%, see Appendix Table S4). 

Some researchers have investigated how respondents’ propensity to give “focal” responses to 

numerical expectation questions varies with the survey technology (e.g., with survey mode, features of 

the percent-chance scale, etc.). For example, in an online survey with a nationally representative sample 

of the Dutch population, Bruine de Bruin and Carman (2018) found that elicitation of percent-chance 

expectations using a visual linear scale with a clickable slider significantly reduced the use of “focal” 

responses relative to a more traditional open-ended mode, without affecting the predictive validity of 

responses and survey satisfaction of respondents. In this paper, we use numerical expectations elicited in 

the HRS using computer-assisted, in-person or phone, interviews by means of traditional open-ended 

percent-chance questions.   

Beyond readers who have interest in expectations data, we anticipate that general survey researchers 

will find this paper useful. Our study of tendencies to round responses to expectations questions should 

heighten concern that respondents may round responses to numerical questions in other contexts. 

Consider, for example, questions asking respondents to state their income or the number of hours they 

worked in the past week. Respondents may round their responses, with the extent of rounding differing 

across persons. Examination of a person’s response pattern across different numerical questions, in the 
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manner that we do here, may provide a credible way to infer that person’s rounding practice. One may 

then interpret reported numerical values as intervals. 

 

 2. An Inferential Framework for Person-Specific Rounding: Combining Stability and 

Heterogeneity 

This section introduces a framework for inferring person-specific rounding in survey reports of percent-

chance expectations. Our approach is most directly applicable to respondents who have precise point 

probabilities and who round their reports to simplify communication rather than to convey partial 

knowledge. It is also applicable in some cases where respondents have partial knowledge and hold interval 

rather than precise subjective probabilities for uncertain events. Then the algorithm developed in this paper 

still yields an interval that encloses a respondent’s true beliefs if the algorithm interval completely includes 

the latent interval. 

 When rounding reflects a desire to simplify communication, we think it credible to view rounding as 

a person-specific trait that is stable across multiple responses by a given person. We think it desirable to 

allow for unrestricted heterogeneity across individuals in their rounding practices. Persons may vary in 

the manner in which they communicate their subjective beliefs in surveys. 

For each respondent, we use the response pattern across multiple questions to infer the extent to which 

the respondent rounds responses to particular questions. For example, consider a respondent A who is 

asked three expectations questions, which (s)he answers with 44 percent, 35 percent, and 70 percent. By 

answering 44 percent to one of the three questions, respondent A reveals that (s)he rounded to the nearest 

1% when answering that question. Under the assumption that person-specific rounding is stable across 

these questions, one can further infer that A rounded to the nearest 1% also when answering the other two 

questions.  

Consider now a respondent B who is asked the same three questions, which (s)he answers with 40 

percent, 35 percent, and 70 percent. The most refined response is 35, a multiple of 5 that is not a multiple 
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of 10. Observing that respondent B answered 35 to the second question, one might infer that respondent 

B rounded to the nearest 5% or by a finer degree to that question. Under the assumption of stability of 

person-specific rounding across these questions, one can further infer that respondent B rounded to the 

nearest 5% or by a finer degree to all three questions.   

Generalizing beyond these examples, the most basic version of our inferential approach has these 

features:  

(i) for each individual respondent, inspect the respondent’s pattern of responses across multiple 

expectation questions;  

(ii) use the most refined response among those considered in (i) to place an upper bound on the 

amount of rounding the respondent applied in all responses in (i);  

(iii) replace each point response considered in (i) with an interval that represents the range of 

possible values of the true latent belief and whose width depends on the rounding upper bound 

inferred in (ii). 

A key data requirement for applicability of the approach is observability of multiple responses per 

respondent. The key assumption is stability of respondent-specific rounding across responses.  

 Here, as elsewhere, an applied researcher may feel comfortable using an assumption if one thinks it 

credible. The strongest form of person-specific stability assumes that a respondent’s rounding practice is 

the same across all questions. However, one might not find such a strong assumption credible. Weaker 

forms of stability assume that the rounding practice is the same across specified groups of questions rather 

than across all questions. Such weaker forms of stability have less identifying power, but they may be 

more credible. 

For example, a researcher may assume that the rounding practice is stable within a question domain 

but might vary across domains. Manski and Molinari (2010) used this type of stability assumption, 

considering questions on personal health, personal finance, and the macroeconomy to be distinct domains. 

Or a researcher may hypothesize that rounding practices vary with question complexity, as reasoned by 
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Kleinjans and van Soest (2014). Or one may think that rounding of probability reports varies with the 

underlying probabilities of events. Heiss et al. (2019) propose that rounding may vary with the magnitudes 

of objective probabilities. In this paper, we find evidence that rounding varies with the magnitudes of 

subjective probabilities, with greater rounding in the centers than the tails of subjective distributions.  

After grouping the questions answered by a given respondent according to the chosen classification 

criterion, one can apply the inferential approach described in (i)-(iii) separately to each group of questions. 

This refinement of the basic approach assumes stability of person-specific rounding within groups of 

questions, while allowing for heterogeneity of person-specific rounding across groups of questions.   

Manski and Molinari (2010) applied the inferential approach, using all expectations reported by 

participants in the 2006 wave of the HRS. In this paper, we take advantage of the panel structure of the 

HRS. In addition to observing numerous expectations per respondent in each wave, we observe 

respondents’ expectations over many waves. The richness of this data enables us to implement a version 

of the inferential approach that assumes stability of person-specific rounding across waves as well as 

within a wave.  

Applicability of the approach in empirical work does not require that one has expectations data as rich 

as that collected by the HRS. For example, a single time-series of responses to the same question asked 

over time to the same respondent may suffice, if one is willing to maintain stability of rounding over time. 

The larger the number of responses observed per respondent, the greater the possibilities of use of the 

extra information. 

 

3. Exploratory Analysis of Response Patterns across Questions and Waves in the HRS   

Since 2002 the HRS has devoted Section P of its core questionnaire to measurement of expectations in 

the domains of personal health, personal finances, and general economic conditions. Across seven 

biannual waves spanning 2002 to 2014, expectations have been elicited on a 0-100 percent chance scale. 

Several questions have been repeated across multiple waves. Appendix Table S1 shows the list of 
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questions organized by domain and the waves in which they were asked. For each question listed in Table 

S1, Appendix Table S2 reports the number of waves in which the question was asked, the number of 

respondents to which the question was asked, and the total number of observations for the question.  

The number of questions per wave ranges between 22 in 2002 and 38 in 2006. Most questions are in 

the personal finances domain (between 11 and 23 per wave, 31 overall), followed by the personal health 

domain (between 3 and 9 per wave, 10 overall), and the domain of general economic conditions (between 

2 and 7 per wave, 12 overall). A subset of 12 questions across the three domains were asked in all waves. 

The number of responses varies across questions and waves, ranging from about 5,000 to 30,000 

responses per question in each wave. The variation across questions stems from the fact that the HRS 

makes extensive use of skip sequencing. Thus, whether a respondent is asked a specific question depends 

on the previous answers given by the respondent and on whether the event specified by the question is 

relevant to the respondent. 

The total number of responses generated by a question across the seven waves varies because questions 

have been added and removed over time. It also varies due to changes in sample composition across waves. 

The HRS sample has periodically been augmented with new cohorts of respondents who joined the study 

in specific waves. Respondents exit the study due to attrition or death. 

 

3.1. Temporal Stability of Response Tendencies  

In this Sub-section we study response patterns across questions in each wave, alternatively using all 

questions asked in the wave and the twelve questions asked in all waves. Focusing on the latter questions, 

we analyze the stability of response tendencies across pairs of waves. Supplementary Appendix SA2 

provides further detail, investigating patterns of response to specific questions in Table S3. To ensure 

comparability with the analysis of the 2006 data by Manski and Molinari (2010), we condition also our 

analysis on respondents aged 50 or older. 
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We initially consider seven mutually exclusive and exhaustive response patterns, progressing from the 

most rounded to the least rounded. The first one (“All NR”) is for respondents who respond to no questions 

in the wave, coded in the HRS as “Don’t know” or “Refuse.” The second one (“All 0 or 100”) is for 

respondents who only use the values 0 and 100. The next one (“All 0, 50, or 100”) is for respondents who 

only use the values (0, 50, 100). The next two categories (“Some multiple of 10” and “Some multiple of 

5”) are, respectively, for respondents who answer at least one question with a value that is a multiple of 

10 other than (0, 50, 100), and a multiple of 5 that is not a multiple of 10. The final category (“Some 1-4 

or 96-99) is for respondents who respond to at least one question with a non-round value in 1-4 or 96-99. 

“Some other” is a category for respondents who respond at least once with a non-round value in 6-94. 

Appendix Table S4 reports the fraction of respondents for each wave of the survey whose responses 

fall into each of the categories just described, both when considering only the twelve questions that were 

asked across all waves (top panel), and when considering all questions asked in a wave (bottom panel). 

The main message is that the response patterns found by Manski and Molinari (2010) in the 2006 wave 

of the HRS hold throughout the seven waves between 2002 and 2014. However, these are aggregate 

patterns that may partly be susceptible to variation across waves in sample composition.  

To address this issue, we compute transition matrices of response tendencies across waves. 

Specifically, for each pair of waves indicated by column, Table 1 reports the fractions of respondents 

classified as belonging to any rounding category in the first wave who transitioned to: the same rounding 

category in the second wave (1st row), a finer or coarser adjacent category (2nd row), and a more distant 

rounding category (3th row). The reported calculations use the twelve questions in common to the seven 

waves.  

We find that between 0.406 and 0.436 of the respondents remain in the same rounding category across 

any pair of adjacent waves. Between 0.373 and 0.386 transition to an adjacent category. Thus, between 

0.788 and 0.813 of respondents transitions to the same or an adjacent category. Even transitions between 
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the first and last waves, with fourteen years separating them, display high persistence, with over 0.78 of 

the respondents transitioning to the same or an adjacent category. 

 

3.2. Pooling Data across Waves to Probe More Deeply into Response Tendencies  

With temporal stability established, we henceforth pool the HRS data across waves. This greatly increases 

the number of expectations responses observed per respondent, multiplying it sevenfold for respondents 

interviewed in all waves between 2002 and 2014. Across all questions and waves, the average number of 

responses per respondent is 106.8. By question domain, this figure ranges from 19.1 for personal health 

to 66 for personal finances. The complete figures are shown in Table S5 of the Supplementary Appendix.  

With such rich respondent-specific data, we can probe more deeply into rounding practices. 

Specifically, we analyze response patterns separately by question domain, while paying particular 

attention to the location of responses inside the 0-100 scale. By so doing, we learn important features of 

respondents’ response patterns in specific domains. 

In order to investigate whether and, if so, how rounding practices vary across the measurement scale, 

we found it useful to partition the values of the 0-100 percent chance scale as following. We define the 

center (C) of the percent-chance scale to be values in the range 26-74 and the tails (T) to be values in the 

ranges 0-24 and 76-100. The values 25 and 75 form the boundary between the tail and center. We group 

responses into nine categories, defined by their presence in T or C and by their degree of granularity. The 

categories are: V1-T ≡ values in 1-24 or 76-99 that are not multiples of 5; V1-C ≡ values in 26-74 that are 

not multiples of 5; V5-T ≡ {5, 15, 85, 95}; V5-C ≡ {35, 45, 55, 65}; V10-T ≡ {10, 20, 80, 90}; V10-C ≡ 

{30, 40, 60, 70}; V25 ≡ {25, 75}; V100 ≡ {0, 100}; V50 ≡ {50}. The complete partition is shown in 

Table S6 of the Supplementary Appendix.  

With this categorization, Table 2 shows the distribution of responses across respondents for the twelve 

questions asked in Section P in all waves. Table S7 in the Supplementary Appendix shows analogous 

statistics for all expectation questions asked between 2002 and 2014. Comparison of the frequencies of 



13 
 

V25 responses (in column 5) with the frequencies of the remaining V5 responses (V5-C in column 9 and 

V5-T in column 8) reveals that the fraction of {25, 75} responses is always higher than the fraction of 

responses ending in 5 in the center of the scale (35, 45, 55, 65). For most questions across the three 

domains, the fraction of {25, 75} responses is higher than the fraction of responses ending in 5 in the tails 

of the scale (5, 15, 85, 95). 

Even more striking is comparison of the frequencies of responses in the tails versus those in the center. 

The fractions of V10, V5, and V1 responses in the tails are higher than the corresponding fractions in the 

center for nearly all questions in Tables 2 and S7 (but P47 and P190).  

 

4. Transforming Expectations Responses into Interval Data 

Generalizing the inferential approach proposed by Manski and Molinari (2010), this section develops a 

new algorithm that uses the response tendency of a respondent that we have documented in the previous 

sections to characterize rounding of responses to particular questions. The algorithm classifies each 

respondent into one of a set of mutually exclusive and exhaustive rounding types and transforms each 

original point response into an interval where the true latent belief is deemed to lie.  

Our algorithm relies on considerably weaker and more credible assumptions than inference that uses 

expectations reports at face value. Nevertheless, we cannot be certain that the intervals we construct are 

accurate. The algorithm is subject to two potential forms of misclassification.  

First, a given survey response may be less rounded than the interval assigned by the algorithm; that is, 

the actual rounding interval may be a subset of the algorithm’s interval. Then our use of the data is correct, 

but it yields inference that is less sharp than it would be if the true degree of rounding were known.  

Second, the actual rounding interval may not be completely contained in the algorithm’s interval. Then 

the actual belief may lie outside our interval, making our use of the data incorrect. Still, use of the 

algorithm substantially lowers the risk and severity of the latter type of error relative to the standard 

approach that takes survey responses at face value. 
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4.1. Determination of Respondent Rounding Types 

Based on the evidence in Section 3, we allow a respondent’s rounding type to vary across question 

domains and between the tails and center of the measurement scale. Thus, within a specific domain of 

questions, a respondent’s rounding type is a bivariate vector of the form (tail, center) rounding, partitioning 

the 0-100 scale into two symmetric tails (0-24 and 76-100) and a center (25-75).  

We believe that our specific choice of tails and center reasonably reflects the empirical patterns of 

HRS responses, but judgments need not be uniform. The algorithm can be easily adapted to different 

definitions of tails and center or extended to accommodate finer partitions of the 0-100 scale (e.g., outer 

tails, inner tails, center).  

The new algorithm refines the earlier one posed by Manski and Molinari (2010) in multiple ways. One 

refinement is to separate tail from center rounding. Another is to classify persons who only use the 

response values (0, 25, 50, 75, 100) as rounding to the nearest 25 percent rather than to the nearest 5 

percent. The distinction between tail and center rounding is operationally meaningful only for persons 

who round in a more refined manner; that is, to the nearest 10, 5, or 1 percent. Nevertheless, we find that 

it simplifies exposition to separate responses in the tail and center of the probability scale for all persons. 

A further difference between the two algorithms is that here we use a tighter criterion for assignment 

of a person to a more refined rounding type. To explain the tighter criterion, consider categorization of a 

respondent as one who rounds to the nearest 10 percent (or to a more refined degree). Manski and Molinari 

assigned a respondent to this rounding type if all responses are multiples of 10 and at least one response 

is not a value in (0, 50, 100). We use here a tighter criterion that requires observation of at least two 

responses that are multiples of 10 other than (0, 50, 100), of which one must be in the domain under 

consideration and the other may be in a different domain and may also be a less rounded response. 

Adding the new requirement reflects our desire for further credibility when assigning a person to a 

more refined rounding type. We want enhanced credibility because misclassification into an overly refined 
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rounding category yields an inferential error, as the person’s latent beliefs may not entirely lie within the 

overly refined interval. Misclassification of a person into a rounding category less refined than their actual 

one does not yield an inferential error, as the less refined interval includes the actual one as a subset. 

The main criteria for classification of respondents into (tail, center) rounding types, denoted by (𝓜𝑦-

T, 𝓜𝑥-C) with 𝑦  ∈ {1, 5, 10, 100} and 𝑥  ∈ {1, 5, 10, 25, 50}, are as follows. 

 Center rounding type Define 𝑥ଵ = 1, 𝑥ଶ = 5, 𝑥ଷ = 10, 𝑥ସ = 25, and 𝑥ହ = 50. Respondent j is 

classified as rounding to the nearest 𝑥 percent in the center, and denoted 𝓜𝑥-C, within question 

domain l, if one of the following two conditions holds: (i) they are observed to give at least two answers 

in the center that are multiples of 𝑥 percent but not of 𝑥ᇲ for any n’ < n within domain l; or (ii) they 

are observed to give one answer in the center that is a multiple of 𝑥 percent (but not of  𝑥ᇲ for any 

n’ < n) within domain l AND at least one answer in the center that is a multiple of  𝑥ᇲ for any n’ ≤ n 

within a second domain l’ distinct from l.  

 Tail rounding type Define 𝑦ଵ = 1, 𝑦ଶ = 5, 𝑦ଷ = 10, and 𝑦ସ = 100. Respondent j is classified as 

rounding to the nearest 𝑦 percent in the tails, and denoted 𝓜𝑦-T, within question domain l if one of 

the following two conditions holds: (i) they are observed to give at least two answers in the tails that 

are multiples of 𝑦 percent but not of 𝑦ᇲ for any n’ < n within domain l; or (ii) they are observed to 

give one answer in the tails that is a multiple of 𝑦 percent (but not of 𝑦ᇲ for any n’ < n) within domain 

l AND at least one answer in the tails OR center that is a multiple of  𝑥ᇲ for any n’ ≤ n within a second 

domain l’ distinct from l. 

To illustrate, consider a respondent who has answered four expectations questions in the domain of 

personal finances, either within the same wave or over multiple waves. Two of the observed responses 

belong to the tails, {5, 85}, and two to the center, {30, 60}. As the set of responses includes two multiples 

of 5 percent in the tails and two multiples of 10 percent in the center, our algorithm classifies this 
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respondent as one rounding to the nearest 5 percent, or to a finer degree, in the tails (𝓜5-T) and to the 

nearest 10 percent, or to a finer degree, in the center (𝓜10-C).  

The Supplementary Appendix SA4.1 provides additional and more complex examples. It also presents 

the complete algorithm in a formal and compact way in Table S8 (Panels A and B).  

 

4.2. Empirical Distribution of Rounding Types and Association with Observable Characteristics 

We apply the algorithm to all HRS respondents who responded to at least one expectations question in 

any question domain and in any wave between 2002 and 2014. Table 3 reports the empirical distributions 

of rounding types for each domain of questions, separately for the tails (top panel) and the center (middle 

panel). Table S9 shows the joint empirical distribution of tail and center rounding types for each domain.  

The more aggregated statistics shown in the bottom panel of Table 3 reveal that, depending on the 

domain, between 40.40% and 61.03% of respondents are inferred to apply finer rounding in the tails than 

in the center. Between 28.49% and 38.73% of respondents apply the same degree of rounding in the tails 

and in the center. Between 2.90% and 6.71% of respondents apply coarser rounding in the tails than in the 

center.  

The rounding type of a small minority of respondents could not be determined either in the tails or in 

the center or both. Most undetermined cases occur when, for a given respondent, we do not observe any 

answer in the relevant domain and scale segment. Among respondents for whom we observe at least one 

answer in the relevant domain and scale segment, all cases of undetermined tail rounding type disappear 

and only a few cases of undetermined center rounding type remain. The latter are respondents for whom 

we only observe one answer in the center in the relevant domain and no answers in the center in the 

remaining two domains.  

We now investigate how rounding types vary with observable respondent characteristics.  We 

summarize the data using parametric bivariate ordered probit regression, which embodies the basic ordinal 

property that our rounding categories display across different degrees of rounding. 
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Table 4 presents estimated coefficients of three bivariate ordered probit regressions, one per question 

domain. The outcome variables are the respondent’s bivariate vectors of tail and center rounding 

categories in each domain. As predictors, we use binary variables for standard respondent’s demographics, 

including gender (male, with female omitted), educational attainment (high school, some college, 

bachelor, and graduate, with less than high school omitted), and race (black and other, with white omitted). 

Given our assumption of time stability of rounding practices, we cannot include time-varying 

covariates in the regression. We nevertheless include information on individual’s cohort and cognitive 

functioning by incorporating in our bivariate ordered probit regressions: (i) a cohort indicator based on 

whether each respondent’s cross-wave average age lies in the categories 60-69, 70-79, and 80+ years, with 

50-59 the omitted category and (ii) each respondent’s cross-wave average cognitive score. See Fisher et 

al. (2012) and Crimmins et al. (2011) for a description and an empirical assessment of the HRS cognitive 

measures. 

The cognitive score has a range of 0-35. In our data, the respondent-specific cross-wave average 

cognitive score has a mean of 23 and a standard deviation of 4.11 across respondents. The respondent-

specific cross-wave standard deviation in cognitive score has a mean of 2.9 across respondents. The fact 

that the standard deviation of the cross-wave average score is larger than the average cross-wave standard 

deviation in the score lessens our concerns for using a time-fixed measure of cognitive functioning in our 

bivariate ordered probit regressions. Nonetheless, the time variation in cognitive score and its association 

with rounding warrant study in future research. 

The model permits the error terms of the latent variables underlying the inferred tail and center 

rounding categories to be correlated with each other. The correlation parameter, 𝜌, is estimated along with 

the other coefficients. The rounding categories are ordered from least coarse to coarsest. Thus, positive 

associations indicate a tendency to round more coarsely. 

Estimated coefficients with standard errors are reported in Table 4. Table 5 reports predicted 

probabilities of selected tail and center rounding types for persons with specified covariate values.  
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We find that higher levels of educational attainment and of person-specific average (cross-wave) 

cognitive score are associated with a tendency to give more refined responses across all scale segments 

and question domains. The patterns for the other predictors are more varied. 

For example, respondents in the oldest cohort category (80+) tend to give more rounded responses 

than respondents belonging to the youngest one (50-59) across all scale segments and questions domains. 

On the other hand, respondents in the two intermediate cohort groups (i.e., 60-69 and 70-79) belong to 

rounding categories that may be more refined, coarser, or statistically indistinguishable from those 

characterizing respondents from younger cohorts, depending on the specific domain or scale segment. 

Male respondents tend to round more coarsely than female respondents in the personal health and 

personal finances domains, but only in the tails. On the other hand, male respondents tend to round less 

coarsely than women respondents in the center in the domain of general economic conditions. While 

respondents belonging to the residual race category (including Hispanic, Asian, and Pacific Islander) tend 

to round more coarsely than white respondents, the differential rounding tendencies of black respondents 

relative to white respondents vary across question domains and scale segments. 

The large, positive, and statistically significant estimates of the correlation parameter 𝜌 reveal that 

rounding tendencies are positively correlated across scale segments. Hence, respondents who give coarser 

responses in the tails are more likely to do so in the center. 

Parameter estimates for a specification without cognitive score are shown in Table S10 of the 

Supplementary Appendix. 

 

4.3. Using Survey Responses and Rounding Types to Form Expectations Intervals 

It is natural to wonder the extent to which failing to account for rounding might lead to inaccurate 

conclusions when analyzing data. A simple numerical illustration pertaining to the analysis of the effect 

of longevity expectations on hours worked shows that ignoring rounding may yield highly inaccurate 

conclusions. 
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Suppose that two respondents both round their response to the longevity expectation question to the 

closest multiple of 25. Suppose that one respondent views their probability to live past age 75 to be forty 

percent while the other respondent views it to be sixty percent, with the latter working significantly more 

hours as a consequence. With rounding, both respondents report their probability to live past age 75 as 

fifty percent. The notable difference in hours-worked outcomes with apparently the same expectations 

may be misinterpreted as caused by unobserved heterogeneity in labor-leisure preferences, when the actual 

cause is different longevity expectations. 

Next, consider a scenario where the first respondent views their probability to live past age 75 to be 

thirty-seven percent while the other respondent views it to be thirty-eight percent, with the latter working 

slightly more hours. With rounding, the first respondent reports a probability to live past age 75 of twenty-

five percent, and the second respondent reports fifty percent. The slight difference in outcomes with an 

apparent large difference in expectations may be misinterpreted as evidence of minimal effect of 

expectations on labor supply.  

These examples, while stylized, illustrate that ignoring rounding might lead to “boundary mistakes;” 

that is, to significantly underestimating or overestimating an effect of interest. We therefore propose an 

algorithm that uses the information contained in each respondent’s reporting behavior across the survey, 

as analyzed in the preceding sections, to transform observed percent-chance point reports into intervals. 

Here we present the construction of interval data within the context of the illustration introduced in 

Section 4.1. The Supplementary Appendix SA4.3 presents the complete algorithm formally, discusses 

more complex cases, and reports the distributions of interval width for the responses given to specific 

questions.  

In the example introduced in Section 4.1, the respondent is observed to answer with {5, 30, 60, 85} to 

four expectations questions concerning personal finances and is classified to be of rounding type (𝓜5-T, 

𝓜10-C) in that domain. Because the respondent is classified to round to the nearest 5 percent in the tails, 

the algorithm assigns to each of the respondent’s point responses in the tails an interval of width 5 centered 
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around the point response. Specifically, the algorithm assigns the interval [2.5, 7.5] to response 5 (i.e., 5 

∓ 2.5) and the interval [82.5, 87.5] to response 85 (i.e., 85 ∓ 2.5). Similarly, as the respondent is classified 

to round to the nearest 10 percent in the center, the algorithm assigns interval [25, 35] to the 30 percent 

response (i.e., 30 ∓ 5) and the interval [55, 65] to the 60 percent response (i.e., 60 ∓ 5). 

In general, construction of intervals around point responses near the thresholds which separate the 

center from the tails (25 and 75 percent) requires specific “boundary conditions.” Such conditions are not 

binding in this example. We explain them in the Appendix.  

By construction, each interval contains the point response because the former is centered around the 

latter. Moreover, the interval is assumed to cover the unobserved true latent belief with certainty. 

However, no assumption is made about the location of the true latent belief inside the interval. 

Our algorithm relies on considerably weaker and hence more credible assumptions than inference 

using expectations reports at face value. At the opposite extreme, one could be ultraconservative, 

maintaining that each point response is consistent with any amount of rounding. One would then replace 

all reported expectations with a [0, 100] interval. Obviously, doing this empties the data of any information 

content.  

Our choice of assumptions used to identify respondents’ rounding types and bound their unobserved 

true beliefs strikes a balance between those two extremes and is informed by the respondents’ response 

patterns across HRS questions and waves, which we have documented in this paper. A researcher 

entertaining a different set of assumptions about how survey respondents round their expectations reports 

could easily apply our framework by simply replacing our assumptions with theirs. In general, stronger 

and/or more numerous assumptions will yield (weakly) narrower intervals. 

 

4.4 Validation of the Algorithm 
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The panel structure of the HRS provides a unique opportunity for assessing the validity of our approach. 

Specifically, we use respondents’ expectations observed in 2016 to validate the algorithm we presented 

earlier in this section. The validation procedure consists of the following steps.  

(i) Take any expectation question asked in 2016.  

(ii) For each respondent who was asked the question, compare their response in 2016 with the 

respondent’s rounding type in the relevant domain and scale segment inferred by applying the 

algorithm to the 2002-2014 data.  

(iii) If the granularity of the response observed in 2016 to a given expectation question is consistent 

with the rounding type inferred by the algorithm for the domain to which the question belongs and 

the scale segment in which the response falls, flag the case as valid.  

(iv)  Count the fraction of valid cases out of the total number of cases. 

We formally describe the criteria we used to judge consistency between individual 2016 responses 

and the rounding types inferred by the algorithm based on the 2002-2014 data in Sub-section SA4.4 of the 

Supplementary Appendix. Such criteria should be apparent in Table 6, which shows validation results for 

the “survival past 75” question. Table S13 in the Supplementary Appendix shows analogous statistics for 

the “working past 62” and the “stock market goes up” questions.  

Each panel of Tables 6 and S13 displays the cross-tabulation between the granularity of the response 

observed in 2016 (by row) and the respondent’s response type inferred by the algorithm for the domain to 

which the question belongs and the scale location in which the response falls (by column). Each cell 

reports the absolute frequency for the corresponding granularity-type combination. The cells 

corresponding to the valid cases are marked in green, while the cells corresponding to invalid cases are 

marked in red.  

We find that 93.39% of tail responses and 88.25% of center responses to the survival question in 2016 

are consistent with the predictions generated by our algorithm based on the 2020-2014 data. The 
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corresponding figures for the working question are 97.05% and 95.71%. And those for the stock market 

question are 94.29% and 95.9%. 

 

5. Illustrative Applications  

This section demonstrates how interval data on subjective expectations can be employed as either an 

outcome variable or a covariate in prediction analyses of substantive interest. Section 5.1 presents an 

application where the objective is linear prediction of the labor supply expectations of working HRS 

respondents, conditional on specified covariates. Section 5.2 studies non-parametric prediction of hours 

worked of male HRS respondents, using longevity expectations as a covariate. In both cases we examine 

how accounting for rounding in probabilistic expectations affects the conclusions that one can draw in 

empirical analysis.  

Both applications use the existing body of methodological research on partial identification with 

interval data, developed in Manski and Tamer (2002) and Beresteanu and Molinari (2008) and reviewed 

in Molinari (2020). Partial identification analysis determines the inferences possible with interval data. 

Moreover, it reveals the maximum bias of estimates obtained under the conventional assumption that 

persons do not round their reports. 

To understand computation of maximum bias, consider the simple situation in which one uses a 

person’s response to an HRS question to estimate his true belief. In the absence of assumptions relating 

responses to true beliefs, true beliefs could be anywhere in [0, 100].  Hence, maximum bias in any response 

p is in the range [-p, 100 - p].  Under the maintained assumption that our rounding algorithm is correct, 

true belief could be anywhere in our interval [L, U], so our algorithm places maximum bias in the interval 

[L - p, U - p]. Similarly, the more complex partial identification analyses that we perform in this section 

formally show the potential implications for prediction if one takes HRS responses at face value, ignoring 

respondent-specific rounding. 



23 
 

Our main analysis uses only the interval data as constructed in Section 4. However, we also explain 

how additional exclusion restrictions can be incorporated in the analysis, when credible, to yield stronger 

conclusions. 

 

5.1 Predicting Labor Supply Expectations of Older Workers  

As the American population ages and a larger fraction of “baby boomers” approach retirement age, it of 

interest to analyze how subjective expectations of HRS respondents for working full-time past age 62 vary 

with several covariates, including age, gender, coupledness status, household wealth, race, and education.  

In each of the HRS waves analyzed in this paper, respondents younger than 62 at the time of the 

interview were asked, “Thinking about work in general and not just your present job, what do you think 

the chances are that you will be working full-time after you reach age 62?”. See question P17 in Table 

S3 for the response distribution in each wave and in Table 2 for the response distribution with data pooled 

across waves. We compare the conclusions drawn when the elicited expectations are taken at face value, 

as is commonly done in the related literature (e.g., Honig, 1996, 1998), and when our algorithm is used to 

characterize rounding. We analyze data from each of the seven waves of the HRS from 2002 to 2014, 

pooling the data across waves. This yields a sample of size 24,052 after dropping respondents who are 

younger than fifty and those for whom we do not observe some covariates.  

When we take the elicited expectations of working past age 62 at face value, we report the results of 

best linear prediction under square loss. In this case, we assume that nonresponse is random and drop 

respondents who answered “Don’t know” or “Refuse” to the probability chance question posed in P017. 

The pooled sample has size 23,811. 

When we use our algorithm to interpret the elicited expectations as intervals under the assumptions 

set forth in Section 4, we repeat the same exercise of best linear prediction under square loss, considering 

all points in the interval outcome variable of each respondent to be feasible values of the quantity of 

interest. In this case, the resulting best linear predictor’s parameter vector is not point identified. Rather, 
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it is partially identified, meaning that there is a set of values (rather than a single value) for the parameter 

vector that are consistent with the available data and maintained assumptions. This set of values is called 

the parameters’ identification region. We estimate the identification region and report confidence intervals 

for it using the method proposed by Beresteanu and Molinari (2008) and the Stata package by Beresteanu 

et al. (2010).  Beresteanu and Molinari (2008, Section 4) and Beresteanu et al. (2012, Section 3.2) give a 

detailed discussion of the method.  

The results of our analysis are reported in Table 7. The first column shows the estimates and 

confidence intervals when elicited expectations are taken at face value. The results suggest an increased 

expectation to work full-time past age 62 for individuals who are closer to age 62, who are males, who 

have lower wealth, and who are more highly educated, while a reduced expectation to work past age 62 

for wealthier individuals and for non-whites. 

The second through fifth columns report set estimates and confidence intervals when elicited 

expectations are interpreted as interval data according to our algorithm. The only difference between the 

empirical exercises reported in the two sets of columns (2-3 and 4-5) is that the set estimation in columns 

2-3 maintains the assumption of random nonresponse to the expectation question as in the point estimation 

in column 1, whereas the set estimation in columns 4-5 follows a more conservative approach by replacing 

missing observations with [0, 100] intervals. We show both sets of results as some researchers may find 

the assumption of random nonresponse credible, whereas others may not find it credible. Comparison of 

the estimates across columns 2-3 and 4-5 quantifies the identifying power of the random nonresponse 

assumption.   

 In our description, we focus on the results in columns 4-5. The results reveal that the strength of the 

conclusions that can be drawn is weaker when we interpret elicited expectations as intervals than when 

we take them at face value. This is to be expected, as there is an intrinsic trade-off between the strength 

and the credibility of inference. Despite this, our analysis –under considerably weaker assumptions– 

continues to find that males and individuals with higher education have higher expectations, while blacks 
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have lower expectations, to work past age 62. Interestingly, the interval data that we construct remains 

sufficiently informative to allow us to learn the sign of several coefficients of the best linear predictor.  

One may be willing to augment the analysis with additional exclusion restrictions. A first type of 

restriction states that beliefs are statistically independent of an instrument 𝑧 conditional on other covariates 

𝑥. Formally, 𝑃(𝑣|𝑥, 𝑧) = 𝑃(𝑣|𝑥). This assumption can be incorporated into the analysis easily using the 

results reported in Manski (2003, Chapter 2), as we show in Supplementary Appendix SA5.1.  

Here we propose a different exclusion restriction, which appears to be new in the analysis of interval 

data. Let 𝑣 denote individual i’s subjective expectation to work past age 62, and let [𝑣
 , 𝑣

] denote that 

individual’s interval delivered by our algorithm. The assumption that we consider states that conditional 

on [𝑣 , 𝑣], the distribution of 𝑣 is independent of an observed covariate 𝑧.  Formally, 𝑃(𝑣|𝑣 , 𝑣, 𝑧) =

𝑃(𝑣|𝑣 , 𝑣) (of course, the assumption could also be imposed conditional on 𝑥). Proposition A1 in 

Supplementary Appendix SA5.1 derives sharp bounds on 𝐸(𝑣|𝑧 = 𝑧) − 𝐸(𝑣|𝑧 = 𝑧ଵ) under this 

assumption, where 𝑧 and 𝑧ଵ are two possible realizations of the covariate 𝑧. 

For concreteness, suppose that 𝑧 is an indicator variable taking value 1 for males and 0 for females. 

Then using the same data as in Columns 4-5 of Table 8, under the exclusion restriction we find that 

𝐸(𝑣|𝑧 = 𝑚𝑎𝑙𝑒) − 𝐸(𝑣|𝑧 = 𝑓𝑒𝑚𝑎𝑙𝑒) ∈ [3.95, 5.09]. By comparison, the bounds on this quantity using 

the interval data alone equal [1.21, 14.80].  The point identified value if one assumes that the responses 

are not rounded equals 4.57. This simple example illustrates that exclusion restrictions can have 

substantial identification power in this context. 

 

5.2 Longevity Expectations and Hours Worked   

Individuals’ life horizon and the related mortality risk are key ingredients of economic models of life-

cycle behaviors. This raises the question of whether life horizon and mortality risk as perceived by 

individuals are empirically important determinants of their labor supply, saving and investment decisions, 

etc. (e.g., Hamermesh (1985)). Previous work has examined the effect of subjective survival probabilities 
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on retirement and Social Security claiming behaviors of older Americans (e.g., Hurd et al. (2004), 

Delavande et al. (2006)). Here we focus on the relationship between subjective survival probabilities and 

hours worked.  

In all waves of the HRS, respondents under the age of 65 were asked to report their longevity 

expectations by means of the following question: “What is the percent chance that you will live to be 75 

or more?” (question P28). The sample distribution of responses to P28 in each wave is displayed in Table 

S3. Table S12 reports the sample frequencies of the width of the algorithm intervals, constructed around 

respondents’ point responses to question P28 in the 2014 HRS wave. 

We focus on working male individuals aged 50 through 64, who were asked to report their percent 

chance of living past 75. Our outcome variable is weekly hours worked. Hours worked were measured in 

question J172 as following: “How many hours a week do you usually work [on this job/in this business]?” 

This question was asked only of respondents who answered “yes” to question J20, “Are you doing any 

work for pay at the present time?”.  

The predictors used are interval-valued longevity expectations (where we replace missing observations 

with [0, 100] intervals), age, and coupledness status. As in the first application, the exercise is best 

prediction of the outcome variable given covariates. We again are interested in comparing the conclusions 

that can be drawn when rounding is addressed with those obtained when rounding is ignored. 

Econometrically, the key difference between this application and the earlier one is that now the interval-

valued variable is used as a covariate. In this case, the inferential problem is more difficult than when the 

interval-valued variable is used as an outcome of a regression model, because the estimator is no longer 

linear in the interval data.   

Manski and Tamer (2002) study the problem of inference on regressions with interval data on a 

regressor. That is, the problem is one of inferring, say  | ,E y x , when   is unobserved but is known to 

lie in some interval [ L , U ] with probability 1. The latter assumption is called Interval (I). Under 
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assumption (I), two additional ones – Monotonicity (M) and Mean Independence (MI), Manski and Tamer 

(2002) derive the identification region for  | ,E y x  and discuss estimation methods.  

We estimate the model using the inferential approach of Chernozhukov, Lee, and Rosen (2013) and 

the Stata package by Chernozhukov et al. (2015). We again present results for the pooled data, which yield 

a sample of size 13,717 after dropping respondents with missing covariates. As in the application of 

Section 5.1, when we take the elicited longevity expectations at face value, we drop respondents who 

answered “Don’t know” or refused to answer the probability chance question posed.  

In the interest of space, we present results graphically in Figure 1 rather than in a table. Each panel of 

Figure 1 reports on the x-axis the subjective percent-chance that a respondent will survive to age 75. The 

y-axis reports the mean weekly hours of work predicted in two ways.  One uses a linear regression model 

estimated by least squares, taking the longevity expectations data at face value (“OLS”). The other 

(“Bounds”) uses interval expectations to account for rounding, where the intervals are those described in 

Section 4. Additionally, the graphs display 95% confidence intervals for both the OLS and Bounds 

estimates. Different panels show estimates for different sub-samples, corresponding to different age-

coupledness status combinations.      

Taking the longevity expectations data at face value, we find that they have a positive but economically 

insignificant association with hours worked, while hours worked decrease substantially with age and if 

the respondent is not coupled.  When we allow for rounding, as illustrated in the plots in Figure 1, we 

confirm that predicted mean hours worked increase quite weakly in the perceived likelihood of living past 

75, while they decrease markedly as age increases, and for individuals who are not part of a couple. 

 

6. Conclusion  

We have studied rounding in numerical reports of probabilistic expectations. Our analysis of the responses 

to all expectations questions asked in the HRS core questionnaire between 2002 and 2014 confirms the 

earlier findings of Manski and Molinari (2010) based on analysis of the 2006 wave of data. Moreover, the 
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present analysis establishes important new findings. We present a general inferential approach that 

interprets expectations reports as interval data. We then implement a specification of the general approach 

that explicitly incorporates the documented patterns of responses across waves, question domains, and 

location within the measurement scale.  

The main tenet of the analysis is that observed response patterns across questions and waves carry 

information about individual respondents’ rounding practices. Observed response patterns, however, do 

not reveal whether individual respondents round their reports to simplify communication or to convey 

partial knowledge. Consistent with the first interpretation, we have assumed that respondents have well-

formed latent point beliefs. If instead the relevant latent objects were sets or ranges of beliefs, the 

algorithm would still work as intended as long as the algorithm’s interval completely includes the latent 

interval. 

If respondents round to convey partial knowledge about the likelihood of future events of the kind 

HRS expectations questions refer to, it would be better to allow them to express their ambiguity directly. 

This could be achieved by allowing respondents to give either a single percent-chance value or a range as 

they see fit. Then range measures of subjective expectations may be analyzed using existing econometric 

tools for interval data. See Manski and Molinari (2010), Giustinelli and Pavoni (2017), Delavande et al. 

(2019), and Giustinelli, Manski, and Molinari (2020) for data collection and analysis of this type. 
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Tables and Figures Appendix 

 
Table 1: Transitions of Response Tendencies across Waves  

Transition waves: 2002  
to 2004 

2004  
to 2006 

2006  
to 2008 

2008  
to 2010 

2010  
to 2012 

2012  
to 2014 

2002  
to 2014 

 Frequency (based on the 12 questions asked in all waves) 
% transitions to:        
same category 0.406 0.420 0.406 0.415 0.436 0.433 0.389 
adjacent category 0.386 0.383 0.383 0.385 0.377 0.373 0.392 
more distant 
category 0.209 0.197 

0.212 0.201 
0.187 0.194 

0.218 

N (100%) 14183 16126 15231 13732 18260 16923 8348 
same or adjacent 0.792 0.803 0.788 0.800 0.813 0.806 0.782 
NOTE: The percentages shown in the table are calculated from transition matrices of response tendencies defined 
in terms of the following categories: All NR; All (0, 100); All (0, 50, 100); Some multiple of 10 different not in (0, 
50, 100); Some multiple of 5 but not of 10; Some 1-4 or 96-99, Some other. The following 12 questions were asked 
in all HRS waves between 2002 and 2014: P47: mutual fund increase in value; P28: live to be 75 or more; P29: live 
to be X or more; P5: leave inheritance ≥ $10,000; P6: leave inheritance ≥ $100,000; P59: leave inheritance ≥ 
$500,000; P7: leave any inheritance; P16: work for pay in the future; P17: work full time after age 62; P18: work 
full time after age 65; P32: move to nursing home in 5 years; P20: finding a job in few months if unemployed. 

 
 
 

Table 2: Responses by Question and across Waves in the 2002-2014 HRS  
(12 questions asked in all waves only) 

 
 
Question: percent chance that… 

N 
total 
obs. 

Percentage of responses in: 
NR V50  

 
V100 V25 

 
V10 
T 

V10 
C 

V5 
T 

V5 
C 

V1 
T 

V1 
C 

 Personal Health 
P28: Live to be age 75 or more 56497 0.038 0.219 0.204 0.082 0.270 0.120 0.042 0.010 0.013 0.001 
P29: Live to be age X or more 118404 0.050 0.211 0.191 0.075 0.236 0.156 0.049 0.013 0.018 0.001 
P32: Move to nursing home in 5 year 74696 0.059 0.120 0.426 0.039 0.206 0.062 0.060 0.003 0.023 0.001 
 General Economic Conditions 
P47: Mutual funds up /next year   105714 0.157 0.247 0.093 0.076 0.185 0.193 0.025 0.014 0.008 0.001 
 Personal Finances 
P5: Leave inheritance ≥ $10K 116769 0.046 0.083 0.518 0.028 0.228 0.051 0.028 0.001 0.017 0.000 
P6: Leave inheritance ≥ $100K 95625 0.014 0.100 0.490 0.037 0.228 0.072 0.035 0.002 0.022 0.000 
P7: Leave any inheritance  19716 0.020 0.053 0.763 0.013 0.098 0.021 0.020 0.001 0.012 0.000 
P16: Work for pay in the future 66855 0.018 0.055 0.672 0.021 0.139 0.037 0.035 0.001 0.021 0.000 
P17: Work full time after age 62 36603 0.011 0.144 0.333 0.055 0.268 0.120 0.043 0.006 0.020 0.001 
P18: Work full time after age 65 37062 0.011 0.144 0.280 0.058 0.282 0.130 0.057 0.008 0.028 0.001 
P20: Find job in few 
months/unemployed 8206 0.012 0.211 0.184 0.061 0.277 0.174 0.050 0.012 0.019 0.001 
P59: Leave inheritance ≥ $500K 73872 0.011 0.090 0.490 0.034 0.216 0.073 0.046 0.003 0.037 0.000 
NOTE: NR ≡ nonresponse; V50 ≡ {50}, V100 ≡ {0, 100}, V25 ≡ {25, 75}, V10-T ≡ {10, 20, 80, 90}, V10-C ≡ {30, 40, 60, 70}, V5-T ≡ {5, 
15, 85, 95}, V5-C ≡ {35, 45, 55, 65}, V1-T ≡ non-round values in 1-24 or 76-99, V1-C ≡ non-round values in 26-74.
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Table 3: Distribution of Rounding Types by Scale Location and Question Domain 
 
 
Rounding Type 

Percent 
Personal  
Health 

Percent 
Personal  
Finances 

Percent  
General Economic 

Conditions 
Tail Rounding 

 𝓜1-T 10.94 22.73 9.29 
 𝓜5-T 25.84 31.75 24.93 
 𝓜10-T 46.13 36.81 49.01 
 𝓜100 13.31 7.95 7.98 
None/𝓤ndetermined 3.78 0.76 8.79 
Total 100 100 100 

Center Rounding 
𝓜1-C 0.38 0.41 0.55 
𝓜5-C 5.87 6.77 7.72 
𝓜10-C 52.21 63.11 59.67 
𝓜25 12.53 10.77 10.33 
𝓜50 16.60 11.39 12.52 
None/𝓤ndetermined 12.41 7.55 9.21 
Total 100 100 100 

Tail versus Center Rounding 
Tails finer than center 45.42 61.03 40.40 
Tails same as center 32.60 28.49 38.73 
Tails coarser than center 6.71 2.90 5.94 
No/𝓤ndet. T and/or C  15.27 7.58 14.93 
Total 100 100 100 
Sample size 28,044 28,252 28,172 

NOTE: For each domain (T=tail and C= center), 𝓜1 denotes a respondent who rounds to the nearest 1 percent in 
that domain; 𝓜5 denotes a respondent who rounds to the nearest 5 percent or finer in that domain; and so on. 
𝓤ndetermined denotes respondents who could not be classified to belong to any of the preceding types. 
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Table 4: Bivariate Ordered Probit Model Predicting Rounding Type 
 Personal Health  Personal Finances Gen. Econ. Conditions 

 Tail Type Center Type Tail Type Center Type Tail Type Center Type 

Male  0.0047  -0.0497  -0.0032  -0.0154  -0.0070  -0.0693  

 (0.0149) (0.0155) (0.0142) (0.0153) (0.0151) (0.0157) 

Aged 60-69 
cohort 

-0.1961  -0.1436  -0.0116  0.0145  -0.1090  -0.1049  

 (0.0180) (0.0194) (0.0174) (0.0189) (0.0185) (0.0195) 

Aged 70-79 
cohort 

-0.1639   0.0481   0.1466   0.1987   -0.0941   0.0232  

 (0.0199) (0.0206) (0.0189) (0.0204) (0.0199) (0.0208) 

Aged 80+ 
cohort 

 0.1092   0.4465   0.4934   0.5658   0.1718   0.3209  

 (0.0266) (0.0261) (0.0246) (0.0258) (0.0266) (0.0266) 

High school -0.0842  -0.0864  -0.1277  -0.1579  -0.0614  -0.1115  

 (0.0224) (0.0221) (0.0208) (0.0219) (0.0226) (0.0227) 

Some college -0.0642  -0.0758  -0.1688  -0.1948  -0.0588  -0.1487  

 (0.0362) (0.0379) (0.0342) (0.0372) (0.0364) (0.0389) 

Bachelor -0.2027  -0.2432  -0.2677  -0.3073  -0.1726  -0.2692  

 (0.0288) (0.0301) (0.0277) (0.0296) (0.0292) (0.0305) 

Graduate -0.2818  -0.3658  -0.3367  -0.3549  -0.2438  -0.3454  

 (0.0319) (0.0337) (0.0307) (0.0332) (0.0320) (0.0341) 

Black  0.0188   0.1148  -0.1507  -0.0798  -0.0562  -0.0456  

 (0.0220) (0.0226) (0.0203) (0.0220) (0.0219) (0.0228) 

Other race  0.1136   0.1374   0.0604   0.0173   0.0887   0.0477  

 (0.0303) (0.0322) (0.0289) (0.0310) (0.0314) (0.0322) 

Avg. Cog. -0.0261  -0.0339  -0.0368  -0.0373  -0.0202  -0.0370  

 (0.0022) (0.0023) (0.0020) (0.0022) (0.0022) (0.0023) 

Rho 0.2595     0.3848    0.2897 

 (0.0081) (0.0087) (0.0093) 

N 22,447 24,541 22,593 

NOTES: (i) Respondents with undetermined tail or center rounding type are excluded from this analysis. (ii) 
Predictors are dummies for gender, cohort (based on age averaged across waves), education, and race, plus average 
cognition score across waves.  (iii) Omitted dummies are ‘Female,’ ‘Aged 50-59 cohort,’ ‘No degree,’ and ‘White.’ 
(iv) ‘Rho’ is the parameter capturing the correlation between the error terms of the tail and center latent equations. 
(v) Standard errors are in parentheses. 
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Table 5. Predicted Probabilities of Rounding Types for Selected Covariate Profiles 
 

Panel A. Personal Health –(Female, White, Bachelor Degree) Respondents 
  Average Cognition Across Waves 
  Mean -1 

SD 
Mean Mean +1 

SD 
 Mean -1 

SD 
Mean Mean +1 

SD 
   

Prob. of Type (𝓜5-T,  𝓜10-C) 
  

Prob. of Type (𝓜10-T, 𝓜10-C) 
 50-59 0.1846 0.2036 0.2198 50-59 0.3118 0.3123 0.3064 
 60-69 0.2136 0.2289 0.2402 60-69 0.2971 0.2897 0.2767 
 
 

Cohort 
Group 

70-79 0.2008 0.2194 0.2347 70-79 0.2784 0.2768 0.2696 
80+ 0.1433 0.1658 0.1878 80+ 0.2494 0.2623 0.2701 

  
Prob. of Type (𝓜100-T, M25-C) 

  
Prob. of Type (𝓜100-T, 𝓜50-C) 

50-59 0.0199 0.0157 0.0121 50-59 0.0312 0.0221 0.0153 
 60-69 0.0135 0.0103 0.0077 60-69 0.0192 0.0133 0.0090 
 70-79 0.0151 0.0119 0.0091 70-79 0.0256 0.0180 0.0124 
 80+ 0.0247 0.0207 0.0170 80+ 0.0583 0.0433 0.0316 

 
Panel B. Personal Finances –(Female, White, Bachelor Degree) Respondents 

  Average Cognition Across Waves 
  Mean -1 

SD 
Mean Mean +1 

SD 
 Mean -1 

SD 
Mean Mean +1 

SD 
   

Prob. of Type ( 𝓜5-T, M10-C) 
  

Prob. of Type ( 𝓜10-T, 𝓜10-C) 
 50-59 0.2634 0.2724 0.2731 50-59 0.2483 0.2248 0.1976 
 60-69 0.2632 0.2722 0.2728 60-69 0.2440 0.2209 0.1942 

Cohort 
Group 

70-79 0.2453 0.2621 0.2715 70-79 0.2583 0.2415 0.2191 
80+ 0.1887 0.2162 0.2402 80+ 0.2665 0.2665 0.2586 

  
Prob. of Type (𝓜100-T, 𝓜25-C) 

  
Prob. of Type (𝓜100-T, 𝓜50-C) 

50-59 0.0072 0.0049 0.0032 50-59 0.0107 0.0065 0.0038 
 60-69 0.0071 0.0048 0.0031 60-69 0.0107 0.0065 0.0038 
 70-79 0.0102 0.0071 0.0048 70-79 0.0175 0.0110 0.0067 
 80+ 0.0196 0.0149 0.0109 80+ 0.0443 0.0298 0.0194 

 
Panel C. General Economic Conditions –(Female, White, Bachelor Degree) Respondents 

  Average Cognition Across Waves 
  Mean -1 

SD 
Mean Mean +1 

SD 
 Mean -1 

SD 
Mean Mean +1 

SD 
   

Prob. of Type ( 𝓜5-T, 𝓜10-C) 
  

Prob. of Type ( 𝓜10-T,  𝓜10-C) 
 50-59 0.2031 0.2170 0.2273 50-59 0.3733 0.3724 0.3647 
 60-69 0.2201 0.2315 0.2387 60-69 0.3625 0.3562 0.3435 
 

Cohort 
Group 

70-79 0.2157 0.2298 0.2401 70-79 0.3509 0.3495 0.3415 
80+ 0.1671 0.1858 0.2027 80+ 0.3524 0.3658 0.3725 

  
Prob. of Type ( 𝓜100-T, 𝓜25-C) 

  
Prob. of Type ( 𝓜100-T, 𝓜50-C) 

50-59 0.0111 0.0088 0.0068 50-59 0.0165 0.0116 0.0080 
 60-69 0.0086 0.0067 0.0051 60-69 0.0119 0.0082 0.0056 
 70-79 0.0094 0.0074 0.0051 70-79 0.0145 0.0101 0.0070 
 80+ 0.0166 0.0138 0.0112 80+ 0.0317 0.0233 0.0167 
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NOTES: (i) (𝓜 5-T, 𝓜10-C) denotes rounding to the nearest 5 percent or a finer degree in the tails and rounding 
to the nearest 10 percent or a finer degree in the center. (𝓜 10-T, 𝓜10-C) denotes rounding to the nearest 10 
percent or a finer degree in both the tails and the center. (𝓜 100-T, 𝓜25-C) denotes rounding to any degree in the 
tails and to the nearest 25 percent or a finer degree in the center. (𝓜 100-T, 𝓜50-C) denotes rounding to any 
degree in both the tails and the center. (ii) Predicted probabilities are evaluated at the mean value of average 
cognition across waves (denoted Mean), at the mean minus one standard deviation value of average cognition across 
waves (denoted Mean – 1 SD), and at the mean plus one standard deviation value of average cognition across waves 
(denoted Mean + 1 SD). Predicted probabilities are evaluated at cohort dummies, based on the person’s average age 
across waves falling in each of the categories 50-59, 60-69, 70-79, and 80+. 
 

 

 

Table 6 Validation: Percent Chance of Living to Be 75 or More 

Panel A. Tail responses – Absolute frequencies reported in each cell 
 Inferred tail rounding type in health domain based on algorithm and 2002-2014 data 

Granularity 
of tail response 
to survival  
past 75 
in 2016 

 𝓜1-T  𝓜5-T  𝓜10-T 𝓜50-T 𝓤ndet-T 
Multiple of 1 37 20 39 3 0 
Multiple of 5 46 119 81 8 0 
Multiple of 10 173 492 944 70 0 
0 or 100 117 255 668 270 0 

NOTES: Sub-sample size = 2,507 (after dropping 8 observations for which rounding type missing). 
Percentage of consistent cases in the tails = 93.39% (green-colored cells).  

 

Panel B. Center responses – Absolute frequencies reported in each cell 
 Inferred center rounding type in health domain based on algorithm and 2002-2014 data 

Granularity 
of center 
response 
to survival  
past 75 
in 2016 

 𝓜1-C 𝓜5-C 𝓜10-C 𝓜25 𝓜50-C 𝓤ndet-C 
Multiple of 1 1 3 1 1 1 1 
Multiple of 5 1 18 31 6 4 0 
Multiple of 10 2 84 512 36 94 25 
25 or 75 7 53 251 64 37 13 
50 5 69 812 153 244 50 

NOTES: Sub-sample size = 2,579 (after dropping 3 observations for which rounding type missing). 
Percentage of consistent cases in the center = 88.25% (green-colored cells). 
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Table 7: BLP Prediction of Retirement Expectations:  
Point Estimates vs. Set Estimates with Pooled HRS 2002-2014 Data 

 OLS Estimates I Set Estimates I Set Estimates II 
 (MCAR imposed) LB UB LB UB 

Age 0.1638 -0.4036 0.7212 -0.4944 0.8110 
 (0.0306, 0.2970) (-0.5177, 0.8353) (-0.5944, 0.9110) 
      

Coupled -2.694 -8.5773 3.2792 -9.6014 4.4009 
 (-4.1348, -1.2533) (-9.6555, 4.3573) (-10.6521, 5.4517) 
      

Male 8.2172 2.1835 13.9580 1.1365 14.7641 
 (7.0017, 9.4327) (1.2710, 14.8705) (0.2024, 15.6982) 
      

Negative  wealth 6.1812 -1.6447 13.5758 -4.1145 15.4530 
 (4.3986, 7.9637) (-3.2409, 15.1720) (-5.7203, 17.0588) 
      

Below median 
wealth 

6.2116 -1.5954 13.5862 -3.9164 15.2990 

 (4.4898, 7.9333) (-2.9980, 14.9888) (-5.4242, 16.8065) 
      

Above median 
wealth 

-0.4701 -9.3489 8.1918 -11.5634 9.8589 

 (-2.5209, 1.5808) (-10.9746, 9.8176) (-13.1321, 11.4276) 
      

Black -9.8655 -16.0655 -3.3521 -17.2459 -2.2001 
 (-11.5115, 8.2196) (-17.2151, -2.20253) (-18.3527, -1.0933) 
      

Other race -4.8209 -11.5792 2.1776 -13.2752 4.2223 
 (-6.8371, -2.8046) (-12.9955, 3.5940) (-14.7696, 5.7167) 
      

High school 10.5356 3.0627 17.337 0.2633 19.1237 
 (8.7016, 12.3696) (1.5481, 18.8521) (-1.1983, 20.5853) 
      

Some college 13.4775 4.7073 21.5118 1.9292 23.2121 
 (10.7289, 16.2260) (2.7421, 23.4770) (0.0495, 25.0918) 
      

Bachelor degree 17.0926 7.9728 25.3006 5.2205 27.0224 
 (14.6899, 19.4953) (6.0970, 27.1764) (3.5435, 28.6994) 
      

Graduate degree 19.1551 9.7651 27.6084 7.0036 29.3428 
 (16.3555, 21.9546) (7.8350, 29.5384) (5.0635, 31.2829) 
      

Constant 26.0763 -5.8898 59.6645 -10.5647 65.9696 
 (18.3266, 33.8259) (-12.6411, 66.4158) (-16.5846, 71.9895) 
      

N 23,811 23,811 24,052 
NOTE: OLS and SetBLP estimates I calculated after dropping DK/RF responses to the point PC question. SetBLP estimates II 
include DK/RF responses to the point PC question. 95% confidence intervals in parenthesis. OLS CIs clustered at the HH level. 
SetBLP estimates calculated using 501 bootstrap repetitions. Beresteanu and Molinari (2008)’s confidence sets based on 
directed Hausdorff. Omitted dummies are ‘0 wealth,’ ‘white,’ and ‘no degree.’  
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Figure 1:  BLP Prediction of Hours Worked Per Week: Point Estimates vs. Set Estimates with 
Pooled HRS 2002-2014 Data 

 

NOTE: OLS and SetBLP estimates of hours worked per week as a function of longevity expectations, age, and coupledness 
status. SetBLP estimates are obtained using Chernozhukov et al. (2013, 2015)’s inferential approach. Each graph plots the 
estimates as a function of longevity expectations for different age groups-coupledness status combinations. 

 

 

 

 

 

 


