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Abstract

We propose a bootstrap-based calibrated projection procedure to build confidence in-
tervals for single components and for smooth functions of a partially identified parameter
vector in moment (in)equality models. The method controls asymptotic coverage uni-
formly over a large class of data generating processes.

The extreme points of the calibrated projection confidence interval are obtained by
extremizing the value of the component (or function) of interest subject to a proper
relaxation of studentized sample analogs of the moment (in)equality conditions. The
degree of relaxation, or critical level, is calibrated so that the component (or function)
of θ, not θ itself, is uniformly asymptotically covered with prespecified probability. This
calibration is based on repeatedly checking feasibility of linear programming problems,
rendering it computationally attractive.

Nonetheless, the program defining an extreme point of the confidence interval is gener-
ally nonlinear and potentially intricate. We provide an algorithm, based on the response
surface method for global optimization, that approximates the solution rapidly and ac-
curately. The algorithm is of independent interest for inference on optimal values of
stochastic nonlinear programs. We establish its convergence under conditions satisfied by
canonical examples in the moment (in)equalities literature.

Our assumptions and those used in the leading alternative approach (a profiling based
method) are not nested. An extensive Monte Carlo analysis confirms the accuracy of
the solution algorithm and the good statistical as well as computational performance of
calibrated projection, including in comparison to other methods.
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form inference.
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1 Introduction

This paper provides theoretically and computationally attractive confidence intervals for pro-

jections and smooth functions of a parameter vector θ P Θ � Rd, d   8, that is partially

or point identified through a finite number of moment (in)equalities. The values of θ that

satisfy these (in)equalities constitute the identification region ΘI .

Until recently, the rich literature on inference in this class of models focused on confidence

sets for the entire vector θ, usually obtained by test inversion as

Cnpc1�αq � tθ P Θ : Tnpθq ¤ c1�αpθqu , (1.1)

where Tnpθq is a test statistic that aggregates violations of the sample analog of the moment

(in)equalities, and c1�αpθq is a critical value that controls asymptotic coverage, often uni-

formly over a large class of data generating processes (DGPs). In point identified moment

equality models, this would be akin to building confidence ellipsoids for θ by inversion of the

F -test statistic proposed by Anderson and Rubin (1949).

However, applied researchers are frequently primarily interested in a specific component

(or function) of θ, e.g., the returns to education. Even if not, they may simply want to report

separate confidence intervals for components of a vector, as is standard practice in other

contexts. Thus, consider the projection p1θ, where p is a known unit vector. To date, it has

been common to report as confidence interval for p1θ the projection of Cnpc1�αq:

CIprojn �
�

inf
θPCnpc1�αq

p1θ, sup
θPCnpc1�αq

p1θ

�
, (1.2)

where n denotes sample size; see for example Ciliberto and Tamer (2009), Grieco (2014) and

Dickstein and Morales (2016). Such projection is asymptotically valid, but typically yields

conservative and therefore needlessly large confidence intervals. The potential severity of this

effect is easily appreciated in a point identified example. Given a
?
n-consistent estimator

θ̂n P Rd with limiting covariance matrix equal to the identity matrix, a 95% confidence

interval for θk is obtained as θ̂n,k � 1.96, k � 1, . . . , d. In contrast, if d � 10, then projection

of a 95% Wald confidence ellipsoid yields θ̂n,k � 4.28 with true coverage of essentially 1. We

refer to this problem as projection conservatism.

Our first contribution is to provide a bootstrap-based calibrated projection method that

largely anticipates and corrects for projection conservatism. For each candidate θ, ĉnpθq is

calibrated so that across bootstrap repetitions the projection of θ is covered with at least some

pre-specified probability. Computationally, this bootstrap is relatively attractive because we

linearize all constraints around θ, so that coverage of p1θ corresponds to the projection of a
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stochastic linear constraint set covering zero. We then propose the confidence interval

CIn �
�

inf
θPCnpĉnq

p1θ, sup
θPCnpĉnq

p1θ

�
. (1.3)

We prove that CIn asymptotically covers p1θ with probability at least 1 � α uniformly over

a large class of DGPs and that it is weakly shorter than (1.2) for each n.1 We also provide

simple conditions under which it is asymptotically strictly shorter.

Our second contribution is a general method to accurately and rapidly compute projection-

based confidence intervals. These can be our calibrated projection confidence intervals, but

they can also correspond to projection of many other methods for inference on either θ

or its identified set ΘI . Examples include Chernozhukov, Hong, and Tamer (2007), An-

drews and Soares (2010), or (for conditional moment inequalities) Andrews and Shi (2013).

Projection-based inference extends well beyond its application in partial identification, hence

our computational method proves useful more broadly. For example, Freyberger and Reeves

(2017a,b, Section S.3) use it to construct uniform confidence bands for an unknown function

of interest under (nonparametric) shape restrictions.

We propose an algorithm that is based on the response surface method, thus it resembles

an expected improvement algorithm (see e.g. Jones, 2001; Jones, Schonlau, and Welch, 1998,

and references therein). Bull (2011) established convergence of the expected improvement

algorithm for unconstrained optimization problems where the objective is a “black box”

function. Building on his results, we show convergence of our algorithm for constrained

optimization problems in which the constraint functions are “black box” functions, assuming

that they are sufficiently smooth. We then verify this smoothness condition for canonical

examples in the moment (in)equalities literature. Our extensive Monte Carlo experiments

confirm that the algorithm is fast and accurate.2

Previous implementations of projection-based inference were based on approximating the

set Cnpc1�αq � Rd by searching for vectors θ P Θ such that Tnpθq ¤ c1�αpθq (using, e.g., grid-

search or simulated annealing with no cooling), and reporting the smallest and largest value

of p1θ among parameter values that were “guessed and verified” to belong to Cnpc1�αq. This

becomes computationally cumbersome as d increases because it typically requires a number of

evaluation points that grows exponentially with d. In contrast, our method typically requires

a number of evaluation points that grows linearly with d.

The main alternative inference prodedure for projections was introduced in Romano and

Shaikh (2008) and significantly advanced in Bugni, Canay, and Shi (2017, BCS henceforth).

It is based on profiling out a test statistic. The classes of DGPs for which our procedure and

1This comparison is based on projection of the confidence set of Andrews and Soares (2010) and holds the
choice of tuning parameters and criterion function in (1.2) and (1.3) constant across methods.

2Freyberger and Reeves (2017b, Section S.3) similarly find our method to be accurate and to considerably
reduce computational time.
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the profiling-based method of BCS (BCS-profiling henceforth) can be shown to be uniformly

valid are non-nested. We show that in well behaved cases, calibrated projection and BCS-

profiling are asymptotically equivalent. We also provide conditions under which calibrated

projection has lower probability of false coverage, thereby establishing that the two methods’

power properties are non-ranked. Computationally, calibrated projection has the advantage

that the bootstrap iterates over linear as opposed to nonlinear programming problems. While

the “outer” optimization problems in (1.3) are potentially intricate, our algorithm is geared

toward them. Our Monte Carlo simulations suggest that these two factors give calibrated

projection a considerable computational edge over BCS-profiling, with an average speed gain

of about 78-times.

In an influential paper, Pakes, Porter, Ho, and Ishii (2011) also use linearization but,

subject to this approximation, directly bootstrap the sample projection.3 This is valid only

under stringent conditions, and we show that calibrated projection can be much simplified

under those conditions. Other related papers that explicitly consider inference on projections

include Andrews, Berry, and Jia (2004), Beresteanu and Molinari (2008), Bontemps, Magnac,

and Maurin (2012), Chen, Tamer, and Torgovitsky (2011), Kaido (2016), Kitagawa (2012),

Kline and Tamer (2015), and Wan (2013). However, some are Bayesian, as opposed to

our frequentist approach, and none of them establish uniform validity of confidence sets.

Chen, Christensen, and Tamer (2017) establish uniform validity of MCMC-based confidence

intervals for projections, but these are aimed at covering the entire set tp1θ : θ P ΘIpP qu,
whereas we aim at covering the projection of θ. Finally, Gafarov, Meier, and Montiel-Olea

(2016) have used our insight in the context of set identified spatial VARs.

Structure of the paper. Section 2 sets up notation and describes our approach in

detail. Section 3 describes computational implementation of the method and establishes

convergence of our proposed algorithm. Section 4 lays out our assumptions and, under these

assumptions, establishes uniform validity of calibrated projection for inference on projections

and smooth functions of θ. It also shows that more stringent conditions allow for several

simplifications to the method, including that it can suffice to evaluate ĉn at only two values

of θ and that one can dispense with a tuning parameter. The section closes with a formal

comparison of calibrated projection and BCS-profiling. Section 5 reports the results of Monte

Carlo simulations. Section 6 draws conclusions. The proof of convergence of our algorithm

is in Appendix A. All other proofs, background material for our algorithm, and additional

results are in the Online Appendix.4

3The published version, i.e. Pakes, Porter, Ho, and Ishii (2015), does not contain the inference part.
4Section B provides convergence-related results and background material for our algorithm and describes

how to compute ĉnpθq. Section C verifies, for a number of canonical moment (in)equality models, the assump-
tions that we invoke to show validity of our inference procedure and for our algorithm. Section D contains
proofs of the Theorems in this paper’s Section 4. Section E collects Lemmas supporting the preceding proofs.
Section F provides further comparisons with the profiling method of Bugni, Canay, and Shi (2017), including
an example where calibrated projection has higher power in finite sample. Section G provides comparisons with
“uncalibrated” projection of the confidence region in Andrews and Soares (2010), including simple conditions
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2 Detailed Explanation of the Method

Let Xi P X � RdX be a random vector with distribution P , let Θ � Rd denote the parameter

space, and let mj : X � Θ Ñ R for j � 1, . . . , J1 � J2 denote measurable functions char-

acterizing the model, known up to parameter vector θ P Θ. The true parameter value θ is

assumed to satisfy the moment inequality and equality restrictions

EP rmjpXi, θqs ¤ 0, j � 1, � � � , J1 (2.1)

EP rmjpXi, θqs � 0, j � J1 � 1, � � � , J1 � J2. (2.2)

The identification region ΘIpP q is the set of parameter values in Θ satisfying (2.1)-(2.2). For

a random sample tXi, i � 1, � � � , nu of observations drawn from P , we write

m̄n,jpθq � n�1
°n
i�1mjpXi, θq, j � 1, � � � , J1 � J2 (2.3)

σ̂n,j � pn�1
°n
i�1rmjpXi, θqs2 � rm̄n,jpθqs2q1{2, j � 1, � � � , J1 � J2 (2.4)

for the sample moments and the analog estimators of the population moment functions’

standard deviations σP,j .
5

The confidence interval in (1.3) then becomes CIn � r�sp�p, Cnpĉnqq, spp, Cnpĉnqqs, where

spp, Cnpĉnqq � sup
θPΘ

p1θ s.t.
?
n
m̄n,jpθq
σ̂n,jpθq ¤ ĉnpθq, j � 1, � � � , J (2.5)

and similarly for p�pq. Here, we define J � J1 � 2J2 moments, where m̄n,J1�J2�kpθq �
�m̄J1�kpθq for k � 1, � � � , J2. That is, we split moment equality constraints into two opposing

inequality constraints and relax them separately.6

For a class of DGPs P that we specify below, define the asymptotic size of CIn by

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P pp1θ P CInq. (2.6)

Our goal is to calibrate ĉn so that (2.6) is at least equal to a prespecified level 1�α ¥ 1{2
while anticipating projection conservatism. To build intuition, fix pθ, P q s.t. θ P ΘIpP q, P P
under which CIn is asymptotically strictly shorter than CIprojn .

5Under Assumption 4.3-(II), in equation (2.5) instead of σ̂n,j we use the estimator σ̂Mn,j specified in (E.188)
in Lemma E.10 p.51 of the Online Appendix for j � 1, . . . , 2R1 (with R1 ¤ J1{2 defined in the assumption).
In equation (3.2) we use σ̂n,j for all j � 1, . . . , J . To ease notation, we distinguish the two only where needed.

6For a simple analogy, consider the point identified model defined by the single moment equality
EP pm1pXi, θqq � EP pXiq � θ � 0, where θ is a scalar. In this case, Cnpĉnq � X̄ � ĉnσ̂n{?n. The upper
endpoint of the confidence interval can be written as supθ tp1θ s.t. � ĉn ¤ ?

npX̄ � θq{σ̂n ¤ ĉnu, with p � 1,
and similarly for the lower endpoint.
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P. The projection of θ is covered when

� sp�p, Cnpĉnqq ¤ p1θ ¤ spp, Cnpĉnqq

ô
#

infϑ p
1ϑ

s.t. ϑ P Θ,
?
nm̄n,jpϑq
σ̂n,jpϑq ¤ ĉnpϑq,@j

+
¤ p1θ ¤

#
supϑ p

1ϑ
s.t. ϑ P Θ,

?
nm̄n,jpϑq
σ̂n,jpϑq ¤ ĉnpϑq,@j

+

ô

$'&
'%

infλP?npΘ�θq p1λ

s.t.

?
nm̄n,j

�
θ� λ?

n

	

σ̂n,j

�
θ� λ?

n

	 ¤ ĉn

�
θ � λ?

n

	
,@j

,/.
/- ¤ 0 ¤

$'&
'%

supλP?npΘ�θq p1λ

s.t.

?
nm̄n,j

�
θ� λ?

n

	

σ̂n,j

�
θ� λ?

n

	 ¤ ĉn

�
θ � λ?

n

	
,@j

,/.
/- ,

(2.7)

where the second equivalence follows from substituting ϑ � θ� λ{?n and taking λ to be the

choice parameter. (Intuitively, we localize around θ at rate 1{?n.)

We control asymptotic size by finding ĉn such that 0 asymptotically lies within the optimal

values of the NLPs in (2.7) with probability 1 � α. To reduce computational burden, we

approximate the event in equation (2.7) through linear expansion in λ of the constraint set.

To each constraint j, we add and subtract
?
nEP rmjpXi, θ � λ{?nqs{σ̂n,jpθ � λ{?nq and

apply the mean value theorem to obtain

?
nm̄n,j

�
θ� λ?

n




σ̂n,j

�
θ� λ?

n


 �
!
Gn,j

�
θ � λ?

n

	
�DP,jpθ̄qλ�

?
nγ1,P,jpθq

) σP,j

�
θ� λ?

n




σ̂n,j

�
θ� λ?

n


 . (2.8)

Here Gn,jp�q �
?
npm̄n,jp�q�EP rmjpXi, �qsq{σP,jp�q is a normalized empirical process indexed

by θ P Θ, DP,jp�q � ∇θtEP rmjpXi, �qs{σP,jp�qu is the gradient of the normalized moment,

γ1,P,jp�q � EP pmjpXi, �qq{σP,jp�q is the studentized population moment, and the mean value

θ̄ lies componentwise between θ and θ � λ{?n.7

Calibration of ĉn requires careful analysis of the local behavior of the moment restric-

tions at each point in the identification region. This is because the extent of projection

conservatism depends on (i) the asymptotic behavior of the sample moments entering the

inequality restrictions, which can change discontinuously depending on whether they bind at

θ (γ1,P,jpθq � 0) or not, and (ii) the local geometry of the identification region at θ, i.e. the

shape of the constraint set formed by the moment restrictions, and its relation to the level

set of the objective function p1θ. Features (i) and (ii) can be quite different at different points

in ΘIpP q, making uniform inference for the projection challenging. In particular, (ii) does

not arise if one only considers inference for the entire parameter vector, and hence is a new

challenge requiring new methods.8 This is where this paper’s core theoretical innovation lies.

7The mean value θ̄ changes with j but we omit the dependence to ease notation.
8This is perhaps best expressed in the testing framework: Inference for projections entails a null hypothesis

specifying the value of a single component (or a function) of θ. The components not under test become
additional nuisance parameters, and dealing with them presents challenges that one does not face when
testing hypotheses that specify the value of the entire vector θ.
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An important component of this innovation is to add to (2.7) the constraint that λ P
ρBd, where Bd � r�1, 1sd and ρ ¡ 0 a tuning parameter. This is slightly conservative but

regularizes the effect of the local geometry of ΘIpP q at θ on the inference problem. See

Section 4.3 for further discussion. We show that the probability of the event in (2.7), with

λ restricted to be in ρBd, is asymptotically approximated by the probability that 0 lies

between the optimal values of two programs that are linear in λ. The constraint sets of these

programs are characterized by (i) a Gaussian process GP,jpθq evaluated at θ (that we can

approximate through a simple nonparametric bootstrap), (ii) a gradient DP,jpθq (that we

can uniformly consistently estimate9 on compact sets), and (iii) the parameter γ1,P,jpθq that

measures the extent to which each moment inequality is binding (that we can conservatively

estimate using insights from Andrews and Soares (2010)). This suggests a computationally

attractive bootstrap procedure based on linear programs.

3 Computing Calibrated Projection Confidence Intervals

3.1 Computing the Critical Level

For a given θ P Θ, we calibrate ĉnpθq through a bootstrap procedure that iterates over linear

programs.10 Define

Λbnpθ, ρ, cq � tλ P ?npΘ � θq X ρBd : Gbn,jpθq � D̂n,jpθqλ� ϕjpξ̂n,jpθqq ¤ c, j � 1, . . . , Ju, (3.1)

where Gb
n,jp�q � n�1{2 °n

i�1pmjpXb
i , �q�m̄n,jp�qq{σ̂n,jp�q is a bootstrap analog of GP,j ,

11 D̂n,jp�q
is a consistent estimator of DP,jp�q, ρ ¡ 0 is a constant chosen by the researcher (see Section

4.3), Bd � r�1, 1sd, and ξ̂n,j is defined by

ξ̂n,jpθq �
$&
%κ

�1
n

?
nm̄n,jpθq{σ̂n,jpθq j � 1, . . . , J1

0 j � J1 � 1, . . . , J,
(3.2)

where κn is a user-specified thresholding sequence such that κn Ñ 8, ϕ : RJr�8s Ñ RJr�8s is

one of the generalized moment selection (GMS) functions proposed by Andrews and Soares

(2010), and Rr�8s � RY t�8u. A common choice of ϕ is given component-wise by

ϕjpxq �
$&
%0 if x ¥ �1

�8 if x   �1.
(3.3)

Restrictions on ϕ and the rate at which κn diverges are imposed in Assumption 4.2.

9See Online Appendix C for proposal of such estimators in some canonical moment (in)equality examples.
10If Θ is defined through smooth convex (in)equalities, these can be linearized too.
11Bugni, Canay, and Shi (2017) approximate the stochastic process GP,j using n�1{2°n

i�1rpmjpXi, �q �
m̄n,jp�qq{σ̂n,jp�qsχi with tχi � Np0, 1quni�1 i.i.d. This approximation is equally valid in our approach, and can
be computationally faster as it avoids repeated evaluation of mjpXb

i , �q across bootstrap replications.

[6]



Remark 3.1: For concreteness, in (3.3) we write out the “hard thresholding” GMS func-

tion. As we establish below, our results apply to all but one of the GMS functions in Andrews

and Soares (2010).12

Heuristically, the random convex polyhedral set Λbnpθ, ρ, cq in (3.1) is a local (to θ) lin-

earized bootstrap approximation to the random constraint set in (2.7). To see this, note

that the bootstrapped empirical process and the estimator of the gradient approximate the

first two terms in the constraint in (2.7) as linearized in (2.8). Next, for θ P ΘIpP q, the

GMS function conservatively approximates the local slackness parameter
?
nγ1,P,jpθq. This

is needed because the scaling of
?
nγ1,P,jpθq precludes consistent estimation. The problem

is resolved by shrinking estimated intercepts toward zero, thereby tightening constraints and

hence increasing ĉnpθq. As with other uses of GMS, the resulting conservative distortion

vanishes pointwise but not uniformly. Finally, restricting λ to the “ρ-box” ρBd has a strong

regularizing effect: It ensures uniform validity in challenging situations, including several that

are assumed away in most of the literature. We discuss this point in more detail in Section

4.3.

The critical level ĉnpθq to be used in (1.3) is the smallest value of c that makes the

bootstrap probability of the event

min
λPΛbnpθ,ρ,cq

p1λ ¤ 0 ¤ max
λPΛbnpθ,ρ,cq

p1λ (3.4)

at least 1� α. Because Λbnpθ, ρ, cq is convex, we have

"
min

λPΛbnpθ,ρ,cq
p1λ ¤ 0 ¤ max

λPΛbnpθ,ρ,cq
p1λ

*
ðñ

!
Λbnpθ, ρ, cq X tp1λ � 0u � H

)
,

so that we can equivalently define

ĉnpθq � inftc P R� : P �pΛbnpθ, ρ, cq X tp1λ � 0u � Hq ¥ 1� αu, (3.5)

where P � denotes the law of the random set Λbnpθ, ρ, cq induced by the bootstrap sampling

process, i.e. by the distribution of pXb
1, . . . , X

b
nq, conditional on the data. Importantly, P �

can be assessed by repeatedly checking feasibility of a linear program.13 We describe in detail

in Online Appendix B.4 how we compute ĉnpθq through a root-finding algorithm.

12These are ϕ1 � ϕ4 in Andrews and Soares (2010), all of which depend on κ�1
n

?
nm̄n,jpθq{σ̂n,jpθq. We do

not consider GMS function ϕ5 in Andrews and Soares (2010), which depends also on the covariance matrix of
the moment functions.

13We implement a program in Rd for simplicity but, because p1λ � 0 defines a linear subspace, one could
reduce this to Rd�1.
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3.2 Computation of the Outer Maximization Problem

Projection based methods as in (1.2) and (1.3) have nonlinear constraints involving a critical

value which in general is an unknown function of θ. Moreover, in all methods, including ours

and Andrews and Soares (2010), the gradients of the critical values with respect to θ are

not available in closed form. When the dimension of the parameter vector is large, directly

solving optimization problems with such constraints can be expensive even if evaluating the

critical value at each θ is cheap.

To mitigate this issue, we provide an algorithm that is a contribution to the moment

(in)equalities literature in its own right and that can be helpful for implementing other

approaches.14 We apply it to constrained optimization problems of the following form:

p1θ� � sup
θPΘ

p1θ

s.t. gjpθq ¤ cpθq, j � 1, � � � , J, (3.6)

where θ� is an optimal solution of the problem, gj , j � 1, . . . , J are known functions, and c is a

function that requires a higher computational cost. In our context, gjpθq �
?
nm̄n,jpθq{σ̂n,jpθq

and, for calibrated projection, cpθq � ĉnpθq. Conditional on the data tX1, � � � , Xnu, these

functions are considered deterministic. A key feature of the problem is that the function

cp�q is relatively costly to evaluate.15 Our algorithm evaluates cp�q on finitely many values

of θ. For other values, it imposes a probabilistic model that gets updated as specific values

are computed and that is used to determine the next evaluation point. Under reasonable

conditions, the resulting sequence of approximate optimal values converges to p1θ�.

Specifically, after drawing an initial set of evaluation points that grows linearly with the

dimensionality of parameter space, the algorithm has three steps called E, A, and M below.

Initialization-step: Draw randomly (uniformly) over Θ a set pθp1q, � � � , θpkqq of initial eval-

uation points. We suggest setting k � 10d� 1.

E-step: (Evaluation) Evaluate cpθp`qq for ` � 1, � � � , L, where L ¥ k. Set Υp`q � cpθp`qq, ` �
1, � � � , L. The current estimate p1θ�,L of the optimal value can be computed using

θ�,L P argmaxθPCLp
1θ, (3.7)

where CL � tθp`q : ` P t1, � � � , Lu, gjpθp`qq ¤ cpθp`qq, j � 1, � � � , Ju is the set of feasible

evaluation points.

14This algorithm is based on the response surface method used in the optimization literature; see Jones
(2001), Jones, Schonlau, and Welch (1998), and references therein.

15Here we assume that computing the sample moments is less expensive than computing the critical value.
When computation of moments is also very expensive, our proposed algorithm can be used to approximate
these too.
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A-step: (Approximation) Approximate θ ÞÑ cpθq by a flexible auxiliary model. We use a

Gaussian-process regression model (or kriging), which for a mean-zero Gaussian process

εp�q indexed by θ and with constant variance ς2 specifies

Υp`q � µ� εpθp`qq, ` � 1, � � � , L (3.8)

Corrpεpθq, εpθ1qq � Kβpθ � θ1q, θ, θ1 P Θ, (3.9)

where Kβ is a kernel with parameter vector β P�d
k�1rβk, βks � Rd��, e.g. Kβpθ�θ1q �

expp�°d
k�1 |θk�θ1k|2{βkq. The unknown parameters pµ, ς2q can be estimated by running

a GLS regression of Υ � pΥp1q, � � � ,ΥpLqq1 on a constant with the given correlation

matrix. The unknown parameters β can be estimated by a (concentrated) MLE.

The (best linear) predictor of the critical value and its gradient at an arbitrary point

are then given by

cLpθq � µ̂� rLpθq1R�1
L pΥ� µ̂1q, (3.10)

∇θcLpθq � µ̂�QLpθqR�1
L pΥ� µ̂1q, (3.11)

where rLpθq is a vector whose `-th component is Corrpεpθq, εpθp`qqq as given above

with estimated parameters, QLpθq � ∇θrLpθq1, and RL is an L-by-L matrix whose

p`, `1q entry is Corrpεpθp`qq, εpθp`1qqq with estimated parameters. This approximating

(or surrogate) model has the property that its predictor satisfies cLpθp`qq � cpθp`qq, ` �
1, � � � , L. Hence, it provides an analytical interpolation to the evaluated critical values

together with an analytical gradient.16 Further, the amount of uncertainty left in cpθq
(at an arbitrary point) is captured by the following variance:

ς̂2s2
Lpθq � ς̂2

�
1� rLpθq1R�1

L rLpθq �
p1� 11R�1

L rLpθqq2
11R�1

L 1

	
. (3.12)

M-step: (Maximization): With probability 1 � ε, maximize the expected improvement

function EIL to obtain the next evaluation point, with:

θpL�1q � arg max
θPΘ

EILpθq � arg max
θPΘ

pp1θ � p1θ�,Lq�
�

1� Φ
� ḡpθq � cLpθq

ς̂sLpθq
		
, (3.13)

where ḡpθq � maxj�1,��� ,Jgjpθq. This step can be implemented by standard nonlinear

optimization solvers, e.g. Matlab’s fmincon or KNITRO (see Appendix B.3 for details).

With probability ε, draw θpL�1q randomly from a uniform distribution over Θ.

Once the next evaluation point θpL�1q is determined, one adds it to the set of evaluation

16See details in Jones, Schonlau, and Welch (1998). We use the DACE Matlab kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in our Monte Carlo experiments.

[9]

http://www2.imm.dtu.dk/projects/dace/
http://www2.imm.dtu.dk/projects/dace/


points and iterates the E-A-M steps. This yields an increasing sequence of approximate

optimal values p1θ�,L, L � k � 1, k � 2, � � � . Once a convergence criterion is met, the value

p1θ�,L is reported as the end point of CIn. We discuss convergence criteria in Section 5.

Remark 3.2: The advantages of E-A-M are as follows. First, we control the number of

points at which we evaluate the critical value. Since the evaluation of the critical value is the

relatively expensive step, controlling the number of evaluations is important. One should also

note that the E-step with the initial k evaluation points can easily be parallelized. For any

additional E-step (i.e. L ¡ k), one needs to evaluate cp�q only at a single point θpL�1q. The

M-step is crucial for reducing the number of additional evaluation points. To determine the

next evaluation point, one needs to take into account the trade-off between “exploitation”

(i.e. the benefit of drawing a point at which the optimal value is high) and “exploration” (i.e.

the benefit of drawing a point in a region in which the approximation error of c is currently

large). The expected improvement function in (3.13) quantifies this trade-off, and draws a

point only in an area where one can expect the largest improvement in the optimal value,

yielding substantial computational savings.17

Second, the proposed algorithm simplifies the M-step by providing constraints and their

gradients for program (3.13) in closed form. Availability of analytical gradients greatly aids

fast and stable numerical optimization. The price is the additional approximation step. In

the numerical exercises of Section 5, this price turns out to be low.

3.3 Convergence of the E-A-M Algorithm

We now provide formal conditions under which p1θ�,L converges to the true end point of

CIn as L Ñ 8.18 Our convergence result recognizes that the parameters of the Gaussian

process prior in (3.8) are estimated for each iteration of the A-step using the “observations”

tθ`, cpθ`quL`�1, and hence change with L. Because of this, a requirement for convergence

is that cpθq is a sufficiently smooth function of θ. We show that a high-level condition

guaranteeing this level of smoothness ensures a general convergence result for the E-A-M

algorithm. This is a novel contribution to the literature on response surface methods for

constrained optimization.

In the statement of Theorem 3.1 below, HβpΘq is the reproducing kernel Hilbert space

(RKHS) on Θ � Rd determined by the kernel used to define the correlation functional in (3.9).

The norm on this space is } � }Hβ
; see Online Appendix B.2 for details. Also, the expectation

EQ is taken with respect to the law of pθp1q, � � � , θpLqq determined by the Initialization-step

and the M-step, holding the sample fixed. See Appendix A for a precise definition of EQ and

a proof of the theorem.

17It is also possible to draw multiple points in each iteration. See Schonlau, Welch, and Jones (1998).
18We build on Bull (2011), who proves a convergence result for the algorithm proposed by Jones, Schonlau,

and Welch (1998) applied to an unconstrained optimization problem in which the objective function is unknown
outside the evaluation points.

[10]



Theorem 3.1: Suppose Θ � Rd is a compact hyperrectangle with nonempty interior and

that }p} � 1. Let the evaluation points pθp1q, � � � , θpLqq be drawn according to the Initialization

and the M steps. Let Kβ in (3.9) be a Matérn kernel with index ν P p0,8q and ν R N. Let

c : Θ ÞÑ R satisfy }c}Hβ̄
¤ R for some R ¡ 0, where β̄ � pβ̄1, � � � , β̄dq1. Then

EQ
�
p1θ� � p1θ�,L�1

�Ñ 0 as LÑ8. (3.14)

Remark 3.3: The requirement that Θ is a compact hyperrectangle with nonempty inte-

rior can be replaced by a requirement that Θ belongs to the interior of a closed hyperrectangle

in Rd such that c satisfies the smoothness requirement in Theorem 3.1 on that rectangle.

In order to apply Theorem 3.1 to calibrated projection, we provide low level conditions

(Assumption B.1 in Online Appendix B.1.1) under which the map θ ÞÑ ĉnpθq uniformly

stochastically satisfies a Lipschitz-type condition. To get smoothness, we work with a mollified

version of ĉn, denoted ĉn,τn and provided in equation (B.1), with τn � opn�1{2q.19 Theorem

B.1 in the Online Appendix shows that ĉn and ĉn,τn can be made uniformly arbitrarily close

to each other and that ĉn,τn yields valid inference in the sense of equation (2.6). In practice,

one may therefore directly apply the E-A-M steps to ĉn.

Remark 3.4: The key condition imposed in Theorem B.1 is Assumption B.1. It requires

that the GMS function used is Lipschitz in its argument, and that the standardized moment

functions are Lipschitz in θ. In Online Appendix C.1 we establish that the latter condition

is satisfied by some canonical examples in the moment (in)equality literature, namely the

mean with missing data, linear regression and best linear prediction with interval data (and

discrete covariates), and entry games with multiple equilibria (and discrete covariates).20

4 Asymptotic Validity of Inference

4.1 Assumptions

We posit that P , the distribution of the observed data, belongs to a class of distributions

denoted by P. We write stochastic order relations that hold uniformly over P P P using the

notations oP and OP ; see Online Appendix D.1 for the formal definitions. Below, ε, ε, δ,

ω, σ, M , M̄ denote generic constants which may be different in different appearances but

cannot depend on P . Given a square matrix A, we write eigpAq for its smallest eigenvalue.

Assumption 4.1: (a) Θ � Rd is a compact hyperrectangle with nonempty interior.

(b) All distributions P P P satisfy the following:

19For a discussion of mollification, see e.g. Rockafellar and Wets (2005, Example 7.19)
20It can also be shown to hold in semi-parametric binary regression models with discrete or interval valued

covariates under the assumptions of Magnac and Maurin (2008).
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(i) EP rmjpXi, θqs ¤ 0, j � 1, . . . , J1 and EP rmjpXi, θqs � 0, j � J1 � 1, � � � , J1 � J2 for

some θ P Θ;

(ii) tXi, i ¥ 1u are i.i.d.;

(iii) σ2
P,jpθq P p0,8q for j � 1, � � � , J for all θ P Θ;

(iv) For some δ ¡ 0 and M P p0,8q and for all j, EP rsupθPΘ |mjpXi, θq{σP,jpθq|2�δs ¤M .

Assumption 4.2: The function ϕj is continuous at all x ¥ 0 and ϕjp0q � 0; κn Ñ 8
and κn � opn1{2q. If Assumption 4.3-(II) is imposed, κn � opn1{4q.

Assumption 4.1-(a) requires that Θ is a hyperrectangle, but can be replaced with the

assumption that θ is defined through a finite number of nonstochastic inequality constraints

smooth in θ and such that Θ is convex. Compactness is a standard assumption on Θ for

extremum estimation. We additionally require convexity as we use mean value expansions of

EP rmjpXi, θqs{σP,jpθq in θ; see (2.8). Assumption 4.1-(b) defines our moment (in)equalities

model. Assumption 4.2 constrains the GMS function and the rate at which its tuning param-

eter diverges. Both 4.1-(b) and 4.2 are based on Andrews and Soares (2010) and are standard

in the literature,21 although typically with κn � opn1{2q. The slower rate κn � opn1{4q is

satisfied for the popular choice, recommended by Andrews and Soares (2010), of κn �
?

lnn.

Next, and unlike some other papers in the literature, we impose restrictions on the cor-

relation matrix of the moment functions. These conditions can be easily verified in practice

because they are implied when the correlation matrix of the moment equality functions and

the moment inequality functions specified below have a determinant larger than a predefined

constant for any θ P Θ.

Assumption 4.3: All distributions P P P satisfy one of the following two conditions for

some constants ω ¡ 0, σ ¡ 0, ε ¡ 0, ε ¡ 0,M   8:

(I) Let J pP, θ; εq � tj P t1, � � � , J1u : EP rmjpXi, θqs{σP,jpθq ¥ �εu. Denote

m̃pXi, θq �
�tmjpXi, θqujPJ pP,θ;εq,mJ1�1pXi, θq, � � � ,mJ1�J2pXi, θq

�1
,

Ω̃P pθq � CorrP pm̃pXi, θqq.

Then infθPΘIpP q eigpΩ̃P pθqq ¥ ω.

(II) The functions mjpXi, θq are defined on Θε � tθ P Rd : dpθ,Θq ¤ εu. There exists

R1 P N, 1 ¤ R1 ¤ J1{2, and measurable functions tj : X � Θε Ñ r0,M s, j P R1 �
t1, . . . , R1u, such that for each j P R1,

mj�R1pXi, θq � �mjpXi, θq � tjpXi, θq. (4.1)

21Continuity of ϕj for x ¥ 0 is restrictive only for GMS function ϕp2q in Andrews and Soares (2010).
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For each j P R1 X J pP, θ; εq and any choice :mjpXi, θq P tmjpXi, θq,mj�R1pXi, θqu,
denoting Ω̃P pθq � CorrP pm̃pXi, θqq, where

m̃pXi, θq �
�
t :mjpXi, θqujPR1XJ pP,θ;εq,

tmjpXi, θqujPJ pP,θ;εqzt1,...,2R1u,mJ1�1pXi, θq, � � � ,mJ1�J2pXi, θq
	1
,

one has

inf
θPΘIpP q

eigpΩ̃P pθqq ¥ ω. (4.2)

Finally,

inf
θPΘIpP q

σP,jpθq ¡ σ for j � 1, . . . , R1. (4.3)

Assumption 4.3-(I) requires that the correlation matrix of the moment functions cor-

responding to close-to-binding moment conditions has eigenvalues uniformly bounded from

below. This assumption holds in many applications of interest, including: (i) instances when

the data is collected by intervals with minimum width;22 (ii) in treatment effect models

with (uniform) overlap; (iii) in static complete information entry games under weak solution

concepts, e.g. rationality of level 1, see Aradillas-Lopez and Tamer (2008).

We are aware of two examples in which Assumption 4.3-(I) may fail. One are missing

data scenarios, e.g. scalar mean, linear regression, and best linear prediction, with a vanishing

probability of missing data. The other example, which is extensively simulated in Section

5, is the Ciliberto and Tamer (2009) entry game model when the solution concept is pure

strategy Nash equilibrium. We show in Online Appendix C.2 that these examples satisfy

Assumption 4.3-(II).

Remark 4.1: Assumption 4.3-(II) weakens 4.3-(I) by allowing for (drifting to) perfect

correlation among moment inequalities that cannot cross. This assumption is often satisfied

in moment conditions that are separable in data and parameters, i.e. for each j � 1, . . . , J ,

EP rmjpXi, θqs � EP rhjpXiqs � vjpθq, (4.4)

for some measurable functions hj : X Ñ R and vj : Θ Ñ R. Models like the one in Ciliberto

and Tamer (2009) fall in this category, and we verify Assumption 4.3-(II) for them in Online

Appendix C.2. The argument can be generalized to other separable models.

22 Empirically relevant examples are that of: (a) the Occupational Employment Statistics (OES) program
at the Bureau of Labor Statistics, which collects wage data from employers as intervals of positive width, and
uses these data to construct estimates for wage and salary workers in 22 major occupational groups and 801
detailed occupations; and (b) when, due to concerns for privacy, data is reported as the number of individuals
who belong to each of a finite number of cells (for example, in public use tax data).
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In Online Appendix C.2, we also verify Assumption 4.3-(II) for some models that are

not separable in the sense of equation (4.4), for example best linear prediction with interval

outcome data. The proof can be extended to cover (again non-separable) binary models with

discrete or interval valued covariates under the assumptions of Magnac and Maurin (2008).

In what follows, we refer to pairs of inequality constraints indexed by tj, j�R1u and sat-

isfying (4.1) as “paired inequalities.” Their presence requires a modification of the bootstrap

procedure. This modification exclusively concerns the definition of Λbnpθ, ρ, cq in equation

(3.1). We explain it here for the case that the GMS function ϕj is the hard-thresholding one

in (3.3), and refer to Online Appendix E equations (E.12)-(E.13) for the general case. If

ϕjpξ̂n,jpθqq � 0 � ϕjpξ̂n,j�R1pθqq,

we replace Gb
n,j�R1

pθq with �Gb
n,jpθq and D̂n,j�R1pθq with �D̂n,jpθq, so that inequality

Gb
n,j�R1

pθq � D̂n,j�R1pθqλ ¤ c is replaced with �Gb
n,jpθq � D̂n,jpθqλ ¤ c in equation (3.1). In

words, when hard threshold GMS indicates that both paired inequalities bind, we pick one of

them, treat it as an equality, and drop the other one. In the proof of Theorem 4.1, we show

that this tightens the stochastic program.23 The rest of the procedure is unchanged.

Instead of Assumption 4.3, BCS (Assumption 2) impose the following high-level condition:

(a) The limit distribution of their profiled test statistic is continuous at its 1 � α quantile

if this quantile is positive; (b) else, their test is asymptotically valid with a critical value of

zero. In Online Appendix D.2.3, we show that we can replace Assumption 4.3 with a weaker

high level condition (Assumption D.1-I) that resembles the BCS assumption but constrains

the limiting coverage probability. (We do not claim that the conditions are equivalent.) The

substantial amount of work required for us to show that Assumption 4.3 implies Assumption

D.1-I is suggestive of how difficult these high-level conditions can be to verify.24 Moreover, in

Online Appendix F.2 we provide a simple example that violates Assumption 4.3 and in which

all of calibrated projection, BCS-profiling, and the boosttrap procedure in Pakes, Porter, Ho,

and Ishii (2011) fail. The example leverages the fact that when binding constraints are

near-perfectly correlated, the projection may be estimated superconsistently, invalidating the

simple nonparametric bootstrap.25

Together with imposition of the ρ-box constraints, Assumption 4.3 allows us to dispense

with restrictions on the local geometry of the set ΘIpP q. Restrictions of this type, which

are akin to constraint qualification conditions, are imposed by BCS (Assumption A.3-(a)),

23When paired inequalities are present, in equation (2.5) instead of σ̂n,j we use the estimator σ̂Mn,j specified
in (E.188) in Lemma E.10 p.51 of the Online Appendix for σP,j , j � 1, . . . , 2R1 (with R1 ¤ J1{2 defined in
the assumption). In equation (3.2) we use σ̂n,j for all j � 1, . . . , J . To ease notation, we do not distinguish
the two unless it is needed.

24Assumption 4.3 is used exclusively to obtain the conclusions of Lemma E.6, E.7 and E.8, hence any
alternative assumption that delivers such results can be used.

25The example we provide satisfies all assumptions explicitly stated in Pakes, Porter, Ho, and Ishii (2011),
illustrating an oversight in their Theorem 2.
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Pakes, Porter, Ho, and Ishii (2011, Assumptions A.3-A.4), Chernozhukov, Hong, and Tamer

(2007, Condition C.2), and elsewhere. In practice, they can be hard to verify or pre-test for.

We study this matter in detail in Kaido, Molinari, and Stoye (2017).

We next lay out regularity conditions on the gradients of the moments.

Assumption 4.4: All distributions P P P satisfy the following conditions:

(i) For each j, there exist DP,jp�q � ∇θtEP rmjpX, �qs{σP,jp�qu and its estimator D̂n,jp�q
such that supθPΘε }D̂n,jpθq �DP,jpθq} � oPp1q.

(ii) There exist M,M̄   8 such that for all θ, θ̃ P Θε maxj�1,��� ,J }DP,jpθq � DP,jpθ̃q} ¤
M}θ � θ̃} and maxj�1,��� ,J supθPΘIpP q }DP,jpθq} ¤ M̄ .

Assumption 4.4 requires that each of the J normalized population moments is differen-

tiable, that its derivative is Lipschitz continuous, and that this derivative can be consistently

estimated uniformly in θ and P .26 We require these conditions because we use a linear ex-

pansion of the population moments to obtain a first-order approximation to the nonlinear

programs defining CIn, and because our bootstrap procedure requires an estimator of DP .

A final set of assumptions is on the normalized empirical process. For this, define the

variance semimetric %P by

%P pθ, θ̃q �
��� �V arP �σ�1

P,jpθqmjpX, θq � σ�1
P,jpθ̃qmjpX, θ̃q

��1{2(J
j�1

���. (4.5)

For each θ, θ̃ P Θ and P , let QP pθ, θ̃q denote a J-by-J matrix whose pj, kq-th element is the

covariance between mjpXi, θq{σP,jpθq and mkpXi, θ̃qq{σP,kpθ̃q.

Assumption 4.5: All distributions P P P satisfy the following conditions:

(i) The class of functions tσ�1
P,jpθqmjp�, θq : X Ñ R, θ P Θu is measurable for each j �

1, � � � , J .

(ii) The empirical process Gn with j-th component Gn,j is uniformly asymptotically %P -

equicontinuous. That is, for any ε ¡ 0,

lim
δÓ0

lim sup
nÑ8

sup
PPP

P

�
sup

%P pθ,θ̃q δ
}Gnpθq �Gnpθ̃q} ¡ ε

�
� 0. (4.6)

(iii) QP satisfies

lim
δÓ0

sup
}pθ1,θ̃1q�pθ2,θ̃2q} δ

sup
PPP

}QP pθ1, θ̃1q �QP pθ2, θ̃2q} � 0. (4.7)

26The requirements are imposed on Θε. Under Assumption 4.3-(I) it suffices they hold on Θ.
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Under this assumption, the class of normalized moment functions is uniformly Donsker

(Bugni, Canay, and Shi, 2015). We use this fact to show validity of our method.

4.2 Theoretical Results

First set of results: Uniform asymptotic validity in the general case.

The following theorem establishes the asymptotic validity of the proposed confidence

interval CIn � r�sp�p, Cnpĉnqq, spp, Cnpĉnqqs, where spp, Cnpĉnqq was defined in equation (2.5)

and ĉn in (3.5).

Theorem 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0   α   1{2.

Then

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P pp1θ P CInq ¥ 1� α. (4.8)

A simple corollary to Theorem 4.1, whose proof is omitted, is that we can provide joint

confidence regions for several projections, in particular confidence hyperrectangles for sub-

vectors. Thus, let p1, . . . , pk denote unit vectors in Rd, k ¤ d. Then:

Corollary 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0   α   1{2.

Then,

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P pp`1θ P CIn,`, ` � 1, . . . , kq ¥ 1� α, (4.9)

where CIn,` �
�
infθPCnpĉknq p

`1θ, supθPCnpĉknq p
`1θ

�
and ĉknpθq � inftc P R� : P �pΛbnpθ, ρ, cq X

tXk`�1tp`1λ � 0uu � Hq ¥ 1� αu.

The difference in this Corollary compared to Theorem 4.1 is that ĉkn is calibrated so that

(3.4) holds for all p1, . . . , pk simultaneously.

In applications, a researcher might wish to obtain a confidence interval for a known non-

linear function f : Θ ÞÑ R. Examples include policy analysis and counterfactual estimation

in the presence of partial identification, or demand extrapolation subject to rationality con-

straints. It is possible to extend our results to uniformly continuously differentiable functions

f . Because the function f is known, the conditions on its gradient required below can be

easily verified in practice (especially if the first one is strengthened to hold over Θ).

Theorem 4.2: Let CIfn be a confidence interval whose lower and upper points are obtained

solving

inf
θPΘ

{ sup
θPΘ

fpθq s.t.
?
nm̄n,jpθq{σ̂n,jpθq ¤ ĉfnpθq, j � 1, � � � , J,
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where ĉfnpθq � inftc ¥ 0 : P �pΛbnpθ, ρ, cqXt}∇θfpθq}�1∇θfpθqλ � 0u � Hq ¥ 1�αu. Suppose

Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Suppose that there exist $ ¡ 0 and M   8
such that infPPP infθPΘIpP q }∇fpθq} ¥ $ and supθ,θ̄PΘ }∇fpθq � ∇fpθ̄q} ¤ M}θ � θ̄}, where

∇θfpθq is the gradient of fpθq. Let 0   α   1{2. Then,

lim inf
nÑ8 inf

PPP
inf

θPΘIpP q
P pfpθq P CIfnq ¥ 1� α. (4.10)

Second set of results: Simplifications for special cases.

We now consider more restrictive assumptions on the model, defining a subset of DGPs

Q � P; across theorems below, the set Q differs based on which assumptions are maintained.

If P P Q, a number of simplifications to the method, including dropping the ρ-box constraints,

are possible. Here we state the formal results and then we give a heuristic explanation of

the conditions needed for these simplifications. Online Appendix D.3.1 contains the exact

assumptions and Online Appendix D.3.2 the proofs. We remark that all of the additional

assumptions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011), hence under

their conditions Theorem 4.3 applies in its entirety.

Theorem 4.3: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0   α   1{2.

(I) If Assumption D.2-(1) holds for either p or �p (or both), then setting

CIn �
�

inf
θPCnpĉn,�pq

p1θ, sup
θPCnpĉn,pq

p1θ
�
, (4.11)

ĉn,qpθq � inftc P R� : P �pΛbnpθ, ρ, cq X tq1λ ¥ 0u � Hq ¥ 1� αu, q P tp,�pu, (4.12)

we have

lim inf
nÑ8 inf

PPQ
inf

θPΘIpP q
P pp1θ P CInq ¥ 1� α. (4.13)

(II) If Assumptions D.2-(1) (for either p or �p or both), D.3 and D.4 hold, then (4.13)

continues to be satisfied with CIn as defined in (4.11) and evaluated at ĉn,qpθq � ĉn,qpθ̂qq
for q P t�p, pu and for all θ P Θ in (4.12), where θ̂q P arg maxθPΘ̂I

q1θ and Θ̂I � tθ P
Θ : m̄n,jpθq ¤ 0, j � 1, . . . , Ju.

(III) If Assumptions D.2-(2) (for either p or �p or both) and D.5 hold, then setting ρ � �8
to obtain ĉn,qpθ̂qq in (4.12) and using these values for q P t�p, pu for each θ P Θ in

computing CIn as defined in (4.11), we have that (4.13) continues to be satisfied.

Remark 4.2: If Theorem 4.3-(II) applies and the standardized moment conditions in

(2.5) are linear in θ, then CIn can be computed by solving just two linear programs.
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Assumption D.2-(1) in Theorem 4.3-(I) ensures that some point in tp1θ, θ P ΘIpP qu is

covered with probability approaching 1. Hence, the inference problem is effectively one-

sided at the projection’s end points and degenerate in between. It then suffices to intersect

two one-sided p1 � αq-confidence intervals. Under Assumptions 4.1-4.5, Assumption D.2 is

implied both by a “degeneracy condition”in Chernozhukov, Hong, and Tamer (2007) and by

an assumption in Pakes, Porter, Ho, and Ishii (2011). A simple sufficient condition is that

there exists a parameter value at which all population constraints hold with slack.

Assumptions D.3 and D.4 in Theorem 4.3-(II) are logically independent “polynomial

minorant” conditions imposed in Chernozhukov, Hong, and Tamer (2007) and Bugni, Canay,

and Shi (2017). Jointly, they assure that the sample support set Hpp, Θ̂Iq is an “inner

consistent” estimator of the population support set Hpp,ΘIq.27 That is, any accumulation

point of a selection from Hpp, Θ̂Iq is in Hpp,ΘIq, but Hpp, Θ̂Iq may be much smaller than

Hpp,ΘIq. Then for one-sided inference, it suffices to compute ĉnpθq exactly once, namely at

one arbitrary selection θ̂ P Hpp, Θ̂Iq, and to set ĉnpθq � ĉnpθ̂q for all θ. We again remark that

these conditions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011).

Assumptions D.2-(2) and D.5 in Theorem 4.3-(III) yield that the support set is a singleton

and the tangent cone at the support set is pointy (in a uniform sense). We show that, in this

case, the ρ-box constraints can be entirely dropped. This assumption is directly imposed by

Pakes, Porter, Ho, and Ishii (2011), but we weaken it by showing that it is only needed in a

local sense; hence, it suffices that the support set consists of distinct extreme points and all

corresponding tangent cones are pointy.

Result 3: A comparison with BCS-profiling. We finally compare calibrated projection

to BCS-profiling in well behaved cases. Suppose that Theorem 4.3 applies. Then CIn is the

intersection of two one-sided confidence intervals and we can set ρ � �8. Hence, a scalar s

is in the one-sided (unbounded from below) confidence interval for p1θ if

min
p1θ�s

Tnpθq ¤ ĉnpθ̂pq, (4.14)

Tnpθq �
?
nmax

j
m̄n,jpθq{σ̂n,jpθq. (4.15)

While it was not originally constructed in this manner, this simplified confidence interval

is the lower contour set of a profiled test statistic.28 Indeed, up to an inconsequential squaring,

Tn is a special case of the statistic used in Bugni, Canay, and Shi (2017). This raises the

question of how the tests compare. In the especially regular case where all parts of Theorem

4.3 apply, and assuming that calibrated projection is implemented with the corresponding

simplifications, the answer is as follows:

27For a given unit vector p and compact set A � Rd, the support set of A is Hpp,Aq � arg maxaPA p
1a.

28By contrast, the corresponding expression without Theorem 4.3-(II) is minp1θ�stTnpθq� ĉnpθqu ¤ 0, which
is not usefully interpreted as test inversion.
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Theorem 4.4: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, D.2, D.3, D.4, D.5, and

D.6 hold. Let BCS-profiling be implemented with the criterion function in equation (4.15)

and GMS function ϕpxq � mint0, xu.29Let calibrated projection be implemented using the

simplifications from Theorem 4.3, including setting ρ � �8. If both methods furthermore

use the same κn, they are uniformly asymptotically equivalent:

lim inf
nÑ8 inf

PPQ
inf

sPrminθPΘ p1θ,maxθPΘ p1θs
P
�
1ts P CInu � 1ts P CIprofn u

	
Ñ 1,

where CIprofn denotes the confidence interval resulting from the BCS-profiling method.

Thus there is strong agreement between methods in extremely well-behaved cases.30 We

also show in Online Appendix F.1 that, in a further specialization of the above setting, finite

sample power is higher with calibrated projection. This effect is due to a conservative dis-

tortion of order 1{κn in Bugni, Canay, and Shi (2017) and therefore vanishes asymptotically;

however, due to the slow rate at which κn diverges, it can be large in samples of consider-

able size. In sum, the approaches are not ranked in terms of power in empirically relevant

examples.

4.3 Role of the ρ-box Constraints and Heuristics for Choosing ρ

When we use the bootstrap to calibrate ĉnp�q, we restrict the localization vector λ to lie in a

ρ-box; see equation (3.1). This restriction has a crucial regularization effect. Comparing (2.7)

and (3.4), it is apparent that we estimate coverage probabilities by replacing a nonlinear pro-

gram with a linear one. It is intuitive that a Karush-Kuhn-Tucker condition (with uniformly

bounded Lagrange multipliers) is needed for this to work (uniformly), and also that the lin-

earization in (2.8) should be uniformly valid. But direct imposition of a Karush-Kuhn-Tucker

condition would amount to a hard-to-verify constraint qualification. Rather than doing this,

we show that Assumption 4.3 and imposition of the ρ-box constraints jointly yield such con-

straint qualification conditions on the set Λbnpθ, ρ, cq (defined in (3.1)) with arbitrarily high

probability for n large enough, as well as uniform validity of the linearization. If one knows

(or assumes) a priori that the population (limit) counterpart of the constraint set in (2.7) is

contained in a ball with a radius bounded in probability (see Assumption D.1-II in Online

Appendix D.2.2), then ρ can be set equal to �8. The assumptions in Theorem 4.3-(III) are

sufficient for this condition to hold.31

In practice, the choice of ρ requires trading off how much conservative bias one is willing

to bear in well-behaved cases against how much finite-sample size distortion one is willing

29The restriction on the GMS function is needed only because the “penalized resampling” approximation
in BCS employs a specific “slackness function” equal to ξ̂n,j .

30This is not true for Pakes, Porter, Ho, and Ishii (2011) because they do not studentize the moment
inequalities.

31See Online Appendix D.1 for proofs of these statements.
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to bear in ill-behaved cases.32 We propose a heuristic approach to calibrate ρ focusing

on conservative bias in the well behaved cases just considered, i.e. cases such as those

characterized in Assumptions D.2, D.3, D.4, D.5 and D.6, in which the ρ-box could be

dropped. In these cases, the optimal value of each of the two programs in equation (3.4) is

distributed asymptotically normal as a linear combination of d binding inequalities. When

in fact J1 � J2 � d, constraining λ P ρBd increases the coverage probability by at most

η � 1�r1�2Φp�ρqsd. The parameter ρ can therefore be calibrated to achieve a conservative

bias of at most η. When J1 � J2 ¡ d, we propose to calibrate ρ using the benchmark

η � 1� r1� 2Φp�ρqsdpJ1�J2
d q, (4.16)

again achieving a target conservative bias (in well-behaved cases) of η. For a few numerical

examples, set η � 0.01: then J1 � J2 � 10 and d � 3 imply ρ � 4.2, whereas J1 � J2 � 100

and d � 10 imply ρ � 8.4. In the Monte Carlo experiments of Section 5, we investigate

sensitivity of calibrated projection to the choice of ρ.

5 Monte Carlo Simulations

We evaluate the statistical and numerical performance of calibrated projection and EAM in

two sets of Monte Carlo experiments run on a server with two Intel Xeon X5680 processors

rated at 3.33GHz with 6 cores each and with a memory capacity of 24Gb rated at 1333MHz.33

Both simulate a two-player entry game. The first experiment compares calibrated projec-

tion and BCS-profiling in the Monte Carlo exercise of BCS, using their code.34 The other

experiments feature a considerably more involved entry model with and without correlated

unobservables. We were unable to numerically implement BCS-profiling for this model.35

5.1 The General Entry Game Model

We consider a two player entry game based on Ciliberto and Tamer (2009):

Y2 � 0 Y2 � 1

Y1 � 0 0, 0 0, Z 1
2ζ1 � u2

Y1 � 1 Z 1
1ζ1 � u1, 0 Z 1

1pζ1 � ∆1q � u1, Z
1
2pζ2 � ∆2q � u2

Here, Y`, Z`, and u` denote player `1s binary action, observed characteristics, and unobserved

characteristics. The strategic interaction effects Z 1
`∆` ¤ 0 measure the impact of the oppo-

nent’s entry into the market. We let X � pY1, Y2, Z
1
1, Z

1
2q1. We generate Z � pZ1, Z2q as

32In Kaido, Molinari, and Stoye (2017) we provide examples of well-behaved and ill-behaved cases.
33To run the more than 120 distinct simulations reported here, we employed multiple servers. We benched

the relative speed of each and report average computation time normalized to the server just described.
34See http://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/431/1411.
35For implementations of calibrated projection with real-world data, we refer the reader to Mohapatra and

Chatterjee (2015), where d � 5, J1 � 44, and J2 � 0.
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an i.i.d. random vector taking values in a finite set whose distribution pz � P pZ � zq is

known. We let u � pu1, u2q be independent of Z and such that Corrpu1, u2q � r P r0, 1s
and V arpu`q � 1, ` � 1, 2. We let θ � pζ 11, ζ 12,∆1

1,∆
1
2, rq1. For a given set A � R2, we define

GrpAq � P pu P Aq. We choose Gr so that the c.d.f. of u is continuous, differentiable, and

has a bounded p.d.f. The outcome Y � pY1, Y2q results from pure strategy Nash equilibrium

play. For some value of Z and u, the model predicts monopoly outcomes Y � p0, 1q and p1, 0q
as multiple equilibria. When this occurs, we select outcome p0, 1q by independent Bernoulli

trials with parameter µ P r0, 1s. This gives rise to the following restrictions:

Er1tY � p0, 0qu1tZ � zus �Grpp�8,�z11ζ1q � p�8,�z12ζ2qqpz � 0 (5.1)

Er1tY � p1, 1qu1tZ � zus �Grpr�z11pζ1 �∆1q,�8q � r�z12pζ2 �∆2q,�8qqpz � 0 (5.2)

Er1tY � p0, 1qu1tZ � zus �Grpp�8,�z11pζ1 �∆1qq � r�z12ζ2,�8qqpz ¤ 0 (5.3)

�Er1tY � p0, 1qu1tZ � zus �
�
Grpp�8,�z11pζ1 �∆1qq � r�z12ζ2,�8q

�Grpr�z11ζ1,�z11pζ1 �∆1qq � r�z12ζ2,�z12pζ2 �∆2qq
�
pz ¤ 0. (5.4)

We show in Online Appendix C that this model satisfies Assumptions B.1 and 4.3-(II).36

Throughout, we analytically compute the moments’ gradients and studentize them using

sample analogs of their standard deviations.

5.2 Specific Implementations and Results

Set 1: A comparison with BCS-Profiling

BCS specialize this model as follows. First, u1, u2 are independently uniformly distributed

on r0, 1s and the researcher knows r � 0. Equality (5.1) disappears because p0, 0q is never

an equilibrium. Next, Z1 � Z2 � r1; tWkudWk�0s, where Wk are observed market type in-

dicators, ∆` � rδ`; 0dW s for ` � 1, 2, and ζ1 � ζ2 � ζ � r0; tζrksudWk�0s.37 The parameter

vector is θ � rδ1; δ2; ζs with parameter space Θ � tθ P R2�dW : pδ1, δ2q P r0, 1s2, ζk P
r0,mintδ1, δ2us, k � 1, . . . , dW u. This leaves 4 moment equalities and 8 moment inequali-

ties (so J � 16); compare equation (5.1) in BCS. We set dW � 3, P pWk � 1q � 1{4, k �
0, 1, 2, 3, θ � r0.4; 0.6; 0.1; 0.2; 0.3s, and µ � 0.6. The implied true bounds on parameters are

δ1 P r0.3872, 0.4239s, δ2 P r0.5834, 0.6084s, ζr1s P r0.0996, 0.1006s, ζr2s P r0.1994, 0.2010s, and

ζr3s P r0.2992, 0.3014s.
The BCS-profiling confidence interval CIprofn inverts a test of H0 : p1θ � s0 over a grid for

s0. We do not in practice exhaust the grid but search inward from the extreme points of Θ in

directions �p. At each s0 that is visited, we compute (the square of) a profiled test statistic

36The specialization in which we compare to BCS also fulfils their assumptions. The assumptions in Pakes,
Porter, Ho, and Ishii (2011) exclude any DGP that has moment equalities.

37This allows for market-type homogeneous fixed effects but not for player-specific covariates nor for observed
heterogeneity in interaction effects.
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minp1θ�s0 Tnpθq; see equations (4.14)-(4.15) above. The corresponding critical value ĉprofn ps0q
is a quantile of the minimum of two distinct bootstrap approximations, each of which solves

a nonlinear program for each bootstrap draw. Computational cost quickly increases with

grid resolution, bootstrap size, and the number of starting points used to solve the nonlinear

programs.

Calibrated projection computes ĉnpθq by solving a series of linear programs for each

bootstrap draw.38 It computes the extreme points of CIn by solving NLP (2.5) twice, a task

that is much accelerated by the E-A-M algorithm. Projection of Andrews and Soares (2010)

operates very similarly but computes its critical value ĉprojn pθq through bootstrap simulation

without any optimization.

We align grid resolution in BCS-profiling with the E-A-M algorithm’s convergence thresh-

old of 0.005.39 We run all methods with B � 301 bootstrap draws, and calibrated and

“uncalibrated” (i.e., based on Andrews and Soares (2010)) projection also with B � 1001.40

Some other choices differ: BCS-profiling is implemented with their own choice to multi-start

the nonlinear programs at 3 oracle starting points, i.e. using knowledge of the true DGP;

our implementation of both other methods multi-starts the nonlinear programs from 30 data

dependent random points (see Kaido, Molinari, Stoye, and Thirkettle (2017) for details).

Table 1 displays results for pδ1, δ2q and for 300 Monte Carlo repetitions of all three meth-

ods. All confidence intervals are conservative, reflecting the effect of GMS. As expected,

uncalibrated projection is most conservative, with coverage of essentially 1. Also, BCS-

profiling is more conservative than calibrated projection. We suspect this relates to the

conservative effect highlighted in Online Appendix F.1. The most striking contrast is in com-

putational effort, where uncalibrated projection is fastest but calibrated projection also beats

BCS-profiling by a factor of about 78. There are two effects at work here: First, because

the calibrated projection bootstrap iterates over linear programs, it is much faster than the

BCS-profiling one. Second, both uncalibrated projection and calibrated projection confidence

intervals were computed using the E-A-M algorithm. Indeed, the computation times reported

for uncalibrated projection indicate that, in contrast to received wisdom, this procedure is

computationally somewhat easy. This is due to the E-A-M algorithm and therefore part of

this paper’s contribution.

Table 2 extends the analysis to all components of θ and to 1000 Monte Carlo repetitions.

We were unable to compute this or any of the next tables for BCS-profiling.

Set 2: Heterogeneous interaction effects and potentially correlated errors

38We implement this step using the high-speed solver CVXGEN, available from http://cvxgen.com and
described in Mattingley and Boyd (2012).

39This is only one of several individually necessary stopping criteria. Others include that the current
optimum θ�,L and the expected improvement maximizer θL�1 (see equation (3.13)) satisfy |p1pθL�1�θ�,Lq| ¤
0.005. See Kaido, Molinari, Stoye, and Thirkettle (2017) for the full list of convergence requirements.

40Based on some trial runs of BCS-profiling for δ1, we estimate that running it with B � 1001 throughout
would take 3.14-times longer than the computation times reported in Table 1. By comparison, calibrated
projection takes only 1.75-times longer when implemented with B � 1001 instead of B � 301.
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In our second set of experiments, we let u � pu1, u2q be bivariate Normal with (nondegen-

erate) correlation r, so all outcomes have positive probability. We let Z include a constant

and a player specific, binary covariate, so Z1 P tp1,�1q, p1, 1qu and Z2 P tp1,�1q, p1, 1qu. This

implies J1 � J2 � 8, hence J � 24. The marginal distribution of pZr2s
1 , Z

r2s
2 q is multinomial

with weights p0.1, 0.2, 0.3, 0.4q on pp�1,�1q, p�1, 1q, p1,�1q, p1, 1qq.
In our Set 2-DGP1, we set ζ1 � p.5, .25q1, ∆1 � p�1,�1q1, and r � 0. Set 2-DGP2 differs

by setting ∆1 � p�1,�.75q1. In both cases, pζ2,∆2q � pζ1,∆1q and µ � 0.5; we only report

results for pζ1,∆1q. Although parameter values are similar, there is a qualitative difference:

In DGP1, parameters are point identified; in DGP2, they are not but the true bounds (ζ
r1s
1 P

r0.405, 0.589s, ζr2s1 P r0.236, 0.266s, ∆
r1s
1 P r�1.158,�0.832s, ∆

r2s
1 P r�0.790,�0.716s) are not

wide compared to sampling uncertainty. We therefore expect all methods that use GMS to

be conservative in DGP2.41 In both Set 2-DGP1& DGP2 we use knowledge that r � 0, so

that d � 8. Our Set 2-DGP3 preserves the same payoff parameters values as in Set 2-DGP2

but sets r � 0.5 and this parameter is also unknown, so that d � 9.

Within Set 2-DGP2, we also experiment with the sensitivity of coverage probability and

length of CIn to the choice of ρ and κn. We consider choices of ρ that are (1) very large or

“liberal”, so that in well behaved cases the ρ-box constraints induce an amount η of over-

coverage in CIn smaller than machine precision (see equation (4.16)); (2) “default”, so that

η � 0.01; (3) small or “conservative”, so that η � 0.025. For κn, we have experimented with

a “conservative” choice κn � n1{7, and a “liberal” choice κn �
?

ln lnn, while out “default”

is κn �
?

lnn.

Results are reported in Tables 3 through 7. An interesting feature of Table 3 is that

in this (point identified) DGP, calibrated projection is not conservative at all. This pre-

sumably reflects an absence of near-binding inequalities. Conservative bias is larger in the

partially identified Set 2-DGP2 in Table 4. For these two tables, we do note the increased

computational advantage of uncalibrated projection over calibrated projection. This advan-

tage is bound to increase as DGP’s, and therefore the linear programs iterated over in the

bootstrap, become more complex. Table 5 shows that allowing for correlation of the errors

does not change the results much in terms of the confidence intervals’ length and coverage

probabilities. However, due to the repeated evaluation of the bivariate normal CDFs, both

calibrated and uncalibrated projection have higher computational time than the case with

r � 0. Another feature to note is that both confidence intervals for r tend to be wide although

the projection of ΘI is short, which suggests that this component may be weakly identified.

Table 6 examines the effect of varying the tuning parameter ρ. Increasing ρ necessarily

(weakly) decreases length and also coverage of intervals, and this effect is evident in the

table but is arguably small. This is even more the case for the GMS tuning parameter

κn. Numerically, for n � 4000, the values explored in the table are rather different at

41We also note that this is a case where non-uniform methods may severely undercover in finite sample.
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40001{7 � 3.27 and
a

lnplnp4000qq � 1.45, but the effect on inference is very limited, see

Table 7. Indeed, differences in coverage are so small that reported results are occasionally

slightly nonmonotonic, reflecting numerical and simulation noise.

6 Conclusions

This paper introduces a computationally attractive confidence interval for linear functions of

parameter vectors that are partially identified through finitely many moment (in)equalities.

The extreme points of our calibrated projection confidence interval are obtained by minimizing

and maximizing p1θ subject to properly relaxed sample analogs of the moment conditions.

The relaxation amount, or critical level, is computed to insure uniform asymptotic coverage

of p1θ rather than θ itself. Its calibration is computationally attractive because it is based on

repeatedly checking feasibility of (bootstrap) linear programming problems. Computation of

the extreme points of the confidence intervals is also computationally attractive thanks to an

application, novel to this paper, of the response surface method for global optimization that

is of independent interest in the partial identification literature. Indeed, a key contribution

of the paper is to establish convergence of this algorithm.

Our Monte Carlo analysis shows that, in the DGPs that we considered, calibrated pro-

jection is fast and accurate: Computation of the confidence intervals is orders of magnitude

faster than for the main alternative to our method, a profiling-based procedure due to Bugni,

Canay, and Shi (2017). The class of DGPs over which we can establish uniform validity of our

procedure is non-nested with corresponding class for the alternative method. Important cases

covered here but not elsewhere include linear functions of best linear predictor parameters

with interval valued outcomes and discrete covariates. The price to pay for this generality is

the use of one additional (non-drifting) tuning parameter. We provide conditions under which

this parameter can be eliminated and compare the power properties of calibrated projection

and BCS-profiling. The false coverage properties of the two methods are non-ranked but are

asymptotically the same in very well-behaved cases. We establish considerable finite sample

advantage in a specific case.

Similarly to confidence regions proposed in Andrews and Soares (2010), Bugni, Canay,

and Shi (2017), Stoye (2009), and elsewhere, our confidence interval can be empty, namely if

sample violations of moment inequalities exceed ĉnpθq at each θ. This event can be interpreted

as rejection of maintained assumptions. See Stoye (2009) and especially Andrews and Soares

(2010) for further discussion and Bugni, Canay, and Shi (2015) for a paper that focuses on

this interpretation and improves on ĉprojn for the purpose of specification testing. We leave a

detailed analysis of our implied specification test to future research.
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A Convergence of the E-A-M Algorithm

In this appendix, we provide details on the algorithm used to solve the outer maximization problem

as described in Section 3.2. Below, let pΩ,Fq be a measurable space and ω a generic element of Ω. Let

L P N and let pθp1q, � � � , θpLqq be a measurable map on pΩ,Fq whose law is specified below. The value

of the function c in (3.6) is unknown ex ante. Once the evaluation points θp`q, ` � 1, � � � , L realize,

the corresponding values of c, i.e. Υp`q � cpθp`qq, ` � 1, � � � , L, are known. We may therefore define

the information set

FL � σpθp`q,Υp`q, ` � 1, � � � , Lq. (A.1)

We note that θ�,L � argmaxθPCLp
1θ is measurable with respect to FL.

Our algorithm iteratively determines evaluation points based on the expected improvement (Jones,

Schonlau, and Welch, 1998). For this, we formally introduce a model that describes the uncertainty

associated with the values of c outside the current evaluation points. Specifically, the unknown function

c is modeled as a Gaussian process such that42

Ercpθqs � µ, Covpcpθq, cpθ1qq � ς2Kβpθ � θ1q, (A.2)

where β � pβ1, � � � , βdq P Rd controls the length-scales of the process. Two values cpθq and cpθ1q are

highly correlated when θk� θ1k is small relative to βk. Throughout, we assume β
k
¤ βk ¤ βk for some

0   β
k
  βk   8 for k � 1, � � � , d. We let β̄ � pβ̄1, � � � , β̄dq1 P Rd. Specific suggestions on the forms

of Kβ are given in Appendix B.2.

For a given pµ, ς, βq, the posterior distribution of c given FL is then another Gaussian process

whose mean cLp�q and variance ς2s2
Lp�q are given as follows (Santner, Williams, and Notz, 2013, Section

4.1.3):

cLpθq � µ� rLpθq1R�1
L pΥ� µ1q (A.3)

ς2s2
Lpθq � ς2

�
1 � rLpθq1R�1

L rLpθq � p1 � 11R�1
L rLpθqq2

11R�1
L 1

	
. (A.4)

Given this, the expected improvement function can be written as

EILpθq � Erpp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu|FLs
� pp1θ � p1θ�,Lq�Ppcpθq ¥ max

j�1,��� ,J
gjpθq|FLq

� pp1θ � p1θ�,Lq�P
�
cpθq � cLpθq
ςsLpθq ¥ maxj�1,��� ,J gjpθq � cLpθq

ςsLpθq



� pp1θ � p1θ�,Lq�
�

1 � Φ
� ḡpθq � cLpθq

ςsLpθq
		
, (A.5)

The evaluation points pθp1q, � � � , θpLqq are then generated according to the following algorithm (M-step

in Section 3.2).

42We use P and E to denote the probability and expectation for the prior and posterior distributions of c
to distinguish them from P and E used for the sampling uncertainty for Xi.
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Algorithm A.1: Let k P N.

Step 1: Initial evaluation points θp1q, � � � , θpkq are drawn randomly independent of c.

Step 2: For L ¥ k, with probability 1 � ε, let θpL�1q � argmaxθPΘEILpθq. With probability ε, draw

θpL�1q uniformly at random from Θ.

Below, we use Q to denote the law of pθp1q, � � � , θpLqq determined by the algorithm above. We also

note that θ�,L�1 � arg maxθPCL�1 p1θ is a function of the evaluation points and therefore is a random

variable whose law is governed by Q.

A.1 Proof of Theorem 3.1

Proof. We adopt the method used in the proof of Theorem 5 in Bull (2011), who proves a convergence

result for an unconstrained optimization problem in which the objective function is unknown outside

the evaluation points.

Below, we let L ¥ 2k. Let 0   ν   8. Let 0   η   ε and AL P F be the event that at least

tηLu of the points θpk�1q, � � � , θpLq are drawn independently from a uniform distribution on Θ. Let

BL P F be the event that one of the points θpL�1q, � � � , θp2Lq is chosen by maximizing the expected

improvement. For each L, define the mesh norm:

hL � sup
θPΘ

min
`�1,���L

}θ � θp`q}. (A.6)

For a given M̄ ¡ 0, let CL P F be the event that hL ¤ M̄pL{ lnLq�1{d. We then let

DL � AL XBL X CL. (A.7)

On DL, the following results hold. First, let βL be the estimated parameter. Noting that there

are tηLu uniformly sampled points and arguing as in (A.24)-(A.25), it follows that

sup
θPΘ

sLpθ;βLq ¤MrL, (A.8)

for some constant M ¡ 0 by ω P CL, and rL is defined by

rL � pL{ lnLq�ν{d. (A.9)

For later use, we note that, for any L ¥ 2,

rL�1{rL �
� L

L� 1

�ν{d� lnpL� 1q
lnL

�ν{d ¤ 2ν{d. (A.10)

Second, by ω P BL, there is ` such that L ¤ ` ¤ 2L and θp`q is chosen by maximizing the expected

improvement. For θ P Θ and L P N, let ILpθq � pp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu. Recall that θ� is an
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optimal solution to (3.6). [HK: Below I changed all θ�` to θ�,`.] Then,

p1θ� � p1θ�,`�1 p1q� I`�1pθ�q
p2q
¤ EI`�1pθ�q

�
1 � Φ

�R
ς

���1

p3q
¤ EI`�1pθp`qq

�
1 � Φ

�R
ς

���1

p4q
¤
�
I`�1pθp`qq �M1s`�1pθp`qq expp�M2s`�1pθp`qq�2q

	�
1 � Φ

�R
ς

���1

p5q
¤
�
I`�1pθp`qq �MM1r`�1 expp�M�2M2r

�2
`�1q

	�
1 � Φ

�R
ς

���1

p6q
¤
�
I`�1pθp`qq � 2ν{dMM1r` expp�p2ν{dMq�2M2r

�2
` q

	�
1 � Φ

�R
ς

���1

�
�
pp1θp`q � p1θ�,`�1q1tḡpθp`qq ¤ cpθp`qqu � 2ν{dMM1r` expp�p2ν{dMq�2M2r

�2
` q

	�
1 � Φ

�R
ς

���1

p7q
¤
�
pp1θ�,` � p1θ�,`�1q � 2ν{dMM1r` expp�p2ν{dMq�2M2r

�2
` q

	�
1 � Φ

�R
ς

���1

p8q
¤
�
h` � 2ν{dMM1r` expp�p2ν{dMq�2M2r

�2
` q

	�
1 � Φ

�R
ς

���1
, (A.11)

where (1) follows by construction, (2) follows from Lemma A.1 (ii), (3) follows from θp`q being the

maximizer of the expected improvement, (4) follows from Lemma A.1 (i), (5) follows from (A.8), (6)

follows from r`�1 ¤ 2ν{dr` for ` ¥ 2 by (A.10), (7) follows from θ�,` � argmaxθPC`p
1θ, (8) follows from

p1θ�,` � p1θ�,`�1 being dominated by the mesh-norm. Therefore, by ω P CL, there exists a constant

M ¡ 0 such that

p1θ� � p1θ�,`�1 ¤
�
Mp`{ ln `q�1{d �Mr` expp�Mr�2

` q
	�

1 � Φ
�R
ς

���1
. (A.12)

Since L ¤ ` ¤ 2L, p1θ�,L is non-decreasing in L, and rL is non-increasing in L, we have

p1θ� � p1θ�,2L ¤
�
MpL{ lnLq�1{d �MrL expp�Mr�2

L q
	�

1 � Φ
�R
ς

���1

� Opp2L{ ln 2Lq�1{dq �Opr2L expp�Mr�2
2L qq, (A.13)

where the last equality follows from the existence of a positive constant C such that rL � Cr2L and

redefining multiplying constants properly.

Now consider the case ω R DL. By (A.7),

QpDc
Lq ¤ QpAcLq �QpBcLq �QpCcLq. (A.14)

Let Z` be a Bernoulli random variable such that Z` � 1 if θp`q is randomly drawn from a uniform

distribution. Then, by the Chernoff bounds (see e.g. Boucheron, Lugosi, and Massart, 2013, p.48),

QpAcLq � Qp
Ļ

`�k�1

Z`   tηLuq ¤ expp�pL� k � 1qεpε� ηq2{2q. (A.15)

[27]



Further, by the definition of BL,

QpBcLq � εL, (A.16)

and finally by taking M̄ large upon defining the event CL and applying Lemma 4 in Bull (2011), one

has

QpCcLq � OppL{ lnLq�γq, (A.17)

for any γ ¡ 0. Combining (A.14)-(A.17), for any γ ¡ 0,

QpDc
Lq � OppL{ lnLq�γq. (A.18)

Finally, noting that p1θ� � p1θ�,2L is bounded by some constant M ¡ 0 due to the boundedness of Θ,

we have

EQ
�
p1θ� � p1θ�,2L

� �
»
DL

p1θ� � p1θ�,2LdQ�
»
DcL

p1θ� � p1θ�,2LdQ

� Opp2L{ ln 2Lq�1{dq �Opr2L expp�Mr�2
2L qq �Opp2L{ ln 2Lq�γq � op1q, (A.19)

where the second equality follows from (A.13) and (A.18). This completes the proof.

The following lemma is an analog of Lemma 8 in Bull (2011), which links the expected improvement

to the actual improvement achieved by a new evaluation point θ.

Lemma A.1: Suppose Θ � Rd is bounded and p P Sd�1. Suppose the evaluation points pθp1q, � � � , θpLqq
are drawn by Algorithm A.1 and }c}Hβ̄

¤ R for some R ¡ 0. For θ P Θ and L P N, let ILpθq �
pp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu. Then, (i) there exist constants Mj ¡ 0, j � 1, 2 that only depend on

pς, Rq and an integer L̄ P N such that

EILpθq ¤ ILpθq �M1sLpθq expp�M2s
�2
L pθqq (A.20)

for all L ¥ L̄. Further, (ii) for any L P N and θ P Θ,

ILpθq ¤ EILpθq
�

1 � Φ
�R
ς

		�1

. (A.21)

Proof of Lemma A.1. (i) If sLpθq � 0, then the posterior variance of cpθq is zero. Hence, EILpθq �
ILpθq, and the claim of the lemma holds.

For sLpθq ¡ 0, we first show the upper bound. Let u � pḡpθq � cLpθqq{sLpθq and t � pḡpθq �
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cpθqq{sLpθq. By Lemma 6 in Bull (2011), we have |u� t| ¤ R. Since 1 � Φp�q is decreasing, we have

EILpθq � pp1θ � p1θ�,Lq�
�

1 � Φ
�u
ς

		

¤ pp1θ � p1θ�,Lq�
�

1 � Φ
� t�R

ς

		

� pp1θ � p1θ�,Lq�p1tḡpθq ¤ cpθqu � 1tḡpθq ¡ cpθquq
�

1 � Φ
� t�R

ς

		

¤ ILpθq � pp1θ � p1θ�,Lq�1tḡpθq ¡ cpθqu
�

1 � Φ
� t�R

ς

		
, (A.22)

where the last inequality used 1 � Φpxq ¤ 1 for any x P R. Note that one may write

1tḡpθq ¡ cpθqu
�

1 � Φ
� t�R

ς

		
� 1tḡpθq ¡ cpθqu

�
1 � Φ

� ḡpθq � cpθq � sLpθqR
ςsLpθq

		
. (A.23)

Below we assume ḡpθq ¡ cpθq because otherwise, the expression above is 0, and the claim holds. To

be clear about the parameter value at which we evaluate sL, we will write sLpθ;βq. By the hypothesis

that }c}Hβ̄
¤ R and Lemma 4 in Bull (2011), we have

}c}HβL
¤ S, (A.24)

where S � R2
±d
k�1pβk{βkq. Note that there are tηLu uniformly sampled points, and Kβ is associated

with index ν P p0,8q, ν R N. By Corollary 6.4 in Narcowich, Ward, and Wendland (2003),

sup
θPΘ

sLpθ;βq � OpMpβqhνLq, (A.25)

uniformly in β, where hL � supθPΘ min`�1,���L }θ� θp`q} and β ÞÑMpβq is a continuous function (note

that the exponent ν in our notation matches matches pk� νq{2 in theirs). Hence, sLpθq � op1q. This,

together with ḡpθq ¡ cpθq, implies that there are a constant M and L̄ P N such that

0  M   pḡpθq � cpθq � sLpθqRq{ς, @L ¥ L̄. (A.26)

Therefore, again by the fact that 1 � Φp�q is decreasing, one obtains

1tḡpθq ¡ cpθqu
�

1 � Φ
� ḡpθq � cpθq � sLpθqR

ςsLpθq
		

¤
�

1 � Φ
� M

sLpθq
		

¤ sLpθq
M

φ
� M

sLpθq
	
, (A.27)

where φ is the density of the standard normal distribution, and the last inequality follows from

1� Φpxq ¤ φpxq{x, which is due to Gordon (1941). The claim on the upper bound then follows from

(A.22), pp1θ � p1θ�,Lq ¤M for some M ¡ 0 due to Θ being bounded, and (A.27).
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(ii) For the lower bound in (A.21), we have

EILpθq ¥ pp1θ � p1θ�,Lq�
�

1 � Φ
� t�R

ς

		

� pp1θ � p1θ�,Lq�1tḡpθq ¤ cpθqu
�

1 � Φ
� t�R

ς

		

¥ ILpθq
�

1 � Φ
�R
ς

		
, (A.28)

where the last inequality follows from t � pḡpθq � cpθqq{sLpθq ¤ 0 and the fact that 1 � Φp�q is

decreasing.
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Tables

Table 1: Results for Set 1 with n � 4000, MCs � 300, B � 301, ρ � 5.04, κn �
?

lnn.

1 � α
Median CI CIprofn Coverage CIn Coverage CIprojn Coverage Average Time

CIprofn CIn CIprojn Lower Upper Lower Upper Lower Upper CIprofn CIn CIprojn

δ1 � 0.4
0.95 [0.330,0.495] [0.336,0.482] [0.290,0.557] 0.997 0.990 0.993 0.973 1 1 1858.42 22.86 13.82
0.90 [0.340,0.485] [0.342,0.474] [0.298,0.543] 0.990 0.980 0.980 0.963 1 1 1873.23 22.26 15.81
0.85 [0.345,0.475] [0.348,0.466] [0.303,0.536] 0.970 0.970 0.960 0.937 1 1 1907.84 23.00 13.98

δ2 � 0.6
0.95 [0.515,0.655] [0.518,0.650] [0.461,0.682] 0.987 0.993 0.980 0.987 1 1 1753.54 23.84 19.10
0.90 [0.525,0.647] [0.533,0.643] [0.473,0.675] 0.977 0.973 0.957 0.953 1 1 1782.91 24.45 17.16
0.85 [0.530,0.640] [0.540,0.639] [0.481,0.670] 0.967 0.957 0.943 0.923 1 1 1809.65 23.38 17.33

Notes: (1) Projections of ΘI are: δ1 P r0.3872, 0.4239s, δ2 P r0.5834, 0.6084s, ζ1 P r0.0996, 0.1006s, ζ2 P r0.1994, 0.2010s, ζ3 P r0.2992, 0.3014s. (2) “Upper” coverage
is for maxθPΘI pP q p

1θ, and similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4) CIprofn results from
BCS-profiling, CIn is calibrated projection, and CIprojn is uncalibrated projection.

Table 2: Results for Set 1 with n � 4000, MCs � 1000, B � 1001, ρ � 5.04, κn �
?

lnn.

1 � α
Median CI CIn Coverage CIprojn Coverage Average Time

CIn CIprojn Lower Upper Lower Upper CIn CIprojn

δ1 � 0.4
0.95 [0.333,0.479] [0.288,0.555] 0.990 0.979 1 1 42.35 15.79
0.90 [0.342,0.470] [0.296,0.542] 0.978 0.957 1 1 41.13 11.60
0.85 [0.347,0.464] [0.302,0.534] 0.960 0.942 1 1 39.91 15.36

δ2 � 0.6
0.95 [0.526,0.653] [0.466,0.683] 0.969 0.978 1 1 41.40 24.30
0.90 [0.538,0.646] [0.478,0.677] 0.948 0.959 1 0.999 41.39 32.78
0.85 [0.545,0.642] [0.485,0.672] 0.925 0.941 1 1 38.49 31.55

ζr1s � 0.1
0.95 [0.054,0.143] [0.020,0.179] 0.951 0.952 1 1 35.57 20.80
0.90 [0.060,0.137] [0.028,0.171] 0.916 0.916 0.998 0.998 38.42 28.07
0.85 [0.064,0.132] [0.033,0.166] 0.868 0.863 0.998 0.998 38.63 28.77

ζr2s � 0.2
0.95 [0.156,0.245] [0.120,0.281] 0.950 0.949 1 1 35.99 18.07
0.90 [0.162,0.238] [0.128,0.273] 0.910 0.908 0.999 0.998 33.29 23.13
0.85 [0.166,0.235] [0.133,0.268] 0.869 0.863 0.995 0.995 33.76 17.33

ζr3s � 0.3
0.95 [0.257,0.344] [0.222,0.379] 0.945 0.944 1 1 39.92 31.27
0.90 [0.262,0.337] [0.230,0.371] 0.896 0.900 0.998 0.998 43.37 29.17
0.85 [0.266,0.333] [0.235,0.366] 0.866 0.863 0.995 0.995 43.60 26.99

Notes: Same DGP and conventions as in Table 1.

[31
]



Table 3: Results for Set 2-DGP1, Corrpu1, u2q � 0, n � 4000, MCs � 1000, ρ � 6.02, κn �
?

lnn.

1 � α
Median CI Coverage Average Time

CIn CIprojn CIn CIprojn CIn CIprojn

ζ
r1s
1 � 0.50

0.95 [0.355,0.715] [0.127,0.938] 0.948 1 82.34 23.56
0.90 [0.374,0.687] [0.172,0.902] 0.902 0.999 84.33 21.61
0.85 [0.387,0.669] [0.200,0.878] 0.856 0.996 87.33 22.31

ζ
r2s
1 � 0.25

0.95 [0.115,0.354] [0.003,0.488] 0.954 0.998 103.58 32.63
0.90 [0.132,0.340] [0.024,0.464] 0.904 0.996 106.20 26.52
0.85 [0.142,0.330] [0.040,0.448] 0.848 0.996 110.10 32.01

∆
r1s
1 � �1

0.95 [-1.321,-0.716] [-1.712,-0.296] 0.946 1 88.21 22.11
0.90 [-1.284,-0.755] [-1.647,-0.368] 0.895 0.999 94.38 22.65
0.85 [-1.259,-0.778] [-1.611,-0.416] 0.849 0.997 92.77 27.52

∆
r2s
1 � �1

0.95 [-1.179,-0.791] [-1.443,0.500] 0.950 1 96.97 27.31
0.90 [-1.153,-0.814] [-1.398,-0.544] 0.891 0.999 98.69 25.13
0.85 [-1.136,-0.832] [-1.370,-0.575] 0.853 0.999 102.16 25.11

Table notes: (1) ΘI is a singleton in this DGP. (2) B � 1001 bootstrap draws. (3) “Average time” is computation time in
seconds averaged over MC replications. (4) CIn is calibrated projection and CIprojn is uncalibrated projection.

Table 4: Results for Set 2-DGP2, Corrpu1, u2q � 0, n � 4000, MCs � 1000, ρ � 6.02, κn �
?

lnn.

1 � α
Median CI CIn Coverage CIprojn Coverage Average Time

CIn CIprojn Lower Upper Lower Upper CIn CIprojn

ζ
r1s
1 � 0.50

0.95 [0.249,0.790] [-0.007,1.004] 0.954 0.971 0.999 1 85.76 50.10
0.90 [0.271,0.765] [0.038,0.969] 0.918 0.941 0.998 1 91.47 50.51
0.85 [0.287,0.750] [0.067,0.948] 0.883 0.919 0.999 1 91.39 61.10

ζ
r2s
1 � 0.25

0.95 [0.112,0.376] [0.009,0.523] 0.969 0.963 0.998 1 94.09 36.46
0.90 [0.128,0.359] [0.025,0.498] 0.938 0.927 0.997 0.999 93.26 52.80
0.85 [0.138,0.348] [0.038,0.489] 0.909 0.891 0.998 0.996 95.68 61.25

∆
r1s
1 � �1

0.95 [-1.467,-0.497] [-1.869,-0.003] 0.960 0.967 0.999 0.999 82.54 27.25
0.90 [-1.432,-0.544] [-1.806,-0.091] 0.932 0.939 1 0.999 89.97 28.63
0.85 [-1.408,-0.571] [-1.766,-0.146] 0.901 0.902 1 0.999 91.72 28.38

∆
r2s
1 � �0.75

0.95 [-0.979,-0.514] [-1.276,-0.237] 0.973 0.969 1 1 97.75 32.09
0.90 [-0.953,-0.539] [-1.226,-0.282] 0.941 0.940 1 1 95.86 27.34
0.85 [-0.936,-0.556] [-1.194,-0.312] 0.916 0.917 1 0.999 104.52 31.15

Notes: (1) Projections of ΘI are: ζ
r1s
1 P r0.405, 0.589s; ζr2s1 P r0.236, 0.266s; ∆

r1s
1 P r�1.158,�0.832s; ∆

r2s
1 P r�0.790,�0.716s.

(2) “Upper” coverage refers to coverage of maxtp1θ : θ P ΘIpP qu, and similarly for “Lower”. (3) “Average time” is
computation time in seconds averaged over MC replications. (4) B � 1001 bootstrap draws. (5) CIn is calibrated projection
and CIprojn is uncalibrated projection.
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Table 5: Results for Set 2-DGP3, Corrpu1, u2q � 0.5, n � 4000, MCs � 1000, ρ � 6.02, κn �
?

lnn.

1 � α
Median CI CIn Coverage CIprojn Coverage Average Time

CIn CIprojn Lower Upper Lower Upper CIn CIprojn

ζ
r1s
1 � 0.50

0.95 [0.196,0.895] [-0.043,1.053] 0.978 0.978 0.996 0.995 561.66 163.42
0.90 [0.224,0.864] [-0.009,1.009] 0.958 0.966 0.993 0.984 583.80 163.42
0.85 [0.244,0.844] [0.015,1.000] 0.945 0.945 0.989 0.972 562.05 99.90

ζ
r2s
1 � 0.25

0.95 [0.099,0.436] [0.001,0.586] 0.974 0.969 0.997 0.996 626.00 245.39
0.90 [0.115,0.417] [0.016,0.583] 0.951 0.950 0.997 0.997 597.29 206.35
0.85 [0.126,0.404] [0.031,0.564] 0.939 0.941 0.993 0.994 681.24 234.50

∆
r1s
1 � �1

0.95 [-1.664,-0.372] [-1.956,-0.000] 0.957 0.962 0.986 0.993 578.63 156.00
0.90 [-1.609,-0.441] [-1.929,-0.000] 0.939 0.930 0.986 0.996 594.27 145.85
0.85 [-1.568,-0.490] [-1.912,-0.000] 0.909 0.916 0.986 0.994 638.16 132.73

∆
r2s
1 � �0.75

0.95 [-1.065,-0.504] [-1.312,-0.1938] 0.956 0.955 0.994 0.995 559.10 214.71
0.90 [-1.037,-0.525] [-1.286,-0.241] 0.940 0.947 0.994 0.997 553.53 128.71
0.85 [-1.021,-0.542] [-1.276,-0.266] 0.918 0.928 0.989 0.998 645.54 129.67

r � 0.5
0.95 [0.000,0.830] [0.000,0.925] 0.968 0.968 0.995 0.995 269.98 42.66
0.90 [0.000,0.802] [0.000,0.925] 0.935 0.935 0.994 0.995 308.58 47.55
0.85 [0.042,0.784] [0.000,0.925] 0.897 0.897 0.995 0.995 334.43 49.54

Notes: (1) Projections of ΘI are: ζ
r1s
1 P r0.465, 0.533s; ζr2s1 P r0.240, 0.261s; ∆

r1s
1 P r�1.069,�0.927s; ∆

r2s
1 P

r�0.782,�0.720s; r P r0.4998, 0.5000s. (2) “Upper” coverage refers to coverage of maxtp1θ : θ P ΘIpP qu, and
similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4)
B � 1001 bootstrap draws. (5) CIn is calibrated projection and CIprojn is uncalibrated projection.
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Table 6: Results for Set 2-DGP2, Corrpu1, u2q � 0, n � 4000, MCs � 1000, varying ρ, κn �
?

lnn.

1 � α
Median CIn CIn Coverage Average Time

ρ � 5.87 ρ � 10 ρ � 5.87 ρ � 10 ρ � 5.87 ρ � 10
Lower Upper Lower Upper

ζ
r1s
1 � 0.50

0.95 [0.248,0.790] [0.254,0.776] 0.959 0.971 0.947 0.962 116.19 104.14
0.90 [0.271,0.766] [0.275,0.754] 0.921 0.939 0.908 0.925 121.24 115.65
0.85 [0.286,0.749] [0.289,0.738] 0.888 0.916 0.868 0.895 115.41 112.38

∆
r1s
1 � �1

0.95 [-1.471,-0.498] [-1.454,-0.512] 0.964 0.965 0.955 0.959 104.34 108.77
0.90 [-1.434,-0.543] [-1.418,-0.555] 0.933 0.940 0.927 0.924 113.63 114.74
0.85 [-1.410,-0.571] [-1.394,-0.583] 0.904 0.905 0.887 0.895 114.23 119.55

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated
projection CIn.

Table 7: Results for Set 2-DGP2, Corrpu1, u2q � 0, n � 4000, MCs � 1000, ρ � 6.02, varying κn.

1 � α
Median CIn CIn Coverage Average Time

κn � n1{7 κn �
?

ln lnn κn � n1{7 κn �
?

ln lnn κn � n1{7 κn �
?

ln lnn
Lower Upper Lower Upper

ζ
r1s
1 � 0.50

0.95 [0.249,0.790] [0.250,0.787] 0.955 0.972 0.955 0.970 85.11 89.65
0.90 [0.270,0.765] [0.274,0.763] 0.922 0.943 0.914 0.936 89.12 94.49
0.85 [0.286,0.748] [0.287,0.746] 0.891 0.916 0.870 0.901 89.82 92.15

∆
r1s
1 � �1

0.95 [-1.469,-0.497] [-1.464,-0.501] 0.966 0.968 0.956 0.959 80.33 81.70
0.90 [-1.432,-0.542] [-1.426,-0.548] 0.935 0.938 0.926 0.923 85.12 88.07
0.85 [-1.408,-0.568] [-1.402,-0.577] 0.909 0.908 0.889 0.892 86.95 89.34

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated
projection CIn.
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