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Abstract

We propose a bootstrap-based calibrated projection procedure to build confidence in-
tervals for single components and for smooth functions of a partially identified parameter
vector in moment (in)equality models. The method controls asymptotic coverage uni-
formly over a large class of data generating processes.

The extreme points of the calibrated projection confidence interval are obtained by
extremizing the value of the component (or function) of interest subject to a proper
relaxation of studentized sample analogs of the moment (in)equality conditions. The
degree of relaxation, or critical level, is calibrated so that the component (or function)
of 6, not @ itself, is uniformly asymptotically covered with prespecified probability. This
calibration is based on repeatedly checking feasibility of linear programming problems,
rendering it computationally attractive.

Nonetheless, the program defining an extreme point of the confidence interval is gener-
ally nonlinear and potentially intricate. We provide an algorithm, based on the response
surface method for global optimization, that approximates the solution rapidly and ac-
curately. The algorithm is of independent interest for inference on optimal values of
stochastic nonlinear programs. We establish its convergence under conditions satisfied by
canonical examples in the moment (in)equalities literature.

Our assumptions and those used in the leading alternative approach (a profiling based
method) are not nested. An extensive Monte Carlo analysis confirms the accuracy of
the solution algorithm and the good statistical as well as computational performance of
calibrated projection, including in comparison to other methods.

Keywords: Partial identification; Inference on projections; Moment inequalities; Uni-
form inference.
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1 Introduction

This paper provides theoretically and computationally attractive confidence intervals for pro-
jections and smooth functions of a parameter vector # € © c R?, d < oo, that is partially
or point identified through a finite number of moment (in)equalities. The values of 6 that
satisfy these (in)equalities constitute the identification region ©j.

Until recently, the rich literature on inference in this class of models focused on confidence

sets for the entire vector 8, usually obtained by test inversion as
Cn(ci—a) ={0 €O :T,(0) < c1-4(0)}, (1.1)

where T,,(0) is a test statistic that aggregates violations of the sample analog of the moment
(in)equalities, and c;_,(f) is a critical value that controls asymptotic coverage, often uni-
formly over a large class of data generating processes (DGPs). In point identified moment
equality models, this would be akin to building confidence ellipsoids for 8 by inversion of the
F-test statistic proposed by Anderson and Rubin (1949).

However, applied researchers are frequently primarily interested in a specific component
(or function) of 0, e.g., the returns to education. Even if not, they may simply want to report
separate confidence intervals for components of a vector, as is standard practice in other
contexts. Thus, consider the projection p'6, where p is a known unit vector. To date, it has

been common to report as confidence interval for p’f the projection of Cy,(c1—-q):

CIF =| inf p'6, sup po|, (1.2)
0eCn(ci—a) 0eCnlci—a)

where n denotes sample size; see for example Ciliberto and Tamer (2009), Grieco (2014) and
Dickstein and Morales (2016). Such projection is asymptotically valid, but typically yields
conservative and therefore needlessly large confidence intervals. The potential severity of this
effect is easily appreciated in a point identified example. Given a 4/n-consistent estimator
6, € R? with limiting covariance matrix equal to the identity matrix, a 95% confidence
interval for 6; is obtained as énk +1.96, k=1,...,d. In contrast, if d = 10, then projection
of a 95% Wald confidence ellipsoid yields énk + 4.28 with true coverage of essentially 1. We
refer to this problem as projection conservatism.

Our first contribution is to provide a bootstrap-based calibrated projection method that
largely anticipates and corrects for projection conservatism. For each candidate 6, ¢,(6) is
calibrated so that across bootstrap repetitions the projection of 6 is covered with at least some
pre-specified probability. Computationally, this bootstrap is relatively attractive because we

linearize all constraints around 6, so that coverage of p'# corresponds to the projection of a



stochastic linear constraint set covering zero. We then propose the confidence interval

cl, = inf p'0, sup pO|. 1.3
0€Cn(én) 0Cn(en) (1.3)

We prove that C1,, asymptotically covers p’f with probability at least 1 — o uniformly over
a large class of DGPs and that it is weakly shorter than (1.2) for each n.! We also provide
simple conditions under which it is asymptotically strictly shorter.

Our second contribution is a general method to accurately and rapidly compute projection-
based confidence intervals. These can be our calibrated projection confidence intervals, but
they can also correspond to projection of many other methods for inference on either 6
or its identified set ©;. Examples include Chernozhukov, Hong, and Tamer (2007), An-
drews and Soares (2010), or (for conditional moment inequalities) Andrews and Shi (2013).
Projection-based inference extends well beyond its application in partial identification, hence
our computational method proves useful more broadly. For example, Freyberger and Reeves
(2017a,b, Section S.3) use it to construct uniform confidence bands for an unknown function
of interest under (nonparametric) shape restrictions.

We propose an algorithm that is based on the response surface method, thus it resembles
an expected improvement algorithm (see e.g. Jones, 2001; Jones, Schonlau, and Welch, 1998,
and references therein). Bull (2011) established convergence of the expected improvement
algorithm for unconstrained optimization problems where the objective is a “black box”
function. Building on his results, we show convergence of our algorithm for constrained
optimization problems in which the constraint functions are “black box” functions, assuming
that they are sufficiently smooth. We then verify this smoothness condition for canonical
examples in the moment (in)equalities literature. Our extensive Monte Carlo experiments
confirm that the algorithm is fast and accurate.?

Previous implementations of projection-based inference were based on approximating the
set Cp(c1—a) © R? by searching for vectors 6 € © such that T},(0) < c1—_o(6) (using, e.g., grid-
search or simulated annealing with no cooling), and reporting the smallest and largest value
of p’f among parameter values that were “guessed and verified” to belong to C,(c1—q). This
becomes computationally cumbersome as d increases because it typically requires a number of
evaluation points that grows exponentially with d. In contrast, our method typically requires
a number of evaluation points that grows linearly with d.

The main alternative inference prodedure for projections was introduced in Romano and
Shaikh (2008) and significantly advanced in Bugni, Canay, and Shi (2017, BCS henceforth).

It is based on profiling out a test statistic. The classes of DGPs for which our procedure and

!This comparison is based on projection of the confidence set of Andrews and Soares (2010) and holds the
choice of tuning parameters and criterion function in (1.2) and (1.3) constant across methods.

2Freyberger and Reeves (2017b, Section S.3) similarly find our method to be accurate and to considerably
reduce computational time.



the profiling-based method of BCS (BCS-profiling henceforth) can be shown to be uniformly
valid are non-nested. We show that in well behaved cases, calibrated projection and BCS-
profiling are asymptotically equivalent. We also provide conditions under which calibrated
projection has lower probability of false coverage, thereby establishing that the two methods’
power properties are non-ranked. Computationally, calibrated projection has the advantage
that the bootstrap iterates over linear as opposed to nonlinear programming problems. While
the “outer” optimization problems in (1.3) are potentially intricate, our algorithm is geared
toward them. Our Monte Carlo simulations suggest that these two factors give calibrated
projection a considerable computational edge over BCS-profiling, with an average speed gain
of about 78-times.

In an influential paper, Pakes, Porter, Ho, and Ishii (2011) also use linearization but,
subject to this approximation, directly bootstrap the sample projection.? This is valid only
under stringent conditions, and we show that calibrated projection can be much simplified
under those conditions. Other related papers that explicitly consider inference on projections
include Andrews, Berry, and Jia (2004), Beresteanu and Molinari (2008), Bontemps, Magnac,
and Maurin (2012), Chen, Tamer, and Torgovitsky (2011), Kaido (2016), Kitagawa (2012),
Kline and Tamer (2015), and Wan (2013). However, some are Bayesian, as opposed to
our frequentist approach, and none of them establish uniform validity of confidence sets.
Chen, Christensen, and Tamer (2017) establish uniform validity of MCMC-based confidence
intervals for projections, but these are aimed at covering the entire set {p'6 : 6 € ©1(P)},
whereas we aim at covering the projection of 8. Finally, Gafarov, Meier, and Montiel-Olea
(2016) have used our insight in the context of set identified spatial VARs.

Structure of the paper. Section 2 sets up notation and describes our approach in
detail. Section 3 describes computational implementation of the method and establishes
convergence of our proposed algorithm. Section 4 lays out our assumptions and, under these
assumptions, establishes uniform validity of calibrated projection for inference on projections
and smooth functions of #. It also shows that more stringent conditions allow for several
simplifications to the method, including that it can suffice to evaluate ¢, at only two values
of # and that one can dispense with a tuning parameter. The section closes with a formal
comparison of calibrated projection and BCS-profiling. Section 5 reports the results of Monte
Carlo simulations. Section 6 draws conclusions. The proof of convergence of our algorithm
is in Appendix A. All other proofs, background material for our algorithm, and additional

results are in the Online Appendix.*

3The published version, i.e. Pakes, Porter, Ho, and Tshii (2015), does not contain the inference part.

4Section B provides convergence-related results and background material for our algorithm and describes
how to compute é,(0). Section C verifies, for a number of canonical moment (in)equality models, the assump-
tions that we invoke to show validity of our inference procedure and for our algorithm. Section D contains
proofs of the Theorems in this paper’s Section 4. Section E collects Lemmas supporting the preceding proofs.
Section F provides further comparisons with the profiling method of Bugni, Canay, and Shi (2017), including
an example where calibrated projection has higher power in finite sample. Section G provides comparisons with
“uncalibrated” projection of the confidence region in Andrews and Soares (2010), including simple conditions

[3]



2 Detailed Explanation of the Method

Let X; € X € R be a random vector with distribution P, let © < R denote the parameter
space, and let m; : X x © — R for j = 1,...,J1 + Jo denote measurable functions char-
acterizing the model, known up to parameter vector # € ©. The true parameter value @ is

assumed to satisfy the moment inequality and equality restrictions

Ep[m;(Xi,0)] <0, j=1,---,Jy (2.1)
Ep[mj(Xi,H)] =0,5=J+1,---,J1 + Jo. (2.2)

The identification region ©(P) is the set of parameter values in O satisfying (2.1)-(2.2). For

a random sample {X;,i = 1,--- ,n} of observations drawn from P, we write
m”y](e) En_12?=1mj(Xi79), j = 1) 7<]1 +J2 (23)
Gng = (071 20 [my (Xi, )17 = [ (O], G =1, i+ T2 (2.4)

for the sample moments and the analog estimators of the population moment functions’
standard deviations Up’j.s
The confidence interval in (1.3) then becomes C1I,, = [—s(—p, C,,(¢y)), s(p,Cn(¢n))], where
A / mnj(e) A .
$(p,Cn(én)) =sup p'0 sit. /n——2 <é,(0), j=1,---,J (2.5)
0e© O-nvj (9)
and similarly for (—p). Here, we define J = J; + 2J, moments, where my, j,+7,1%(0) =
—m g, +x(0) for k = 1,--- | Jy. That is, we split moment equality constraints into two opposing
inequality constraints and relax them separately.’

For a class of DGPs P that we specify below, define the asymptotic size of CI,, by

. . . . /
hfl,lo%f })ré?fD Hegﬁp) P(p'0eCl,). (2.6)

Our goal is to calibrate ¢, so that (2.6) is at least equal to a prespecified level 1 —a > 1/2
while anticipating projection conservatism. To build intuition, fix (6, P) s.t. § € ©;(P),P €

under which CT,, is asymptotically strictly shorter than CIZ"%.

SUnder Assumption 4.3-(IT), in equation (2.5) instead of G, ; we use the estimator 6., specified in (E.188)
in Lemma E.10 p.51 of the Online Appendix for j = 1,...,2R: (with R1 < J1/2 defined in the assumption).
In equation (3.2) we use 6,,; for all j =1,...,J. To ease notation, we distinguish the two only where needed.

SFor a simple analogy, consider the point identified model defined by the single moment equality
Ep(mi(X:,0)) = Ep(X;) — 60 = 0, where 6 is a scalar. In this case, Cn(én) = X + é,6w/y/n. The upper
endpoint of the confidence interval can be written as sup, {p'0 s.t. —é&, < Vn(X —0)/6, < é,}, withp =1,
and similarly for the lower endpoint.



‘P. The projection of 4 is covered when

— 5(=p,Cn(n)) < P'0 < 5(p,Cn(én))

- infy p'v <0< supy p'v
st.0e®, Yimma <o) vif ST \stoeo, VIl <o (9),v)

i(ﬂfxe\/)ﬁ(e—e) P'A S<upAex>F n(6—-0) P'A
& ﬁmnj 0+ 2= ) A , <0< fmn] 0+ . A .

(2.7)

where the second equivalence follows from substituting ¥ = 6 + A/4/n and taking A to be the
choice parameter. (Intuitively, we localize around 6 at rate 1/4/n.)

We control asymptotic size by finding ¢, such that 0 asymptotically lies within the optimal
values of the NLPs in (2.7) with probability 1 — a. To reduce computational burden, we
approximate the event in equation (2.7) through linear expansion in A of the constraint set.
To each constraint j, we add and subtract v/nEp[m;(X;,0 + \//n)]/6,,;(0 + A//n) and

apply the mean value theorem to obtain

NUE 9+in - 6+in
U(Q(WA;)) = {Gny (0+25) + Dry(0 )A+\/ﬁw,p,j(0)}m. (2.8)

Here G, () = v/n(my ;(-) — Ep[m;(X;,-)])/op;(-) is a normalized empirical process indexed
by 0 € ©, Dp;(-) = Vo{Ep|m;(X;,-)|/op;(-)} is the gradient of the normalized moment,
y1,p;(+) = Ep(mj(X;,+))/op;(+) is the studentized population moment, and the mean value
0 lies componentwise between 6 and 6 + \/y/n.”

Calibration of ¢, requires careful analysis of the local behavior of the moment restric-
tions at each point in the identification region. This is because the extent of projection
conservatism depends on (i) the asymptotic behavior of the sample moments entering the
inequality restrictions, which can change discontinuously depending on whether they bind at
6 (v1,p;(#) = 0) or not, and (ii) the local geometry of the identification region at 6, i.e. the
shape of the constraint set formed by the moment restrictions, and its relation to the level
set of the objective function p’f. Features (i) and (ii) can be quite different at different points
in ©;(P), making uniform inference for the projection challenging. In particular, (ii) does
not arise if one only considers inference for the entire parameter vector, and hence is a new

challenge requiring new methods.® This is where this paper’s core theoretical innovation lies.

"The mean value  changes with j but we omit the dependence to ease notation.

8This is perhaps best expressed in the testing framework: Inference for projections entails a null hypothesis
specifying the value of a single component (or a function) of 8. The components not under test become
additional nuisance parameters, and dealing with them presents challenges that one does not face when
testing hypotheses that specify the value of the entire vector 6.

[5]



An important component of this innovation is to add to (2.7) the constraint that A\ €
pB?, where B* = [~1,1]? and p > 0 a tuning parameter. This is slightly conservative but
regularizes the effect of the local geometry of ©;(P) at 6 on the inference problem. See
Section 4.3 for further discussion. We show that the probability of the event in (2.7), with
A restricted to be in pB¢, is asymptotically approximated by the probability that 0 lies
between the optimal values of two programs that are linear in A. The constraint sets of these
programs are characterized by (i) a Gaussian process Gp;(f) evaluated at § (that we can
approximate through a simple nonparametric bootstrap), (ii) a gradient Dp;(#) (that we
can uniformly consistently estimate’ on compact sets), and (iii) the parameter v p;(6) that
measures the extent to which each moment inequality is binding (that we can conservatively
estimate using insights from Andrews and Soares (2010)). This suggests a computationally

attractive bootstrap procedure based on linear programs.

3 Computing Calibrated Projection Confidence Intervals

3.1 Computing the Critical Level
For a given 6 € ©, we calibrate ¢, () through a bootstrap procedure that iterates over linear
programs.'? Define

AL (0,p,¢) = {Ae/n(© —0) n pB: Gh ;(0) + Dy j(ON+¢(€n(0) Sc,j=1,....J0}  (3.1)

where Gfl,j(-) = n~1/2 D (my (Xxb Y =11n;(+))/6n.;(+) is a bootstrap analog of Gp;,'* ﬁn]()

7

is a consistent estimator of Dp (), p > 0 is a constant chosen by the researcher (see Section
4.3), B = [-1,1]¢, and én,j is defined by

Ko /MM, 5 (0)/60,5(0) G =1,...,.1
0 G= A1,

£n;(0) = (3.2)

J
(0]

one of the generalized moment selection (GMS) functions proposed by Andrews and Soares

where Kk, is a user-specified thresholding sequence such that x, — oo, ¢ : R[J too] R is

(2010), and Ryq) = R U {£o0}. A common choice of ¢ is given component-wise by

0 if 2> -1
pj(z) = ' (3.3)
—oo if x < —1.

Restrictions on ¢ and the rate at which &, diverges are imposed in Assumption 4.2.

9See Online Appendix C for proposal of such estimators in some canonical moment (in)equality examples.

101f © is defined through smooth convex (in)equalities, these can be linearized too.

""Bugni, Canay, and Shi (2017) approximate the stochastic process Gp,; using n="2 3" [(m;(X;,-) —
M, (+))/6n,;()]x: with {x; ~ N(0,1)};-; i.i.d. This approximation is equally valid in our approach, and can
be computationally faster as it avoids repeated evaluation of m; (Xf’7 -) across bootstrap replications.

[6]



REMARK 3.1: For concreteness, in (3.3) we write out the “hard thresholding” GMS func-

tion. As we establish below, our results apply to all but one of the GMS functions in Andrews
and Soares (2010).12

Heuristically, the random convex polyhedral set A% (6, p,c) in (3.1) is a local (to 6) lin-
earized bootstrap approximation to the random constraint set in (2.7). To see this, note
that the bootstrapped empirical process and the estimator of the gradient approximate the
first two terms in the constraint in (2.7) as linearized in (2.8). Next, for 6 € ©7(P), the
GMS function conservatively approximates the local slackness parameter /ny; p;(#). This
is needed because the scaling of /nvy1 p(#) precludes consistent estimation. The problem
is resolved by shrinking estimated intercepts toward zero, thereby tightening constraints and
hence increasing ¢,(0). As with other uses of GMS, the resulting conservative distortion
vanishes pointwise but not uniformly. Finally, restricting A to the “p-box” pB? has a strong
regularizing effect: It ensures uniform validity in challenging situations, including several that
are assumed away in most of the literature. We discuss this point in more detail in Section
4.3.

The critical level ¢,(0) to be used in (1.3) is the smallest value of ¢ that makes the

bootstrap probability of the event

min pPA<0< max p'A (3.4)
AEAL (0,p,c) AEAL (0,p,c)

at least 1 — . Because A% (6, p,c) is convex, we have

i 'A<0< A = {AL (0, p, 'A=0 ,
Lodiin, PRS0 e A} < {N0.0) 0 (92 =0) )

so that we can equivalently define
én(0) =inf{ce Ry : P*(AY(0,p,¢) n {p'A =0} # &) > 1 — a}, (3.5)

where P* denotes the law of the random set A (6, p, ) induced by the bootstrap sampling
process, i.e. by the distribution of (X?,..., X?), conditional on the data. Importantly, P*
can be assessed by repeatedly checking feasibility of a linear program.' We describe in detail

in Online Appendix B.4 how we compute ¢,(#) through a root-finding algorithm.

2These are ' — ¢* in Andrews and Soares (2010), all of which depend on &y /i ;(0)/Gn,;(0). We do
not consider GMS function ¢° in Andrews and Soares (2010), which depends also on the covariance matrix of
the moment functions.

13We implement a program in R? for simplicity but, because p’A = 0 defines a linear subspace, one could
reduce this to R~!,



3.2 Computation of the Outer Maximization Problem

Projection based methods as in (1.2) and (1.3) have nonlinear constraints involving a critical
value which in general is an unknown function of 8. Moreover, in all methods, including ours
and Andrews and Soares (2010), the gradients of the critical values with respect to € are
not available in closed form. When the dimension of the parameter vector is large, directly
solving optimization problems with such constraints can be expensive even if evaluating the
critical value at each 6 is cheap.

To mitigate this issue, we provide an algorithm that is a contribution to the moment
(in)equalities literature in its own right and that can be helpful for implementing other

approaches.'* We apply it to constrained optimization problems of the following form:

p'0* = sup p'o

0e©
sit.gj(0) <c(@), g=1,---,J, (3.6)
where 0* is an optimal solution of the problem, g;,j = 1,...,J are known functions, and cis a

function that requires a higher computational cost. In our context, g;(0) = /nmy ;(6)/6n,;(0)
and, for calibrated projection, ¢(f) = ¢,(f). Conditional on the data {Xi,---,X,}, these
functions are considered deterministic. A key feature of the problem is that the function
c(+) is relatively costly to evaluate.!® Our algorithm evaluates c(-) on finitely many values
of #. For other values, it imposes a probabilistic model that gets updated as specific values
are computed and that is used to determine the next evaluation point. Under reasonable
conditions, the resulting sequence of approximate optimal values converges to p'6*.
Specifically, after drawing an initial set of evaluation points that grows linearly with the

dimensionality of parameter space, the algorithm has three steps called E, A, and M below.

Initialization-step: Draw randomly (uniformly) over © a set (81, ...  #()) of initial eval-

uation points. We suggest setting k£ = 10d + 1.

E-step: (Evaluation) Evaluate ¢(§(0)forf =1,---,L, where L > k. Set T() = ¢(#), ¢ =

1,---, L. The current estimate p’8*% of the optimal value can be computed using

0*L € argmaxpeorp'6, (3.7)

where P = {6 : v e {1,--- ,L},gj(ﬁ(f)) < (@), j =1,---,J} is the set of feasible

evaluation points.

“This algorithm is based on the response surface method used in the optimization literature; see Jones
(2001), Jones, Schonlau, and Welch (1998), and references therein.

15Here we assume that computing the sample moments is less expensive than computing the critical value.
When computation of moments is also very expensive, our proposed algorithm can be used to approximate
these too.



A-step: (Approximation) Approximate 6 — c(f) by a flexible auxiliary model. We use a
Gaussian-process regression model (or kriging), which for a mean-zero Gaussian process

¢(-) indexed by # and with constant variance ¢? specifies

TEO =+ €e09), 6=1,--- L (3.8)
Corr(e(8),e(0')) = Kg(6 —¢'), 6,6' €O, (3.9)

where K is a kernel with parameter vector 8 € X Zzl[ﬁk, Bl cRe,, eg Kg(0—0)=
exp(— 2%:1 |0.—0%,/Bk). The unknown parameters (i1, ¢?) can be estimated by running
a GLS regression of ¥ = (YW ... Y)Y on a constant with the given correlation

matrix. The unknown parameters 3 can be estimated by a (concentrated) MLE.

The (best linear) predictor of the critical value and its gradient at an arbitrary point

are then given by

cr(0) = p+rL(0YRINY — 1), (3.10)
Vocr(0) = i+ QLR (Y — al), (3.11)

where rp(f) is a vector whose /-th component is Corr(e(8),e(6(9)) as given above
!

with estimated parameters, Qr(6) = Vorr(0)’, and Ry is an L-by-L matrix whose
(0,0 entry is Corr(e(0), e(0))) with estimated parameters. This approximating
(or surrogate) model has the property that its predictor satisfies ¢z, (89) = ¢(09), £ =
1,---, L. Hence, it provides an analytical interpolation to the evaluated critical values
together with an analytical gradient.'® Further, the amount of uncertainty left in c()

(at an arbitrary point) is captured by the following variance:

(1- 1’RZIYL(9))2). (3.12)

2.2y _ 22(1 _ -1
P53(0) = (1 - v (0)RT'rr(0) + TR
M-step: (Maximization): With probability 1 — e, maximize the expected improvement

function El, to obtain the next evaluation point, with:

g(0) — cr(0
00+ = arg max Bl (0) = arg max(p'0 — p'0*%) (1 - @(M)), (3.13)
0e© 00 $s.(6)
where g(0) = max;j_j,.. jg;(#). This step can be implemented by standard nonlinear
optimization solvers, e.g. Matlab’s fmincon or KNITRO (see Appendix B.3 for details).

With probability e, draw (21 randomly from a uniform distribution over ©.

(L+1)

Once the next evaluation point 6 is determined, one adds it to the set of evaluation

63ee details in Jones, Schonlau, and Welch (1998). We use the DACE Matlab kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in our Monte Carlo experiments.

[9]


http://www2.imm.dtu.dk/projects/dace/
http://www2.imm.dtu.dk/projects/dace/

points and iterates the E-A-M steps. This yields an increasing sequence of approximate
optimal values p'6*% L = k+ 1,k + 2,---. Once a convergence criterion is met, the value

p'0*1 is reported as the end point of CI,,. We discuss convergence criteria in Section 5.

REMARK 3.2: The advantages of E-A-M are as follows. First, we control the number of
points at which we evaluate the critical value. Since the evaluation of the critical value is the
relatively expensive step, controlling the number of evaluations is important. One should also
note that the E-step with the initial k£ evaluation points can easily be parallelized. For any
additional E-step (i.e. L > k), one needs to evaluate ¢(-) only at a single point §(“+1). The
M-step is crucial for reducing the number of additional evaluation points. To determine the
next evaluation point, one needs to take into account the trade-off between “exploitation”
(i.e. the benefit of drawing a point at which the optimal value is high) and “exploration” (i.e.
the benefit of drawing a point in a region in which the approximation error of ¢ is currently
large). The expected improvement function in (3.13) quantifies this trade-off, and draws a
point only in an area where one can expect the largest improvement in the optimal value,
yielding substantial computational savings.'”

Second, the proposed algorithm simplifies the M-step by providing constraints and their
gradients for program (3.13) in closed form. Availability of analytical gradients greatly aids
fast and stable numerical optimization. The price is the additional approximation step. In

the numerical exercises of Section 5, this price turns out to be low.

3.3 Convergence of the E-A-M Algorithm

We now provide formal conditions under which p’8*% converges to the true end point of
CI, as L — ®."® Our convergence result recognizes that the parameters of the Gaussian
process prior in (3.8) are estimated for each iteration of the A-step using the “observations”
{0{0(96)}5:1, and hence change with L. Because of this, a requirement for convergence
is that ¢(f) is a sufficiently smooth function of §. We show that a high-level condition
guaranteeing this level of smoothness ensures a general convergence result for the E-A-M
algorithm. This is a novel contribution to the literature on response surface methods for
constrained optimization.

In the statement of Theorem 3.1 below, Hg(©) is the reproducing kernel Hilbert space
(RKHS) on © < R? determined by the kernel used to define the correlation functional in (3.9).
The norm on this space is | - |,; see Online Appendix B.2 for details. Also, the expectation
Eq is taken with respect to the law of (0(1), ‘e ,G(L)) determined by the Initialization-step
and the M-step, holding the sample fixed. See Appendix A for a precise definition of Eg and

a proof of the theorem.

171t is also possible to draw multiple points in each iteration. See Schonlau, Welch, and Jones (1998).

18We build on Bull (2011), who proves a convergence result for the algorithm proposed by Jones, Schonlau,
and Welch (1998) applied to an unconstrained optimization problem in which the objective function is unknown
outside the evaluation points.
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THEOREM 3.1: Suppose © c R? is a compact hyperrectangle with nonempty interior and
that |p| = 1. Let the evaluation points (81, ---  0)) be drawn according to the Initialization
and the M steps. Let Kg in (3.9) be a Matérn kernel with index v € (0,00) and v ¢ N. Let
c: O R satisfy |c|nu; < R for some R >0, where B = (B, - ,B4q)". Then

Eg[p'0* — p0*"*'] -0 as L — . (3.14)

REMARK 3.3: The requirement that © is a compact hyperrectangle with nonempty inte-
rior can be replaced by a requirement that © belongs to the interior of a closed hyperrectangle

in R¢ such that ¢ satisfies the smoothness requirement in Theorem 3.1 on that rectangle.

In order to apply Theorem 3.1 to calibrated projection, we provide low level conditions
(Assumption B.1 in Online Appendix B.1.1) under which the map 6 +— ¢é,(f) uniformly
stochastically satisfies a Lipschitz-type condition. To get smoothness, we work with a mollified
version of ¢,, denoted ¢, ., and provided in equation (B.1), with 7, = o(n~'/2).1 Theorem
B.1 in the Online Appendix shows that ¢, and ¢, -, can be made uniformly arbitrarily close
to each other and that ¢, -, yields valid inference in the sense of equation (2.6). In practice,

one may therefore directly apply the E-A-M steps to ¢&,.

REMARK 3.4: The key condition imposed in Theorem B.1 is Assumption B.1. It requires
that the GMS function used is Lipschitz in its argument, and that the standardized moment
functions are Lipschitz in 6. In Online Appendix C.1 we establish that the latter condition
is satisfied by some canonical examples in the moment (in)equality literature, namely the
mean with missing data, linear regression and best linear prediction with interval data (and

discrete covariates), and entry games with multiple equilibria (and discrete covariates).?

4 Asymptotic Validity of Inference

4.1 Assumptions

We posit that P, the distribution of the observed data, belongs to a class of distributions
denoted by P. We write stochastic order relations that hold uniformly over P € P using the
notations op and Op; see Online Appendix D.1 for the formal definitions. Below, ¢, ¢, 6,
w, o, M, M denote generic constants which may be different in different appearances but

cannot depend on P. Given a square matrix A, we write eig(A) for its smallest eigenvalue.

ASSUMPTION 4.1: (a) © c R? is a compact hyperrectangle with nonempty interior.
(b) All distributions P € P satisfy the following:

9For a discussion of mollification, see e.g. Rockafellar and Wets (2005, Example 7.19)
29Tt can also be shown to hold in semi-parametric binary regression models with discrete or interval valued
covariates under the assumptions of Magnac and Maurin (2008).

[11]



(i) Eplm;(X;,0)] <0, j=1,...,J;1 and Epm;(X;,0)] =0, j=J1+1,---,J1 + Ja for
some 0 € ©;

(i1) {X;,i > 1} are i.i.d.;
(i13) UIQDJ(G) € (0,00) for j=1,---,J for all 0 € ©;
(iv) For some § > 0 and M € (0,00) and for all j, Ep[supgeeo |mj(XZ',(9)/O'p’j(9)|2+6] <M.

ASSUMPTION 4.2: The function ¢; is continuous at all x = 0 and ¢;(0) = 0; Kk, — ©
and k, = o(n'/?). If Assumption 4.3-(II) is imposed, r, = o(n/*).

Assumption 4.1-(a) requires that © is a hyperrectangle, but can be replaced with the
assumption that 6 is defined through a finite number of nonstochastic inequality constraints
smooth in # and such that © is convex. Compactness is a standard assumption on © for
extremum estimation. We additionally require convexity as we use mean value expansions of
Ep|m;(X;,0)]/op;(0) in 0; see (2.8). Assumption 4.1-(b) defines our moment (in)equalities
model. Assumption 4.2 constrains the GMS function and the rate at which its tuning param-
eter diverges. Both 4.1-(b) and 4.2 are based on Andrews and Soares (2010) and are standard
in the literature,?! although typically with x, = o(n!/?). The slower rate s, = o(n'/*) is
satisfied for the popular choice, recommended by Andrews and Soares (2010), of k, = +/Inn.

Next, and unlike some other papers in the literature, we impose restrictions on the cor-
relation matrix of the moment functions. These conditions can be easily verified in practice
because they are implied when the correlation matrix of the moment equality functions and
the moment inequality functions specified below have a determinant larger than a predefined

constant for any 6 € ©.

ASSUMPTION 4.3: All distributions P € P satisfy one of the following two conditions for
some constants w > 0,0 > 0, > 0,6 > 0, M < o0:

(I) Let J(P,0;e)={je{l,---,Ji}: Ep[m;(X;,0)]/op;(0) = —c}. Denote
m(Xi7 9) = ({mj(Xia 0)}j€J(P,9;6)a mJ1+1(Xia 0)7 M+, (Xia ‘9))1 ’
Qp(0) = Corrp(m(X;,0)).
Then infgeq, (p) eig(Qp(0)) = w.

(II) The functions m;j(X;,0) are defined on ©° = {§ € R? : d(0,0) < €}. There exists
Ry e N, 1 < Ry < Ji/2, and measurable functions t; : X x ©° — [0,M], j e Ry =
{1,..., R1}, such that for each j € Ry,

mi+ Ry (XZ,G) = —mj(XZ-,G) - tj(Xi,G). (41)

2 Continuity of ¢, for & = 0 is restrictive only for GMS function ¢® in Andrews and Soares (2010).
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For each j € R1 n J(P,0;¢) and any choice mj(X;,0) € {m;(X;,0),m;jyr (X;,0)},
denoting Qp(0) = Corrp(m(X;,0)), where

m(Xi, 9) = ({mj (Xi, 9)}jeR1mJ(P,9;a)a

/
{m] (Xl7 9)}jGJ(P,G;E)\{l,...,QRl}a mJ1+1(Xi7 9)7 Mg 4y (X17 9)) )

one has
inf eig(Qp(0)) > w. 4.2
int | cig(@p(0) > (1.2

Finally,
inf opj(@)>o forj=1,...,Ry. (4.3)

06@](1:’)

Assumption 4.3-(I) requires that the correlation matrix of the moment functions cor-
responding to close-to-binding moment conditions has eigenvalues uniformly bounded from
below. This assumption holds in many applications of interest, including: (i) instances when
the data is collected by intervals with minimum width;*? (ii) in treatment effect models
with (uniform) overlap; (iii) in static complete information entry games under weak solution
concepts, e.g. rationality of level 1, see Aradillas-Lopez and Tamer (2008).

We are aware of two examples in which Assumption 4.3-(I) may fail. One are missing
data scenarios, e.g. scalar mean, linear regression, and best linear prediction, with a vanishing
probability of missing data. The other example, which is extensively simulated in Section
5, is the Ciliberto and Tamer (2009) entry game model when the solution concept is pure
strategy Nash equilibrium. We show in Online Appendix C.2 that these examples satisfy
Assumption 4.3-(II).

REMARK 4.1: Assumption 4.3-(II) weakens 4.3-(I) by allowing for (drifting to) perfect
correlation among moment inequalities that cannot cross. This assumption is often satisfied

in moment conditions that are separable in data and parameters, i.e. for each j =1,...,J,
Ep[m;(Xi,0)] = Ep[hj(Xi)] = v;(0), (4.4)

for some measurable functions h; : X — R and v; : © — R. Models like the one in Ciliberto
and Tamer (2009) fall in this category, and we verify Assumption 4.3-(II) for them in Online

Appendix C.2. The argument can be generalized to other separable models.

22 Empirically relevant examples are that of: (a) the Occupational Employment Statistics (OES) program
at the Bureau of Labor Statistics, which collects wage data from employers as intervals of positive width, and
uses these data to construct estimates for wage and salary workers in 22 major occupational groups and 801
detailed occupations; and (b) when, due to concerns for privacy, data is reported as the number of individuals
who belong to each of a finite number of cells (for example, in public use tax data).
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In Online Appendix C.2, we also verify Assumption 4.3-(II) for some models that are
not separable in the sense of equation (4.4), for example best linear prediction with interval
outcome data. The proof can be extended to cover (again non-separable) binary models with

discrete or interval valued covariates under the assumptions of Magnac and Maurin (2008).

In what follows, we refer to pairs of inequality constraints indexed by {j, 7 + R1} and sat-
isfying (4.1) as “paired inequalities.” Their presence requires a modification of the bootstrap
procedure. This modification exclusively concerns the definition of Ag(@, p,c) in equation
(3.1). We explain it here for the case that the GMS function ¢; is the hard-thresholding one
in (3.3), and refer to Online Appendix E equations (E.12)-(E.13) for the general case. If

(€, (0)) = 0= (& jrri (0)),

we replace GY , p (0) with —G! (0) and Dy g, (0) with —D,, (), so that inequality

G27j+R1 0) + lA?n’jJrRl (0)\ < cis replaced with —G27j(9) — Dy, j(0)X < ¢ in equation (3.1). In
words, when hard threshold GMS indicates that both paired inequalities bind, we pick one of
them, treat it as an equality, and drop the other one. In the proof of Theorem 4.1, we show
that this tightens the stochastic program.?® The rest of the procedure is unchanged.

Instead of Assumption 4.3, BCS (Assumption 2) impose the following high-level condition:
(a) The limit distribution of their profiled test statistic is continuous at its 1 — o quantile
if this quantile is positive; (b) else, their test is asymptotically valid with a critical value of
zero. In Online Appendix D.2.3, we show that we can replace Assumption 4.3 with a weaker
high level condition (Assumption D.1-I) that resembles the BCS assumption but constrains
the limiting coverage probability. (We do not claim that the conditions are equivalent.) The
substantial amount of work required for us to show that Assumption 4.3 implies Assumption
D.1-I is suggestive of how difficult these high-level conditions can be to verify.2* Moreover, in
Online Appendix F.2 we provide a simple example that violates Assumption 4.3 and in which
all of calibrated projection, BCS-profiling, and the boosttrap procedure in Pakes, Porter, Ho,
and Ishii (2011) fail. The example leverages the fact that when binding constraints are
near-perfectly correlated, the projection may be estimated superconsistently, invalidating the
simple nonparametric bootstrap.?®

Together with imposition of the p-box constraints, Assumption 4.3 allows us to dispense
with restrictions on the local geometry of the set ©7(P). Restrictions of this type, which

are akin to constraint qualification conditions, are imposed by BCS (Assumption A.3-(a)),

23When paired inequalities are present, in equation (2.5) instead of &, ; we use the estimator Ef,]lv{j specified

in (E.188) in Lemma E.10 p.51 of the Online Appendix for op;,j = 1,...,2Ry (with Ry < J1/2 defined in
the assumption). In equation (3.2) we use 6,,; for all j = 1,...,J. To ease notation, we do not distinguish
the two unless it is needed.

24 Assumption 4.3 is used exclusively to obtain the conclusions of Lemma E.6, E.7 and E.8, hence any
alternative assumption that delivers such results can be used.

25The example we provide satisfies all assumptions explicitly stated in Pakes, Porter, Ho, and Ishii (2011),
illustrating an oversight in their Theorem 2.
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Pakes, Porter, Ho, and Ishii (2011, Assumptions A.3-A.4), Chernozhukov, Hong, and Tamer
(2007, Condition C.2), and elsewhere. In practice, they can be hard to verify or pre-test for.
We study this matter in detail in Kaido, Molinari, and Stoye (2017).

We next lay out regularity conditions on the gradients of the moments.
ASSUMPTION 4.4: All distributions P € P satisfy the following conditions:

(i) For each j, there exist Dp;(-) = Vo{Ep|m;(X,-)]|/op;()} and its estimator Dy j(+)
such that supgeer | Dag(6) — Dy (0)] = op(1).

(ii) There exist M, M < oo such that for all 0,0 € ©° max;;.. ; |[Dp;(0) — Dp;(0)] <
M|6 — 0| and max;j_1... jsupgee,(p) [Dr;(0)] < M.

Assumption 4.4 requires that each of the J normalized population moments is differen-
tiable, that its derivative is Lipschitz continuous, and that this derivative can be consistently
estimated uniformly in # and P.? We require these conditions because we use a linear ex-
pansion of the population moments to obtain a first-order approximation to the nonlinear
programs defining C'I,,, and because our bootstrap procedure requires an estimator of Dp.

A final set of assumptions is on the normalized empirical process. For this, define the

variance semimetric op by

(4.5)

0p(0,0) = [{[Vare (735 0)my (X, 0) — o35 @my (X, 0)] |

J=1

For each 6,6 € © and P, let Qp(b, é) denote a J-by-J matrix whose (7, k)-th element is the
covariance between m;(X;,0)/op;(0) and my(X;,0))/opx(0).

ASSUMPTION 4.5: All distributions P € P satisfy the following conditions:

(i) The class of functions {agﬁﬁ(ﬁ)mj(-ﬁ) : X = R,0 € ©} is measurable for each j =
1, .

(i) The empirical process Gy with j-th component Gy, ; is uniformly asymptotically op-

equicontinuous. That is, for any € > 0,

lim lim sup sup P ( sup  [|Gn(0) — G, ()] > e) = 0. (4.6)
3l0 now PpPep op(0,0)<6

(ii) Qp satisfies
léif)g sup sup |Qp(61,01) — Qp(62,605)] = 0. (4.7)

1(61,61)—(02,02)|| <6 PEP

26The requirements are imposed on ©¢. Under Assumption 4.3-(I) it suffices they hold on ©.
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Under this assumption, the class of normalized moment functions is uniformly Donsker
(Bugni, Canay, and Shi, 2015). We use this fact to show validity of our method.

4.2 Theoretical Results

First set of results: Uniform asymptotic validity in the general case.

The following theorem establishes the asymptotic validity of the proposed confidence
interval CI,, = [—-s(—p,Cn(¢n)), s(p,Cn(én))], where s(p, Cp(é,)) was defined in equation (2.5)
and ¢, in (3.5).

THEOREM 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < a < 1/2.
Then

liminf inf inf Pp0eCIl,)>1-a. 4.8

n—w PeP hecO(P) (p n) ( )

A simple corollary to Theorem 4.1, whose proof is omitted, is that we can provide joint
confidence regions for several projections, in particular confidence hyperrectangles for sub-

vectors. Thus, let p!, ..., p* denote unit vectors in R%, k < d. Then:

COROLLARY 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < a < 1/2.
Then,

liminf inf inf POY0cCIL, , 0 =1.....k)>1— 4.9
L0 PeP peoy (P) (» b o) “ (49)

where Cly,y = [infeecn(@g)pe’eaSupeecn(@g)pe’e] and ¢k (0) = inf{c € Ry : P*(AY(0,p,¢) N
{ni "2 =01} = @) 21 -0}

The difference in this Corollary compared to Theorem 4.1 is that ¢¥ is calibrated so that
(3.4) holds for all p!, ..., p¥ simultaneously.

In applications, a researcher might wish to obtain a confidence interval for a known non-
linear function f : © — R. Examples include policy analysis and counterfactual estimation
in the presence of partial identification, or demand extrapolation subject to rationality con-
straints. It is possible to extend our results to uniformly continuously differentiable functions
f. Because the function f is known, the conditions on its gradient required below can be

easily verified in practice (especially if the first one is strengthened to hold over ©).

THEOREM 4.2: Let CI,J; be a confidence interval whose lower and upper points are obtained

solving

A

inf /Supf(e) s.t. \/ﬁan(e)/&n’](Q) = 6{1(9)7 J = 17 o 7J7
0eO’ peoO
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where &4(0) = inf{c = 0: P*(AL(0, p,c) A {[Vaf(8) | Vaf(O)A = 0} # &) = 1—a}. Suppose
Assumptions 4.1, 4.2, 4.8, 4.4, and 4.5 hold. Suppose that there exist w > 0 and M < o
such that inf pep infoeo, p) [VF(O)] > @ and supg e |VF(60) — VF@B)] < Mo — 6], where
Vof(0) is the gradient of f(6). Let 0 < a < 1/2. Then,

liminf inf inf P(f(f) e CIJ)>1- . 4.10
iminf fnf inf (f(0) e CL;) o (4.10)

Second set of results: Simplifications for special cases.

We now consider more restrictive assumptions on the model, defining a subset of DGPs
Q < P; across theorems below, the set Q differs based on which assumptions are maintained.
If P € Q, a number of simplifications to the method, including dropping the p-box constraints,
are possible. Here we state the formal results and then we give a heuristic explanation of
the conditions needed for these simplifications. Online Appendix D.3.1 contains the exact
assumptions and Online Appendix D.3.2 the proofs. We remark that all of the additional
assumptions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011), hence under

their conditions Theorem 4.3 applies in its entirety.
THEOREM 4.3: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < a < 1/2.

(1) If Assumption D.2-(1) holds for either p or —p (or both), then setting

Ccl, = inf p'0, sup po|, 4.11
[9€Cn(én,—p) 0€C(én,p) ] (4.11)

bngl0) = inf{ce R, - P*(AY(0,p,0) A (A > 0} £ @) > 1—a}, g€ {p,—p}, (412)
we have

liminf inf inf P(p0eCl,)>1-a. (4.13)
n>00" PeQ 0ed (P)

(II) If Assumptions D.2-(1) (for either p or —p or both), D.3 and D.4 hold, then (4.13)
continues to be satisfied with CT,, as defined in (4.11) and evaluated at é, 4(0) = én.q(y)
for g € {—p,p} and for all 6 € © in (4.12), where éq € argmax,.g. ¢'0 and O = {0 €
@2T7Ln’j(9) <0, 5=1,...,J}

(111) If Assumptions D.2-(2) (for either p or —p or both) and D.5 hold, then setting p = 40
to obtain én,q(éq) in (4.12) and using these values for q € {—p,p} for each 0 € © in
computing CI,, as defined in (4.11), we have that (4.13) continues to be satisfied.

REMARK 4.2: If Theorem 4.3-(II) applies and the standardized moment conditions in

(2.5) are linear in 6, then CI,, can be computed by solving just two linear programs.
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Assumption D.2-(1) in Theorem 4.3-(I) ensures that some point in {p'0,0 € O(P)} is
covered with probability approaching 1. Hence, the inference problem is effectively one-
sided at the projection’s end points and degenerate in between. It then suffices to intersect
two one-sided (1 — «)-confidence intervals. Under Assumptions 4.1-4.5, Assumption D.2 is
implied both by a “degeneracy condition”in Chernozhukov, Hong, and Tamer (2007) and by
an assumption in Pakes, Porter, Ho, and Ishii (2011). A simple sufficient condition is that
there exists a parameter value at which all population constraints hold with slack.

Assumptions D.3 and D.4 in Theorem 4.3-(II) are logically independent “polynomial
minorant” conditions imposed in Chernozhukov, Hong, and Tamer (2007) and Bugni, Canay,
and Shi (2017). Jointly, they assure that the sample support set H(p, @)I) is an “inner
consistent” estimator of the population support set H(p, ©;).2” That is, any accumulation
point of a selection from H(p, é)[) is in H(p,©1), but H(p, @1) may be much smaller than
H(p,O;). Then for one-sided inference, it suffices to compute ¢, () exactly once, namely at
one arbitrary selection § € H(p, ©1), and to set &,(0) = &,(6) for all . We again remark that
these conditions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011).

Assumptions D.2-(2) and D.5 in Theorem 4.3-(I1I) yield that the support set is a singleton
and the tangent cone at the support set is pointy (in a uniform sense). We show that, in this
case, the p-box constraints can be entirely dropped. This assumption is directly imposed by
Pakes, Porter, Ho, and Ishii (2011), but we weaken it by showing that it is only needed in a
local sense; hence, it suffices that the support set consists of distinct extreme points and all

corresponding tangent cones are pointy.

Result 3: A comparison with BCS-profiling. We finally compare calibrated projection
to BCS-profiling in well behaved cases. Suppose that Theorem 4.3 applies. Then C1, is the
intersection of two one-sided confidence intervals and we can set p = +00. Hence, a scalar s

is in the one-sided (unbounded from below) confidence interval for p'6 if

min T,,(6) < én(6,), (4.14)
To(0) =+/n max Min,j(0)/67n,5(0). (4.15)

While it was not originally constructed in this manner, this simplified confidence interval
is the lower contour set of a profiled test statistic.?® Indeed, up to an inconsequential squaring,
T, is a special case of the statistic used in Bugni, Canay, and Shi (2017). This raises the
question of how the tests compare. In the especially regular case where all parts of Theorem
4.3 apply, and assuming that calibrated projection is implemented with the corresponding

simplifications, the answer is as follows:

2TFor a given unit vector p and compact set A ¢ R?, the support set of A is H(p, A) = arg max, 4 p'a.
By contrast, the corresponding expression without Theorem 4.3-(IT) is minyg— {75 (6) — ¢, (0)} < 0, which
is not usefully interpreted as test inversion.
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THEOREM 4.4: Suppose Assumptions 4.1, 4.2, 4.8, 4.4, 4.5, D.2, D.3, D./, D.5, and
D.6 hold. Let BCS-profiling be implemented with the criterion function in equation (4.15)
and GMS function p(xr) = min{0,2}.2" Let calibrated projection be implemented using the
simplifications from Theorem 4.3, including setting p = +00. If both methods furthermore

use the same Ky, they are uniformly asymptotically equivalent:

lim inf inf inf P (1{3 eCl,} =1{s€ Cfﬁmf}> -1,

n—0 PeQ se[mingee p’0,maxpee ']

where Cfﬁmf denotes the confidence interval resulting from the BCS-profiling method.

Thus there is strong agreement between methods in extremely well-behaved cases.?? We
also show in Online Appendix F.1 that, in a further specialization of the above setting, finite
sample power is higher with calibrated projection. This effect is due to a conservative dis-
tortion of order 1/k, in Bugni, Canay, and Shi (2017) and therefore vanishes asymptotically;
however, due to the slow rate at which s, diverges, it can be large in samples of consider-
able size. In sum, the approaches are not ranked in terms of power in empirically relevant

examples.

4.3 Role of the p-box Constraints and Heuristics for Choosing p

When we use the bootstrap to calibrate é,(-), we restrict the localization vector A to lie in a
p-box; see equation (3.1). This restriction has a crucial regularization effect. Comparing (2.7)
and (3.4), it is apparent that we estimate coverage probabilities by replacing a nonlinear pro-
gram with a linear one. It is intuitive that a Karush-Kuhn-Tucker condition (with uniformly
bounded Lagrange multipliers) is needed for this to work (uniformly), and also that the lin-
earization in (2.8) should be uniformly valid. But direct imposition of a Karush-Kuhn-Tucker
condition would amount to a hard-to-verify constraint qualification. Rather than doing this,
we show that Assumption 4.3 and imposition of the p-box constraints jointly yield such con-
straint qualification conditions on the set A% (6, p, c) (defined in (3.1)) with arbitrarily high
probability for n large enough, as well as uniform validity of the linearization. If one knows
(or assumes) a priori that the population (limit) counterpart of the constraint set in (2.7) is
contained in a ball with a radius bounded in probability (see Assumption D.1-IT in Online
Appendix D.2.2), then p can be set equal to +00. The assumptions in Theorem 4.3-(I1I) are
sufficient for this condition to hold.3!

In practice, the choice of p requires trading off how much conservative bias one is willing

to bear in well-behaved cases against how much finite-sample size distortion one is willing

29The restriction on the GMS function is needed only because the “penalized resampling” approximation
in BCS employs a specific “slackness function” equal to én]

30This is not true for Pakes, Porter, Ho, and Ishii (2011) because they do not studentize the moment
inequalities.

31See Online Appendix D.1 for proofs of these statements.
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to bear in ill-behaved cases.?2

We propose a heuristic approach to calibrate p focusing
on conservative bias in the well behaved cases just considered, i.e. cases such as those
characterized in Assumptions D.2, D.3, D.4, D.5 and D.6, in which the p-box could be
dropped. In these cases, the optimal value of each of the two programs in equation (3.4) is
distributed asymptotically normal as a linear combination of d binding inequalities. When
in fact J; + Jo = d, constraining A\ € pB? increases the coverage probability by at most
n=1-[1—-2®(—p)]¢. The parameter p can therefore be calibrated to achieve a conservative

bias of at most . When J; + Jy > d, we propose to calibrate p using the benchmark

n=1-[1-20(-p)""), (4.16)
again achieving a target conservative bias (in well-behaved cases) of 7. For a few numerical
examples, set n = 0.01: then J; + Jo = 10 and d = 3 imply p = 4.2, whereas J; + J2 = 100
and d = 10 imply p = 8.4. In the Monte Carlo experiments of Section 5, we investigate

sensitivity of calibrated projection to the choice of p.

5 Monte Carlo Simulations

We evaluate the statistical and numerical performance of calibrated projection and EAM in
two sets of Monte Carlo experiments run on a server with two Intel Xeon X5680 processors
rated at 3.33GHz with 6 cores each and with a memory capacity of 24Gb rated at 1333MHz.33
Both simulate a two-player entry game. The first experiment compares calibrated projec-
tion and BCS-profiling in the Monte Carlo exercise of BCS, using their code.?® The other
experiments feature a considerably more involved entry model with and without correlated

unobservables. We were unable to numerically implement BCS-profiling for this model.?

5.1 The General Entry Game Model
We consider a two player entry game based on Ciliberto and Tamer (2009):

Yy =0 Yy =1
Y1 =0 0,0 O7Zé<1 + us
Yi=1 Zi(l +u1,0 Z{(Cl+A1)+u1,Z§(C2+A2)+u2

Here, Yy, Z;, and uy denote player ¢'s binary action, observed characteristics, and unobserved
characteristics. The strategic interaction effects Z,A, < 0 measure the impact of the oppo-
nent’s entry into the market. We let X = (Y1,Ys, Z],Z5)". We generate Z = (Z1,Z3) as

32In Kaido, Molinari, and Stoye (2017) we provide examples of well-behaved and ill-behaved cases.

33To run the more than 120 distinct simulations reported here, we employed multiple servers. We benched
the relative speed of each and report average computation time normalized to the server just described.

34Gee nttp://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/431/1411.

35For implementations of calibrated projection with real-world data, we refer the reader to Mohapatra and
Chatterjee (2015), where d = 5, J1 = 44, and J2 = 0.
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an ii.d. random vector taking values in a finite set whose distribution p, = P(Z = z) is
known. We let u = (uj,u2) be independent of Z and such that Corr(ui,us) = r € [0,1]
and Var(ug) = 1, = 1,2. We let 0 = (¢}, 4, A}, Ab, 7). For a given set A = R?, we define
G,(A) = P(u e A). We choose G, so that the c.d.f. of u is continuous, differentiable, and
has a bounded p.d.f. The outcome Y = (Y7, Y2) results from pure strategy Nash equilibrium
play. For some value of Z and u, the model predicts monopoly outcomes Y = (0, 1) and (1, 0)
as multiple equilibria. When this occurs, we select outcome (0, 1) by independent Bernoulli

trials with parameter p € [0, 1]. This gives rise to the following restrictions:

E[I{Y = (0,0)}1{Z = z}] — G ((—0, =211) % (=0, =25(2))p> = 0 (5.1)

E[I{Y = (1, )}{Z = 2}] = G, ([~21(C1 + A1), +0) x [=25(Ca + Ag), +0))p, =0 (5.2

E[L{Y = (0, )}1{Z = 2}] — Gi((—0, =21 (G + A1) x [-25C, +00))p. <0 (5.3)
—E[{Y = (0, )}{Z = z}] + [Gr((_ooa —21(C1 + A1) x [=25¢2, +00)

— Gr([—21C1, =21 (G + A1) x [—25C2, —25(Co + A2))]Pz <0. (5.4)

We show in Online Appendix C that this model satisfies Assumptions B.1 and 4.3-(II).3¢
Throughout, we analytically compute the moments’ gradients and studentize them using

sample analogs of their standard deviations.

5.2 Specific Implementations and Results

Set 1: A comparison with BCS-Profiling

BCS specialize this model as follows. First, uy, ug are independently uniformly distributed
on [0,1] and the researcher knows r = 0. Equality (5.1) disappears because (0,0) is never
an equilibrium. Next, Z; = Zy = [1;{Wk}Z‘i’0], where W, are observed market type in-
dicators, Ay = [d4;0q,,] for £ = 1,2, and ¢; = (o = ¢ = [0; {¢[¥] i‘/:Vo]-?)? The parameter
vector is 6 = [d1;02;¢] with parameter space © = {# € R . (§;,05) € [0,1]%, ¢ €
[0, min{d1,d2}], & = 1,...,dw}. This leaves 4 moment equalities and 8 moment inequali-
ties (so J = 16); compare equation (5.1) in BCS. We set dyy = 3, P(Wj, = 1) = 1/4,k =
0,1,2,3, 0 = [0.4;0.6;0.1;0.2; 0.3], and p = 0.6. The implied true bounds on parameters are
61 € [0.3872,0.4239], & € [0.5834,0.6084], ¢ € [0.0996,0.1006], ¢ € [0.1994,0.2010], and
¢Bl e [0.2992,0.3014].

The BCS-profiling confidence interval CIE™ inverts a test of Hy : p'6 = s over a grid for
sg. We do not in practice exhaust the grid but search inward from the extreme points of © in

directions +£p. At each sg that is visited, we compute (the square of) a profiled test statistic

36The specialization in which we compare to BCS also fulfils their assumptions. The assumptions in Pakes,
Porter, Ho, and Ishii (2011) exclude any DGP that has moment equalities.

37 This allows for market-type homogeneous fixed effects but not for player-specific covariates nor for observed
heterogeneity in interaction effects.
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min,g—s, Tp(0); see equations (4.14)-(4.15) above. The corresponding critical value &/ (s)
is a quantile of the minimum of two distinct bootstrap approximations, each of which solves
a nonlinear program for each bootstrap draw. Computational cost quickly increases with
grid resolution, bootstrap size, and the number of starting points used to solve the nonlinear
programs.

Calibrated projection computes ¢,(f) by solving a series of linear programs for each
bootstrap draw.?® It computes the extreme points of CI,, by solving NLP (2.5) twice, a task
that is much accelerated by the E-A-M algorithm. Projection of Andrews and Soares (2010)
operates very similarly but computes its critical value ebro (0) through bootstrap simulation
without any optimization.

We align grid resolution in BCS-profiling with the E-A-M algorithm’s convergence thresh-
old of 0.005.2 We run all methods with B = 301 bootstrap draws, and calibrated and
“uncalibrated” (i.e., based on Andrews and Soares (2010)) projection also with B = 1001.%°
Some other choices differ: BCS-profiling is implemented with their own choice to multi-start
the nonlinear programs at 3 oracle starting points, i.e. using knowledge of the true DGP;
our implementation of both other methods multi-starts the nonlinear programs from 30 data
dependent random points (see Kaido, Molinari, Stoye, and Thirkettle (2017) for details).

Table 1 displays results for (1, d2) and for 300 Monte Carlo repetitions of all three meth-
ods. All confidence intervals are conservative, reflecting the effect of GMS. As expected,
uncalibrated projection is most conservative, with coverage of essentially 1. Also, BCS-
profiling is more conservative than calibrated projection. We suspect this relates to the
conservative effect highlighted in Online Appendix F.1. The most striking contrast is in com-
putational effort, where uncalibrated projection is fastest but calibrated projection also beats
BCS-profiling by a factor of about 78. There are two effects at work here: First, because
the calibrated projection bootstrap iterates over linear programs, it is much faster than the
BCS-profiling one. Second, both uncalibrated projection and calibrated projection confidence
intervals were computed using the E-A-M algorithm. Indeed, the computation times reported
for uncalibrated projection indicate that, in contrast to received wisdom, this procedure is
computationally somewhat easy. This is due to the E-A-M algorithm and therefore part of
this paper’s contribution.

Table 2 extends the analysis to all components of § and to 1000 Monte Carlo repetitions.
We were unable to compute this or any of the next tables for BCS-profiling.

Set 2: Heterogeneous interaction effects and potentially correlated errors

38We implement this step using the high-speed solver CVXGEN, available from http://cvxgen.com and
described in Mattingley and Boyd (2012).

39This is only one of several individually necessary stopping criteria. Others include that the current
optimum 6% and the expected improvement maximizer %1 (see equation (3.13)) satisfy |p' (6% T —6*%)| <
0.005. See Kaido, Molinari, Stoye, and Thirkettle (2017) for the full list of convergence requirements.

49Based on some trial runs of BCS-profiling for 61, we estimate that running it with B = 1001 throughout
would take 3.14-times longer than the computation times reported in Table 1. By comparison, calibrated
projection takes only 1.75-times longer when implemented with B = 1001 instead of B = 301.
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In our second set of experiments, we let u = (uj, u2) be bivariate Normal with (nondegen-
erate) correlation r, so all outcomes have positive probability. We let Z include a constant
and a player specific, binary covariate, so Z; € {(1,—1),(1,1)} and Z3 € {(1,—1),(1,1)}. This
implies J; = Jy = 8, hence J = 24. The marginal distribution of (Z{Q], ZE]) is multinomial
with weights (0.1,0.2,0.3,0.4) on ((—1,—1),(—1,1),(1,—-1),(1,1)).

In our Set 2-DGP1, we set (1 = (.5,.25)", Ay = (=1,—1), and r = 0. Set 2-DGP2 differs
by setting Ay = (=1, —.75)". In both cases, (¢2, A2) = (¢1,A1) and p = 0.5; we only report
results for (¢1,A1). Although parameter values are similar, there is a qualitative difference:
In DGP1, parameters are point identified; in DGP2, they are not but the true bounds (Cl[l] €
[0.405,0.589], ¢ € [0.236,0.266], Al e [~1.158, -0.832], AP € [-0.790, —0.716]) are not
wide compared to sampling uncertainty. We therefore expect all methods that use GMS to
be conservative in DGP2.4! In both Set 2-DGP1& DGP2 we use knowledge that r = 0, so
that d = 8. Our Set 2-DGP3 preserves the same payoff parameters values as in Set 2-DGP2
but sets r = 0.5 and this parameter is also unknown, so that d = 9.

Within Set 2-DGP2, we also experiment with the sensitivity of coverage probability and
length of CI,, to the choice of p and k,. We consider choices of p that are (1) very large or
“liberal”, so that in well behaved cases the p-box constraints induce an amount n of over-
coverage in CI,, smaller than machine precision (see equation (4.16)); (2) “default”, so that
n = 0.01; (3) small or “conservative”, so that n = 0.025. For k,,, we have experimented with
a “conservative” choice k,, = n'/7, and a “liberal” choice k, = +/Inlnn, while out “default”
is Ky, = vInn.

Results are reported in Tables 3 through 7. An interesting feature of Table 3 is that
in this (point identified) DGP, calibrated projection is not conservative at all. This pre-
sumably reflects an absence of near-binding inequalities. Conservative bias is larger in the
partially identified Set 2-DGP2 in Table 4. For these two tables, we do note the increased
computational advantage of uncalibrated projection over calibrated projection. This advan-
tage is bound to increase as DGP’s, and therefore the linear programs iterated over in the
bootstrap, become more complex. Table 5 shows that allowing for correlation of the errors
does not change the results much in terms of the confidence intervals’ length and coverage
probabilities. However, due to the repeated evaluation of the bivariate normal CDFs, both
calibrated and uncalibrated projection have higher computational time than the case with
r = 0. Another feature to note is that both confidence intervals for r tend to be wide although
the projection of ©; is short, which suggests that this component may be weakly identified.

Table 6 examines the effect of varying the tuning parameter p. Increasing p necessarily
(weakly) decreases length and also coverage of intervals, and this effect is evident in the
table but is arguably small. This is even more the case for the GMS tuning parameter

kn. Numerically, for n = 4000, the values explored in the table are rather different at

41We also note that this is a case where non-uniform methods may severely undercover in finite sample.

[23]



40007 ~ 3.27 and 4/In(In(4000)) ~ 1.45, but the effect on inference is very limited, see
Table 7. Indeed, differences in coverage are so small that reported results are occasionally

slightly nonmonotonic, reflecting numerical and simulation noise.

6 Conclusions

This paper introduces a computationally attractive confidence interval for linear functions of
parameter vectors that are partially identified through finitely many moment (in)equalities.
The extreme points of our calibrated projection confidence interval are obtained by minimizing
and maximizing p’# subject to properly relaxed sample analogs of the moment conditions.
The relaxation amount, or critical level, is computed to insure uniform asymptotic coverage
of p'0 rather than 6 itself. Its calibration is computationally attractive because it is based on
repeatedly checking feasibility of (bootstrap) linear programming problems. Computation of
the extreme points of the confidence intervals is also computationally attractive thanks to an
application, novel to this paper, of the response surface method for global optimization that
is of independent interest in the partial identification literature. Indeed, a key contribution
of the paper is to establish convergence of this algorithm.

Our Monte Carlo analysis shows that, in the DGPs that we considered, calibrated pro-
jection is fast and accurate: Computation of the confidence intervals is orders of magnitude
faster than for the main alternative to our method, a profiling-based procedure due to Bugni,
Canay, and Shi (2017). The class of DGPs over which we can establish uniform validity of our
procedure is non-nested with corresponding class for the alternative method. Important cases
covered here but not elsewhere include linear functions of best linear predictor parameters
with interval valued outcomes and discrete covariates. The price to pay for this generality is
the use of one additional (non-drifting) tuning parameter. We provide conditions under which
this parameter can be eliminated and compare the power properties of calibrated projection
and BCS-profiling. The false coverage properties of the two methods are non-ranked but are
asymptotically the same in very well-behaved cases. We establish considerable finite sample
advantage in a specific case.

Similarly to confidence regions proposed in Andrews and Soares (2010), Bugni, Canay,
and Shi (2017), Stoye (2009), and elsewhere, our confidence interval can be empty, namely if
sample violations of moment inequalities exceed ¢, (6) at each #. This event can be interpreted
as rejection of maintained assumptions. See Stoye (2009) and especially Andrews and Soares
(2010) for further discussion and Bugni, Canay, and Shi (2015) for a paper that focuses on
this interpretation and improves on &% for the purpose of specification testing. We leave a

detailed analysis of our implied specification test to future research.
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A Convergence of the E-A-M Algorithm

In this appendix, we provide details on the algorithm used to solve the outer maximization problem
as described in Section 3.2. Below, let (€2, F) be a measurable space and w a generic element of ). Let
LeNand let (81, ,6()) be a measurable map on (2, F) whose law is specified below. The value
of the function ¢ in (3.6) is unknown ex ante. Once the evaluation points 00 ¢ =1,--- L realize,
the corresponding values of ¢, i.e. T = ¢(9), ¢ = 1,---, L, are known. We may therefore define

the information set
Fr=0(W, 1O 0=1,- L) (A1)

We note that 0*1 = argmax,cp'0 is measurable with respect to Fr,.

Our algorithm iteratively determines evaluation points based on the expected improvement (Jones,
Schonlau, and Welch, 1998). For this, we formally introduce a model that describes the uncertainty
associated with the values of ¢ outside the current evaluation points. Specifically, the unknown function

c is modeled as a Gaussian process such that?*?
E[e(8)] = . Cov(c(6), () = 2K (0 — ), (A.2)

where 3 = (81, , B4) € R? controls the length-scales of the process. Two values c(f) and c(¢’) are
highly correlated when 6, — 6 is small relative to ;. Throughout, we assume 3 p S Br < B, for some
0<pg, < B <owfork=1,---,d Welet 3= (B, -+,B4) € RL Specific suggestions on the forms
of Kg are given in Appendix B.2.

For a given (u,s, 8), the posterior distribution of ¢ given Fj, is then another Gaussian process
whose mean ¢, (+) and variance ¢%s% () are given as follows (Santner, Williams, and Notz, 2013, Section
4.1.3):

cL(60) = p+ro(0)R; (X — 1) (A.3)
2.2 9 2 1 9 IR—l 9 (1_1IR211‘L(9))2 A4
P1(0) = (1= ral0) Ry ra(6) + SR ). (Ad)
Given this, the expected improvement function can be written as
ElL(0) = E[(p'0 — p'0™") 1+ 1{g(0) < c(0)}|FL]
— W0 — PO PC(0) > max g, (0)|F)
0) —cp(0) _ maxj_i.. jg;(0) —cL(h)
— /0 _ Ie*,L P (C( > J 3 J
(p p )+ (SL(G) §SL(9)
g(0) —cr(9)
— ‘0 _ *,L 1 _ (b g( A

The evaluation points (9(1), SR Q(L)) are then generated according to the following algorithm (M-step

in Section 3.2).

42We use P and E to denote the probability and expectation for the prior and posterior distributions of ¢
to distinguish them from P and E used for the sampling uncertainty for Xj.
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ALGORITHM A.1: Let ke N.
Step 1: Initial evaluation points 6V ..  0%) are drawn randomly independent of c.
Step 2: For L = k, with probability 1 — ¢, let 0“+Y) = argmar,.oElL(0). With probability e, draw

6L+ uniformly at random from ©.

Below, we use Q to denote the law of (9(1), e ,Q(L)) determined by the algorithm above. We also
note that 0*X+! = arg max,-r+1 p'6 is a function of the evaluation points and therefore is a random

variable whose law is governed by Q.

A.1 Proof of Theorem 3.1

Proof. We adopt the method used in the proof of Theorem 5 in Bull (2011), who proves a convergence
result for an unconstrained optimization problem in which the objective function is unknown outside
the evaluation points.

Below, we let L > 2k. Let 0 < v < 0. Let 0 < < € and A € F be the event that at least
|nL| of the points §+1 ... (L) are drawn independently from a uniform distribution on ©. Let
By, € F be the event that one of the points (X1 ... #(L) is chosen by maximizing the expected

improvement. For each L, define the mesh norm:

= i — o
hr —zggzznll,l.lhl.L [0 — 6. (A.6)

For a given M > 0, let Cy, € F be the event that hy, < M(L/InL)~"/¢. We then let
DLEAL(\BLF\CL. (A?)

On Dy, the following results hold. First, let 81, be the estimated parameter. Noting that there
are |nL| uniformly sampled points and arguing as in (A.24)-(A.25), it follows that

sup sy (6; 8) < Mry, (A.8)
0co

for some constant M > 0 by w € C, and ry, is defined by
rp = (L/InL)~"/4, (A.9)

For later use, we note that, for any L > 2,

L 1)V/d(1H(L — 1)

v/d v
j- oI )< ovd, (A.10)

ro—1/rr = (

Second, by w € By, there is £ such that L < ¢ < 2L and 0¥ is chosen by maximizing the expected
improvement. For § € © and L € N, let I,(0) = (p'0 — p'0*L),1{g(0) < c(6)}. Recall that 0* is an



optimal solution to (3.6). [HK: Below I changed all 0 to 6**.] Then,

ple* _plo*,€—1 (é) 1571(9*)

R\ -1

Loy (01) + MMy exp(=M~Mar, %)) (1= 2( 7)™
T 1(01) + 27 M Myrg exp(—(219M) = Mar7 ) ) (1 - ‘I’(g))f1

< ((29’9”"‘Z — PO Yy 4 27 M My eXp(—(2”/dM)_2M2T52)) (- @(g))_l
¢ (hg + 2"/ M My, eXp(—(QV/dM)fz)MW_Q)) (- é(g))il’ S

where (1) follows by construction, (2) follows from Lemma A.1 (ii), (3) follows from #() being the
maximizer of the expected improvement, (4) follows from Lemma A.1 (i), (5) follows from (A.8), (6)
follows from r,_; < 2¥/r, for £ = 2 by (A.10), (7) follows from §** = argmaxy.cep'0, (8) follows from
0%t — p'@**=1 being dominated by the mesh-norm. Therefore, by w € Cp, there exists a constant
M > 0 such that

po* —pott < (M(E/lnﬁ)_l/d + Mr, exp(—Mr[z)) (1- @(?))_1. (A12)

Since L < ¢ < 2L, p'0*1 is non-decreasing in L, and 77, is non-increasing in L, we have

p'o* —p'o*2k < <M(L/ln L)fl/d + Mryp, exp(—MrZQ)) (1 — @(?))71

= O((2L/ M 2L)~Y4) + O(ror exp(—Mr3 7)), (A.13)

where the last equality follows from the existence of a positive constant C' such that r;, = Cryr and
redefining multiplying constants properly.
Now consider the case w ¢ Dr. By (A.7),

Q(Dr) < QA7) + Q(Bg) + Q(CE). (A.14)

Let Z, be a Bernoulli random variable such that Z, = 1 if 00 is randomly drawn from a uniform

distribution. Then, by the Chernoff bounds (see e.g. Boucheron, Lugosi, and Massart, 2013, p.48),

L
QAL) = Q( Y, Ze < |nL]) < exp(=(L =k + 1)e(e —1)*/2). (A.15)
l=k+1



Further, by the definition of By,
Q(B}) = €, (A.16)

and finally by taking M large upon defining the event Cr, and applying Lemma 4 in Bull (2011), one

has
Q(Ci) = O((L/In L)), (A.17)
for any > 0. Combining (A.14)-(A.17), for any v > 0,
Q(DL) = O((L/InL)™7). (A.18)

Finally, noting that p'6* — p’0*2" is bounded by some constant M > 0 due to the boundedness of ©,

we have

EQ[ple* _ple*,QL] — J

p/a* _ple*,2LdQ +J ple* _ple*,QLdQ
Dy,

Dg

= O((2L/ I 2L) Y4 + O(rop exp(=M75;2)) + O((2L/In2L) ™) = o(1), (A.19)
where the second equality follows from (A.13) and (A.18). This completes the proof. O

The following lemma is an analog of Lemma 8 in Bull (2011), which links the expected improvement

to the actual improvement achieved by a new evaluation point 6.

LEMMA A.1: Suppose © c R? is bounded and p € S*1. Suppose the evaluation points (01, ---  §(F))
are drawn by Algorithm A.1 and |clls, < R for some R > 0. For § € © and L € N, let I1(0) =
(p'0 — p'0*1L) . 1{gG(0) < c(0)}. Then, (i) there exist constants M; > 0,5 = 1,2 that only depend on
(s, R) and an integer L € N such that

ElL(6) < I1.(0) + Mysr,(0) exp(—Mas72(0)) (A.20)

for all L > L. Further, (i) for any L€ N and 0 € ©,

Ry —1
< _ -
I1,(0) < EIL(6) (1 cp( : )) . (A.21)
Proof of Lemma A.1. (i) If s (0) = 0, then the posterior variance of ¢(f) is zero. Hence, El(0) =
I:.(0), and the claim of the lemma holds.

For sp(f) > 0, we first show the upper bound. Let u = (g(0) — ¢1(0))/sr(0) and t = (g(0) —



c(0))/sr(0). By Lemma 6 in Bull (2011), we have |u —t| < R. Since 1 — ®(+) is decreasing, we have

EIL(0) = (p'0 — p'0*"), (1 - q’(%))
< wo-pomh) (1- (I’(t —§R>)
= (10— P04 (1{g(60) < ()} + 1{g(0) > c(0)}) (1 - ‘I’(g»
< IL(0) + (0 — 6", 1(5(6) > c(9)}<1 _ @(#)), (A.22)

where the last inequality used 1 — ®(z) < 1 for any x € R. Note that one may write

13(0) > (0)} (1 - @(#)) ~ 1{3(0) > c(6)} (1 - @(9(9) - zi"z(;)sL(Q)R)). (A.23)

Below we assume g(#) > ¢(6) because otherwise, the expression above is 0, and the claim holds. To
be clear about the parameter value at which we evaluate sp,, we will write sz,(0; 8). By the hypothesis
that |c[%, < R and Lemma 4 in Bull (2011), we have

||CH7{/3L < S7 (A24)

where S = R? szl(ﬁk /B,)- Note that there are |nL| uniformly sampled points, and K is associated
with index v € (0,00),v ¢ N. By Corollary 6.4 in Narcowich, Ward, and Wendland (2003),

sup s(0;8) = O(M(B)h1), (A.25)

uniformly in 8, where hy, = supgee ming— ..., [§ —0®| and 8 +— M (3) is a continuous function (note
that the exponent v in our notation matches matches (k +v)/2 in theirs). Hence, si(0) = o(1). This,
together with g(@) > c(#), implies that there are a constant M and L € N such that

0 <M < (§(8) — c(8) — s.(0)R)/s, VL > L. (A.26)

Therefore, again by the fact that 1 — ®(-) is decreasing, one obtains

1g(6) > e(0)} (1 - (L= st OIYy (1 _g( )

ssp(0) s.(0)
< 83\(40)¢(53(49)>’ (A.27)

where ¢ is the density of the standard normal distribution, and the last inequality follows from
1 —®(z) < ¢(x)/x, which is due to Gordon (1941). The claim on the upper bound then follows from
(A.22), (p'0 — p'0*L) < M for some M > 0 due to © being bounded, and (A.27).



(ii) For the lower bound in (A.21), we have

ElL(0) > (p'0 — p'6*"), (1 —~ @(t * R))

= (0 —p'0"")1{g(0) < 6(9)}(1 N (I)<t : R))

> I1.(6) (1 - @(5)), (A.28)

S

)

where the last inequality follows from t = (g(6) — ¢(6))/s.(#) < 0 and the fact that 1 — ®(-) is

decreasing. O
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Tables

Table 1: Results for Set 1 with n = 4000, M C's = 300, B = 301, p = 5.04, k, = VInn.

Median CI CIPr°F Coverage | CI,, Coverage | CIP™7 Coverage Average Time
crrrof CI, CIproi Lower Upper | Lower Upper | Lower Upper | CI?™°/ CI, CIPro
0.95 | [0.330,0.495] [0.336,0.482] [0.290,0.557] | 0.997 0.990 0.993 0.973 1 1858.42 22.86 13.82
01 =04 | 0.90 | [0.340,0.485] [0.342,0.474] [0.298,0.543] | 0.990 0.980 0.980 0.963 1873.23 22.26  15.81
0.85 | [0.345,0.475] [0.348,0.466] [0.303,0.536] | 0.970 0.970 0.960  0.937 1907.84 23.00 13.98
0.95 | [0.515,0.655] [0.518,0.650] [0.461,0.682] | 0.987 0.993 0.980 0.987 1753.54 23.84 19.10
02 =0.6 | 0.90 | [0.525,0.647] [0.533,0.643] [0.473,0.675] | 0.977 0.973 0.957  0.953 1782.91 2445 17.16
0.85 | [0.530,0.640] [0.540,0.639] [0.481,0.670] | 0.967 0.957 0.943  0.923 1 1 1809.65 23.38  17.33

Notes: (1) Projections of © are: §; € [0.3872,0.4239], d2 € [0.5834,0.6084], ¢; € [0.0996, 0.1006], {2 € [0.1994, 0.2010], ¢35 € [0.2992,0.3014]. (2) “Upper” coverage
is for maxgee,(p)p'0, and similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4) CIE™f results from
BCS-profiling, C1,, is calibrated projection, and CIE"®’ is uncalibrated projection.

11—«

e
e

Table 2: Results for Set 1 with n = 4000, M C's = 1000, B = 1001, p = 5.04, Kk, = VInn.

I—a Median CI ‘ CI,, Coverage | CIE™ Coverage | Average Time
ClI, CIeres Lower Upper | Lower  Upper clL, CIzro
0.95 | [0.333,0.479] [0.288,0.555] | 0.990  0.979 1 1 42.35  15.79

01 =04 0.90 | [0.342,0.470] ]0.296,0.542] | 0.978  0.957
0.85 | [0.347,0.464] [0.302,0.534] | 0.960  0.942
0.95 | [0.526,0.653] [0.466,0.683] | 0.969  0.978
d2 = 0.6 0.90 | [0.538,0.646] [0.478,0.677] | 0.948  0.959 0.999 | 41.39 32.78
0.85 | [0.545,0.642] [0.485,0.672] | 0.925  0.941 1 38.49  31.55
0.95 |]0.054,0.143] [0.020,0.179] | 0.951  0.952 1 1 35.57  20.80
¢M'=0.1| 090 | [0.060,0.137] [0.028,0.171] | 0.916  0.916 | 0.998 0.998 | 38.42  28.07
0.85 | [0.064,0.132] ]0.033,0.166] | 0.868  0.863 | 0.998 0.998 | 38.63  28.77
0.95 | [0.156,0.245] [0.120,0.281] | 0.950  0.949 1 1 35.99  18.07
¢Bl'=0.2 | 090 | [0.162,0.238] [0.128,0.273] | 0.910  0.908 | 0.999 0.998 | 33.29 23.13
0.85 | [0.166,0.235] [0.133,0.268] | 0.869  0.863 | 0.995 0.995 | 33.76  17.33
0.95 | [0.257,0.344] ]0.222,0.379] | 0.945  0.944 1 1 39.92  31.27
¢Bl=0.3 | 090 | [0.262,0.337] [0.230,0.371] | 0.896  0.900 | 0.998 0.998 | 43.37  29.17
0.85 | [0.266,0.333] ]0.235,0.366] | 0.866  0.863 | 0.995 0.995 | 43.60 26.99

1 41.13  11.60
1 39.91  15.36
41.40  24.30

i
—

Notes: Same DGP and conventions as in Table 1.



Table 3: Results for Set 2-DGP1, Corr(uy,us) = 0, n = 4000, MC's = 1000, p = 6.02, k,, =

l—a Median CI ' Coverage Average Time

Cl, CrEed Cl, CIZ | (I, CIE

0.95 | [0.355,0.715 0.127,0.938] | 0.948 1 82.34  23.56

M~ 050 | 0.90 | [0.374,0.687 0.172,0.902] | 0.902  0.999 | 84.33  21.61
0.85 | [0.387,0.669 0.200,0.878] | 0.856  0.996 | 87.33  22.31

0.95 | [0.115,0.354 0.003,0.488] | 0.054 0.998 | 103.58  32.63

¢'=0.25 | 0.90 | [0.132,0.340 0.024,0.464] | 0.904  0.996 | 106.20  26.52
0.85 | [0.142,0.330 0.040,0.448] | 0.848  0.996 | 110.10  32.01

0.95 | [1.321,-0.716] [-1.712,-0.296] | 0.946 1 8821  22.11

A = 1] 090 | [[1.284,-0.755] [-1.647,-0.368] | 0.895 0.999 | 94.38  22.65
0.85 | [1.259,-0.778] [-1.611,-0.416] | 0.849  0.997 | 92.77  27.52

0.95 | -1.179,-0.791]  [-1.443,0.500] | 0.950 1 96.97  27.31

AT = 1] 090 | [1.153,-0.814] [-1.398,-0.544] | 0.891  0.999 | 98.69  25.13
0.85 | [-1.136,-0.832] [-1.370,-0.575] | 0.853  0.999 | 102.16  25.11

Inn.

Table notes: (1) O is a singleton in this DGP. (2) B = 1001 bootstrap draws. (3) “Average time” is computation time in
seconds averaged over MC replications. (4) C1, is calibrated projection and CTE"* is uncalibrated projection.

Table 4: Results for Set 2-DGP2, Corr(uq,us2) = 0, n = 4000, M C's = 1000, p = 6.02, k,, = VInn.

I—a Median CI ‘ CI, Coverage | CIE" Coverage | Average Time

ClI, ciprod Lower Upper | Lower  Upper clr, CIpr

0.95 0.249,0.790 [-0.007,1.004] | 0.954 0.971 | 0.999 1 85.76  50.10

(1[1] = 0.50 0.90 0.271,0.765 0.038,0.969 0.918  0.941 | 0.998 1 91.47  50.51
0.85 0.287,0.750 0.067,0.948 0.883  0.919 | 0.999 1 91.39  61.10

0.95 0.112,0.376 0.009,0.523 0.969 0.963 | 0.998 1 94.09  36.46

(1[2] =0.25 0.90 0.128,0.359 0.025,0.498 0.938  0.927 | 0.997 0.999 93.26  52.80
0.85 0.138,0.348 0.038,0.489 0.909  0.891 | 0.998 0.996 95.68  61.25

0.95 | |-1.467,-0.497] [-1.869,-0.003] | 0.960  0.967 | 0.999 0.999 82.54  27.25

AE] -1 0.90 | [-1.432,-0.544] [-1.806,-0.091] | 0.932  0.939 1 0.999 89.97  28.63
0.85 | [-1.408,-0.571] [-1.766,-0.146] | 0.901  0.902 1 0.999 91.72  28.38

0.95 | [-0.979,-0.514] [-1.276,-0.237] | 0.973  0.969 1 1 97.75  32.09

A?] =—0.75 | 0.90 | [-0.953,-0.539] [-1.226,-0.282] | 0.941  0.940 1 1 95.86  27.34
0.85 | [-0.936,-0.556] [-1.194,-0.312] | 0.916  0.917 1 0.999 | 104.52 31.15

Notes: (1) Projections of ©; are: ¢! € [0.405,0.589]; ¢}* € [0.236,0.266]; Al € [-1.158, —0.832]; Al® € [—0.790, —0.716].
(2) “Upper” coverage refers to coverage of max{p’d : § € ©;(P)}, and similarly for “Lower”. (3) “Average time” is
computation time in seconds averaged over MC replications. (4) B = 1001 bootstrap draws. (5) CI, is calibrated projection
and CIP™J is uncalibrated projection.
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Table 5: Results for Set 2-DGP3, Corr(uq,uz) = 0.5, n = 4000, M C's = 1000, p = 6.02, k, = VInn.

1—a Median CI . CI,, Coverage | CIP™7 Coverage | Average Time

ClI, crrero Lower Upper | Lower  Upper Ccl, cirero

0.95 [0.196,0.895] [-0.043,1.053] 0.978 0.978 | 0.996 0.995 | 561.66 163.42

<1[1] = 0.50 0.90 [0.224,0.864] [-0.009,1.009] 0.958  0.966 | 0.993 0.984 | 583.80 163.42
0.85 [0.244,0.844] [0.015,1.000] 0.945 0.945 | 0.989 0.972 | 562.05  99.90

0.95 [0.099,0.436] [0.001,0.586] 0.974 0.969 | 0.997 0.996 | 626.00 245.39

§[2] 0.25 0.90 [0.115,0.417] [0.016,0.583] 0.951  0.950 | 0.997 0.997 | 597.29  206.35
0.85 [0.126,0.404] [0.031,0.564] 0.939  0.941 | 0.993 0.994 | 681.24 234.50

0.95 | [-1.664,-0.372]  [-1.956,-0.000] | 0.957  0.962 | 0.986 0.993 | 578.63 156.00

Agl] =-1 0.90 | [-1.609,-0.441]  [-1.929,-0.000] | 0.939  0.930 | 0.986 0.996 | 594.27 145.85
0.85 | [-1.568,-0.490] [-1.912,-0.000] | 0.909  0.916 | 0.986 0.994 | 638.16 132.73

0.95 | [-1.065,-0.504] [-1.312,-0.1938] | 0.956  0.955 | 0.994 0.995 | 559.10 214.71

A?] =—-0.75 | 0.90 | [-1.037,-0.525] [-1.286,-0.241] | 0.940  0.947 | 0.994 0.997 | 553.53 128.71
0.85 | [-1.021,-0.542]  [-1.276,-0.266] | 0.918  0.928 | 0.989 0.998 | 645.54 129.67

0.95 [0.000,0.830] [0.000,0.925] 0.968  0.968 | 0.995 0.995 | 269.98  42.66

r=0.5 0.90 [0.000,0.802] [0.000,0.925] 0.935 0.935 | 0.994 0.995 | 308.58  47.55
0.85 [0.042,0.784] [0.000,0.925] 0.897  0.897 | 0.995 0.995 | 334.43 49.54

Notes: (1) Projections of ©; are: ¢ e [0.465,0.533]; ¢ € [0.240,0.261]; AWM € [—1.069, —0.927]; Al €
[—0.782,—0.720]; r € [0.4998,0.5000]. (2) “Upper” coverage refers to coverage of max{p'0 : 6 € ©;(P)}, and
similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4)
B = 1001 bootstrap draws. (5) CT,, is calibrated projection and C'IZ™? is uncalibrated projection.
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Table 6: Results for Set 2-DGP2, Corr(uy,us) = 0, n = 4000, MC's = 1000, varying p, £, = v/Inn.

Median C1, C1I,, Coverage Average Time
l—a| p=587 p=10 p =587 p=10 p="587 p=10
Lower Upper Lower Upper
0.95 | [0.248,0.790]  [0.254,0.776] | 0.959 0.971 0.947 0.962 | 116.19 104.14
¢ =050 090 | [0.271,0.766]  [0.275,0.754] | 0.921  0.939 0.908 0.925 | 121.24  115.65
0.85 | [0.286,0.749]  [0.289,0.738] | 0.888 0.916 0.868 0.895 | 11541  112.38
0.95 | [1.471,-0.498] [-1.454,-0.512] | 0.964 0.965 0.955 0.959 | 104.34  108.77
AT = 1| 0.90 | [1.434,-0.543] [1.418-0.555] | 0.933  0.940 0.927 0.924 | 113.63 114.74
0.85 | [-1.410,-0.571] [-1.394,-0.583] | 0.904 0.905 0.887 0.895 | 114.23  119.55

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated

projection CI,.

Table 7: Results for Set 2-DGP2, Corr(uy,us) = 0, n = 4000, MCs = 1000, p = 6.02, varying k.

Median C1,, C1I,, Coverage Average Time
1—a —— Kn = VInlnn Jo— kn=~NInlnn | k, =n" Kk, =+Inlnn
Lower Upper Lower Upper
0.95 [0.249,0.790] [0.250,0.787] 0.955 0.972  0.955  0.970 85.11 89.65
(1[1] 0.50 | 0.90 [0.270,0.765] [0.274,0.763] 0.922 0.943 0.914  0.936 89.12 94.49
0.85 [0.286,0.748] [0.287,0.746] 0.891 0.916 0.870  0.901 89.82 92.15
0.95 | [-1.469,-0.497] [-1.464,-0.501] | 0.966  0.968  0.956  0.959 80.33 81.70
Agl] =—1| 090 | [-1.432,-0.542] [-1.426,-0.548] | 0.935 0.938 0.926  0.923 85.12 88.07
0.85 | [-1.408,-0.568] [-1.402,-0.577] | 0.909  0.908 0.889  0.892 86.95 89.34

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated

projection C'I,.
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