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Structure of the Appendix

Section B states and proofs Theorem B.1, which establishes convergence-related results for our E-A-M algorithm.

It also provides provides background material for the E-A-M algorithm, and details on the root-finding algorithm

that we use to compute ĉn(θ). Section C verifies some of our main assumptions for moment (in)equality models

that have received much attention in the literature. Section D summarizes the notation we use and the structure

of the proof of Theorem 4.1,1 and provides a proof of Theorems 4.1 (both under our main assumptions and under

a high level assumption replacing Assumption 4.3 and dropping the ρ-box constraints), 4.2, 4.3 and 4.4. Section

E contains the statements and proofs of the lemmas used to establish Theorems 4.1 and B.1, as well as a rigorous

derivation of the almost sure representation result for the bootstrap empirical process that we use in the proof

of Theorem 4.1. Section F provides further results comparing our calibrated projection method and the profiling

method proposed by Bugni, Canay, and Shi (2017, BCS-profiling henceforth), and gives an example of methods’

failure (including calibrated projection, BCS-profiling and the method in Pakes, Porter, Ho, and Ishii (2011)) when

some key assumptions are violated. Section G provides a formal comparison of our calibrated projection method

and projection of the confidence set of Andrews and Soares (2010, AS henceforth).

Throughout the Appendix we use the convention ∞ · 0 = 0.

1Section D.1 provides in Table D.0 a summary of the notation used throughout, and in Figure D.1 and Table D.1 a flow
diagram and heuristic explanation of how each lemma contributes to the proof of Theorem 4.1.
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Appendix B Additional Convergence Results and Background Mate-

rials for the E-A-M algorithm and for Computation of

ĉn(θ)

B.1 Theorem B.1: An Approximating Critical Level Sequence for the E-A-M Algo-

rithm

B.1.1 Assumption B.1: A Low Level Condition Yielding a Stochastic Lipschitz-Type Prop-

erty for ĉn

In order to establish convergence of our E-A-M algorithm, we need ĉn to uniformly stochastically exhibit a Lipschitz-

type property so that its mollified counterpart (see equation (B.1)) is sufficiently smooth and yields valid inference.

Below we provide a low level condition under which we are able to establish the Lipschitz-type property. In Appendix

C.1 we verify the condition for the canonical examples in the moment (in)equality literature.

Assumption B.1: The model P for P satisfies:

(i) |σP,j(θ)−1mj(x, θ) − σP,j(θ
′)−1mj(x, θ

′)| ≤ M̄(x)‖θ − θ′‖ with EP [M̄(X)2] < M for all θ, θ′ ∈ Θ, x ∈
X , j = 1, · · · , J , and there exists a function F such that |σP,j(θ)−1mj(·, θ)| ≤ F (·) for all θ ∈ Θ and

EP [|F (X)M̄(X)|2] < M .

(ii) ϕj is Lipschitz continuous in x ∈ R for all j = 1, . . . , J.

B.1.2 Statement and Proof of Theorem B.1

For all τ > 0 let ĉn,τ (θ) be a mollified version of ĉn(θ), i.e.:

ĉn,τ (θ) =

∫
Rd
ĉn(θ − ν)φτ (ν)dν =

∫
Rd
ĉn(θ)φτ (θ − ν)dν, (B.1)

where the family of functions φτ is a mollifier as defined in Rockafellar and Wets (2005, Example 7.19). Choose it

to be a family of bounded, measurable, smooth functions such that φτ (z) ≥ 0 ∀z ∈ Rd,
∫
Rd φτ (z)dz = 1 and with

Bτ = {z : φτ (z) > 0} = {z : ‖z‖ ≤ τ}.

Theorem B.1: Suppose Assumptions 4.1, 4.2, 4.4, 4.5 and B.1 hold. Let τn be a positive sequence such that

τn = n−ζ with ζ > 1/2. Let {βn} be a positive sequence such that βn = o(1) and ‖D̂n − DP ‖∞ = OP(βn). Let

εn = κ−1
n

√
nτn ∨ βn. Then,

1.

lim sup
n→∞

sup
P∈P

P

(
sup

‖θ−θ′‖≤τn
|ĉn(θ)− ĉn(θ′)| > Cεn

)
= 0; (B.2)

2. Let ĉn,τn be defined as in (B.1) with τn replacing τ . Then there exists C > 0 such that

lim inf
n→∞

inf
P∈P

P
(
‖ĉn − ĉn,τn‖∞ ≤ Cεn

)
= 1; (B.3)

3. There exists R > 0 such that ‖ĉn,τn‖Hβ ≤ R.
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4. Let Assumption 4.3 also hold. Let {Pn, θn} be a sequence such that Pn ∈ P and θn ∈ ΘI(Pn) for all n and

κ−1
n

√
nγ1,Pn,j(θn)→ π1j ∈ R[−∞], j = 1, . . . , J, ΩPn

u→ Ω, and DPn(θn)→ D. Let

ĉn,ρ,τ (θ) ≡ inf
λ∈Bdn,ρ

ĉn,τ (θ +
λρ√
n

). (B.4)

For c ≥ 0, let Un(θn, c) be defined as in (D.25). Then,

lim inf
n→∞

Pn (Un(θn, ĉn,ρ,τn) 6= ∅) ≥ 1− α. (B.5)

Proof. We establish each part of the theorem separately.

Part 1. Throughout, let C > 0 denote a positive constant, which may be different in different appearances.

Define the event

En ≡
{
x∞ ∈ X∞ : ‖D̂n −DP ‖∞ ≤ Cβn, sup

‖θ−θ′‖≤τn
‖Gn(θ)−Gn(θ′))‖ ≤ (lnn)2τn,

sup
θ∈Θ
|ηn,j(θ)| ≤ C/

√
n, max

j=1,··· ,J
sup

‖θ−θ′‖<τn
|ηn,j(θ)− ηn,j(θ′)| ≤ Cτn

}
. (B.6)

Note that (lnn)2τn/(−τn ln τn) = (lnn)2/ζ lnn = lnn/ζ, and hence tends to∞. By Assumption B.1-(i) and arguing

as in the proof of Theorem 2 in Andrews (1994), condition (E.216) in Lemma E.11 is satisfied with v = d. Also, by

Lemma E.13, (E.217) in Lemma E.11 holds with γ = 1. This therefore ensures the conditions of Lemma E.11.

Similarly, by Assumption B.1-(i) m2
j (x, θ)/σ

2
P,j(θ) satisfies∣∣∣m2

j (x, θ)

σ2
P,j(θ)

−
m2
j (x, θ)

σ2
P,j(θ)

∣∣∣ ≤ ∣∣∣mj(x, θ)

σP,j(θ)
+
mj(x, θ

′)

σP,j(θ′)

∣∣∣∣∣∣mj(x, θ)

σP,j(θ)
− mj(x, θ

′)

σP,j(θ′)

∣∣∣ (B.7)

≤ 2F (x)M̄(x)‖θ − θ′‖. (B.8)

Let F̄ (x) ≡ 2F (x)M̄(x). By Theorem 2.7.11 in van der Vaart and Wellner (2000),

N[](ε‖F̄‖L2
P
,M2

P , ‖ · ‖L2
P

) ≤ N(ε,Θ, ‖ · ‖) ≤ (diam(Θ)/ε)d, (B.9)

where N(ε,Θ, ‖ · ‖) is the covering number of Θ. This ensures∫ ∞
0

sup
P∈P

√
lnN[](ε‖F̄‖L2

P
,M2

P , ‖ · ‖L2
P

)dε <∞. (B.10)

Further, for any C > 0

EP [F̄ 2(X)1{F̄ (X) > C}] ≤ EP [F̄ 2(X)]P (F̄ (X) > C)

≤ 4EP [|F (X)M(X)|2]
‖F̄‖L1

P

C
≤ 4M2

C
, (B.11)

which implies limC→∞ supP∈P EP [F̄ 2(X)1{F̄ (X) > C}] = 0. By Theorems 2.8.4 and 2.8.2 in van der Vaart and

Wellner (2000), this implies that SP is Donsker and pre-Gaussian uniformly in P ∈ P. This therefore ensures

the conditions of Lemma E.12 (i). Note also that Assumption B.1-(i) ensures the conditions of Lemma E.12 (ii).

Therefore, by Lemmas E.11-E.12 and Assumption 4.4, for any η > 0, there exists C > 0 such that infP∈P P (En) ≥
1− η for all n sufficiently large.
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Let θ, θ′ ∈ Θ. For each j, we have∣∣∣Gbn,j(θ) + ρD̂n,j(θ)λ+ ϕj(ξ̂n,j(θ))−Gbn,j(θ′)− ρD̂n,j(θ
′)λ− ϕj(ξ̂n,j(θ′))

∣∣∣
≤ |Gbn,j(θ)−Gbn,j(θ′)|+ ρ‖D̂n,j(θ)− D̂n,j(θ

′)‖ sup
λ∈Bd

‖λ‖+ |ϕj(ξ̂n,j(θ))− ϕj(ξ̂n,j(θ′))|. (B.12)

Assume that the sample path {Xi}∞i=1 is such that the event En holds. Conditional on {Xi}∞i=1 and using Gbn,j(θ)−
Gbn,j(θ) = Gbn,j(θ)ηn,j(θ),

|Gbn,j(θ)−Gbn,j(θ′)| ≤ |Gbn,j(θ)−Gbn,j(θ
′)|+ 2 sup

θ∈Θ
|Gbn,j(θ)| sup

θ∈Θ
|ηn,j(θ)|

≤ |Gbn,j(θ)−Gbn,j(θ
′)|+ 2 sup

θ∈Θ
|Gbn,j(θ)|

C√
n
. (B.13)

Define the event Fn ∈ C for the bootstrap weights by

Fn ≡
{
mn ∈ Q : sup

‖θ−θ′‖≤τn
‖Gbn(θ)−Gbn(θ′)‖ ≤ (lnn)2τn, sup

θ∈Θ
‖Gbn(θ)‖ ≤ C

}
. (B.14)

By Lemma E.11 (ii) and the asymptotic tightness of Gbn, for any η > 0, there exists a C such that P ∗n(Fn) ≥ 1− η
for all n sufficiently large. Suppose that the multinomial bootstrap weight Mn is such that Fn holds. Then, the

right hand side of (B.13) is bounded by (lnn)2τn + C/
√
n for some C > 0.

Next, by the triangle inequality and Assumption 4.4,

‖D̂n,j(θ)− D̂n,j(θ
′)‖ ≤ ‖D̂n,j(θ)−DP,j(θ)‖+ ‖DP,j(θ)−DP,j(θ

′)‖+ ‖D̂n,j(θ
′)−DP,j(θ

′)‖

≤ Cβn + Cτn. (B.15)

Finally, note that by the Lipschitzness of ϕj , |ϕj(ξ̂n,j(θ))− ϕj(ξ̂n,j(θ′))| ≤ C|ξ̂n,j(θ)− ξ̂n,j(θ′)| and

ξ̂n,j(θ)− ξ̂n,j(θ′)

= κ−1
n

[√
n
(m̄n,j(θ)

σP,j(θ)
(1 + ηn,j(θ))−

EP [mj(X, θ)]

σP,j(θ)

)
−
√
n
(m̄n,j(θ

′)

σP,j(θ′)
(1 + ηn,j(θ

′))− EP [mj(X, θ
′)]

σP,j(θ′)

)]
+ κ−1

n

√
n
(EP [mj(X, θ)]

σP,j(θ)
− EP [mj(X, θ

′)]

σP,j(θ′)

)
. (B.16)

Hence,

|ξ̂n,j(θ)− ξ̂n,j(θ′)| ≤ κ−1
n |Gn,j(θ)−Gn,j(θ′)|

+ κ−1
n

√
n
∣∣∣m̄n,j(θ)

σP,j(θ)
ηn,j(θ)−

m̄n,j(θ
′)

σP,j(θ′)
ηn,j(θ

′)
∣∣∣+ κ−1

n

√
nDP,j(θ̄)‖θ − θ′‖. (B.17)

By Lemma E.11, the right hand side of (B.17) can be further bounded by

κ−1
n (lnn)2τn + κ−1

n

√
n
∣∣∣m̄n,j(θ)

σP,j(θ)
− m̄n,j(θ

′)

σP,j(θ′)

∣∣∣|ηn,j(θ)|
+ κ−1

n

√
n
∣∣∣m̄n,j(θ

′)

σP,j(θ′)

∣∣∣|ηn,j(θ)− ηn,j(θ′)|+ Cκ−1
n

√
nτn

≤ κ−1
n (lnn)2τn + κ−1

n

√
nτn

C√
n

+ Cκ−1
n

√
nτn + Cκ−1

n

√
nτn, (B.18)
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where the last inequality follows from Condition (i) and Lemma E.12 (ii).

Combining (B.12), (B.13), (B.15), and (B.16)-(B.18), we obtain∣∣∣Gbn,j(θ) + D̂n,j(θ)λ+ ϕj(ξ̂n,j(θ))−Gbn,j(θ′)− D̂n,j(θ
′)λ− ϕj(ξ̂n,j(θ′))

∣∣∣ ≤ Cεn. (B.19)

In particular, if 1
(
Λbn(θ, ρ, ĉn(θ)) ∩ {p′λ = 0} 6= ∅

)
= 1, it also holds that 1

(
Λbn(θ′, ρ, ĉn(θ) + Cεn) ∩ {p′λ = 0} 6=

∅
)

= 1 because

Gbn,j(θ′) + D̂n,j(θ
′)λ+ ϕj(ξ̂n,j(θ

′)) ≤ Gbn,j(θ) + D̂n,j(θ)λ+ ϕj(ξ̂n,j(θ)) + Cεn ≤ ĉn(θ) + Cεn,

Recalling that P ∗n(Fn) ≥ 1− η for all n sufficiently large, we then have

P ∗n
({

Λbn(θ′, ρ, ĉn(θ) + Cεn) ∩ {p′λ = 0} 6= ∅
})

≥ P ∗n
({

Λbn(θ′, ρ, ĉn(θ) + Cεn) ∩ {p′λ = 0} 6= ∅
}
∩ Fn

)
≥ P ∗n

({
Λbn(θ, ρ, ĉn(θ)) ∩ {p′λ = 0} 6= ∅

}
∩ Fn

)
≥ 1− α− η. (B.20)

Since η is arbitrary, we have

ĉn(θ′) ≤ ĉn(θ) + Cεn.

Reversing the roles of θ and θ′ and noting that supP∈P P (En)→ 0 yields the first claim of the lemma.

Part 2. To obtain the result in equation (B.3), we use that for any θ, θ′ ∈ Θ such that ‖θ − θ′‖ ≤ τn,

|ĉn(θ)− ĉn(θ′)| ≤ Cεn with probability approaching 1 uniformly in P ∈ P by the result in Part 1. This implies

|ĉn(θ)− ĉn,τn(θ)| =
∣∣∣∣∫

Rd
ĉn(θ − ν)φτn(ν)dν − ĉn(θ)

∣∣∣∣ ≤ ∫
Rd
|ĉn(θ − ν)− ĉn(θ)|φτn(ν)dν

=

∫
Bτn
|ĉn(θ − ν)− ĉn(θ)|φτn(ν)dν ≤ Cεn

∫
Bτn

φτn(ν)dν ≤ Cεn.

Part 3. By the construction of the mollified version of the critical value, we have ĉn,τn ∈ C∞(Θ) (Adams and

Fournier, 2003, Theorem 2.29). Therefore it has derivatives of all order. Using the multi-index notation, for any

s > 0 and |α| ≤ s, the partial derivative ∇αĉn,τn is bounded by some constant M > 0 on the compact set Θ, and

hence ∫
Θ

|∇αĉn,τn(θ)|2dυ(θ) ≤Mυ(Θ) <∞,

where υ denote the Lebesgue measure on Rd. This ensures ∇αĉn,τn ∈ L2
υ(Θ) for all |α| ≤ s. Hence, ĉn,τn is in the

Sobolev-Hilbert space Hs(Θo) for any s > 0. Note that when a Matérn kernel with ν < ∞ is used and ĉn,τn is

continuous, Lemma 3 in Bull (2011) implies that the RKHS-norm ‖ · ‖Hβ̄ (in Hβ̄(Θ)) and the Sobolev-Hilbert norm

‖ · ‖Hν+d/2 are equivalent. Hence, there is R > 0 such that ‖ĉn,τn‖Hβ ≤ C‖ĉn,τn‖Hν+d/2 ≤ R.

Part 4. By Part 2 and the definition of ĉn,ρ,τ in (B.4), it follows that

ĉn,ρ,τn(θn) ≥ ĉn,ρ(θn)− en (B.21)

≥ cIn,ρ(θn)− en,

for some en = OP(εn), where the second inequality follows from the construction of cIn,ρ in the proof of Lemma

E.1. Note that Lemma E.3 and the fact that εn = oP(1) by Part 1 imply cIn,ρ(θn)− en
Pn→ c∗π∗ . Replicate equation

(E.22) with ĉn,ρ,τn replacing ĉn,ρ, and mimic the argument following (E.22) in the proof of Lemma E.1. Then, the

[6]



conclusion of the lemma follows.

B.2 The kernel of the Gaussian Process and its Associated Function Space

Following Bull (2011), we consider two commonly used classes of kernels. The first one is the Gaussian kernel,

which is given by

Kβ(θ − θ′) = exp
(
−

d∑
k=1

|(θk − θ′k)/βk|2
)
, βk ∈ [β

k
, βk], k = 1, · · · , d, (B.22)

where 0 < β
k
< βk <∞ for all k. The second one is the class of Matérn kernels defined by

Kβ(θ − θ′) =
21−ν

D(ν)

(√
2ν

d∑
k=1

|(θk − θ′k)/βk|2
)ν
kν

(√
2ν

d∑
k=1

|(θk − θ′k)/βk|2
)
, ν ∈ (0,∞), ν /∈ N,

where D is the gamma function, and kν is the modified Bessel function of the second kind.2 The index ν controls

the smoothness of Kβ . In particular, the Fourier transform K̂β(ζ) of the Matérn kernel is bounded from above and

below by the order of ‖ζ‖−2ν−d as ‖ζ‖ → ∞, i.e. K̂β(ζ) = Θ(‖ζ‖−2ν−d). Similarly, the Fourier transform of the

Gaussian kernel satisfies K̂β(ζ) = O(‖ζ‖−2ν−d) for any ν > 0. Below, we treat the Gaussian kernel as a kernel

associated with ν =∞.
Each kernel is associated with a space of functions Hβ(Rd), called the reproducing kernel Hilbert space (RKHS).

Below, we give some background on this space and refer to Steinwart and Christmann (2008); van der Vaart and

van Zanten (2008) for further details. For D ⊆ Rd, let K : D × D → R be a symmetric and positive definite

function. K is said to be a reproducing kernel of a Hilbert space H(D) if K(·, θ′) ∈ H(D) for all θ′ ∈ D, and

f(θ) = 〈f,K(·, θ)〉H(D)

holds for all f ∈ H(D) and θ ∈ D. The space H(D) is called a reproducing kernel Hilbert space (RKHS) over

D if for all θ ∈ D, the point evaluation functional δθ : H(D) → R defined by δθ(f) = f(θ) is continuous. When

K(θ, θ′) = Kβ(θ− θ′) is used as the correlation functional of the Gaussian process, we denote the associated RKHS

by Hβ(D). Using Fourier transforms, the norm on Hβ(D) can be written as

‖f‖Hβ ≡ inf
g|D=f

∫
ĝ(ζ)

K̂β(ζ)
dζ, (B.23)

where the infimum is taken over functions g : Rd → R whose restrictions to D coincide with f , and we take 0/0 = 0.

The RKHS has a connection to other well-known classes of functions. In particular, when D is a Lipschitz

domain, i.e. the boundary of D is locally the graph of a Lipschitz function (Tartar, 2007) and the kernel is

associated with ν ∈ (0,∞), Hβ(D) is equivalent to the Sobolev-Hilbert space Hν+d/2(Do), which is the space of

functions on Do such that

‖f‖2Hν+d/2 ≡ inf
g|Do=f

∫
ĝ(ζ)

(1 + ‖ζ‖2)ν+d/2
dζ (B.24)

is finite, where the infimum is taken over functions g : Rd → R whose restrictions to Do coincide with f . Further,

if ν =∞, Hβ(D) is continuously embedded in Hs(Do) for all s > 0 (Bull, 2011, Lemma 3).

2The requirement ν /∈ N is not essential for the convergence result. However, it simplifies some of the arguments as one
can exploit the 2ν-Hölder continuity of Kβ at the origin without a log factor (Bull, 2011, Assumption 4).

[7]



Theorem 3.1 requires that c has a finite RKHS norm. This is to ensure that the approximation error made

by the best linear predictor cL of the Gaussian process regression is controlled uniformly (Narcowich, Ward, and

Wendland, 2003). When a Matérn kernel is used, it suffices to bound the norm in the Sobolev-Hilbert space Hν+d/2

to bound c’s RKHS norm. We do so in Theorem B.1 by introducing a mollified version of ĉn.

B.3 A Reformulation of the M-step as a Nonlinear Program

In (3.13), θ(L+1) is defined as the maximizer of the following maximization problem

max
θ∈Θ

(p′θ − p′θ∗L)+

(
1− Φ

( ḡ(θ)− cL(θ)

ς̂sL(θ)

))
, (B.25)

where ḡ(θ) = maxj=1,··· ,Jgj(θ). Since Φ is strictly increasing, one may rewrite the objective function as

(p′θ − p′θ∗L)+

(
1− max

j=1,··· ,J
Φ
(gj(θ)− cL(θ)

ς̂sL(θ)

))
= min
j=1,··· ,J

(p′θ − p′θ∗L)+

(
1− Φ

(gj(θ)− cL(θ)

ς̂sL(θ)

))
.

Hence, θ(L+1) is a solution to the maximin problem:

max
θ∈Θ

min
j=1,··· ,J

(p′θ − p′θ∗L)+

(
1− Φ

(gj(θ)− cL(θ)

ς̂sL(θ)

))
,

which can be solved, for example, by Matlab’s fminimax function. It can also be rewritten as a nonlinear program:

max
(θ,v)∈Θ×R

v

s.t.(p′θ − p′θ∗L)+

(
1− Φ

(gj(θ)− cL(θ)

ς̂sL(θ)

))
≥ v, j = 1, · · · , J,

which can be solved by nonlinear optimization solvers, e.g. Matlab’s fmincon or KNITRO. We note that the objective

function and constraints together with their gradients are available in closed form.

B.4 Root-Finding Algorithm Used to Compute ĉn(θ)

This section explains in detail how ĉn(θ) in equation (3.5) is computed. For a given θ ∈ Θ, P ∗(Λbn(θ, ρ, c) ∩ {p′λ =

0} 6= ∅) increases in c (with Λbn(θ, ρ, c) defined in (3.1)), and so ĉn(θ) can be quickly computed via a root-finding

algorithm, such as the Brent-Dekker Method (BDM), see Brent (1971) and Dekker (1969). To do so, define

hα(c) = 1
B

∑B
b=1 ψb(c)− (1− α) where

ψb(c(θ)) = 1(Λbn(θ, ρ, c) ∩ {p′λ = 0} 6= ∅).

Let c̄(θ) be an upper bound on ĉn(θ) (for example, the asymptotic Bonferroni bound c̄(θ) ≡ Φ−1(1 − α/J)).

It remains to find ĉn(θ) so that hα(ĉn(θ)) = 0 if hα(0) ≤ 0. It is possible that hα(0) > 0 in which case we

output ĉn(θ) = 0. Otherwise, we use BDM to find the unique root to hα(c) on [0, c̄(θ)] where, by construction,

hα(c̄n(θ)) ≥ 0. We propose the following algorithm:

Step 0 (Initialize)

(i) Set Tol equal to a chosen tolerance value;

(ii) Set cL = 0 and cU = c̄(θ) (values of c that bracket the root ĉn(θ));

(iii) Set c−1 = cL and c−2 = [] to be undefined for now (proposed values of c from 1 and 2 iterations prior). Also

set c0 = cL and c1 = cU .
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(iv) Compute ϕj(ξ̂n,j(θ)) j = 1, · · · , J ;

(v) Compute D̂P,n(θ);

(vi) Compute Gbn,j for b = 1, · · · , B, j = 1, · · · , J ;

(vii) Compute ψb(cL) and ψb(cU ) for b = 1, · · · , B;

(viii) Compute hα(cL) and hα(cU ).

Step 1 (Method Selection)

Use the BDM rule to select the updated value of c, say c2. The value is updated using one of three methods:

Inverse Quadratic Interpolation, Secant, or Bisection. The selection rule is based on the values of ci, i =

−2,−1, 0, 1 and the corresponding function values.

Step 2 (Update Value Function)

Update the value of hα(c2). We can exploit previous computation and monotonicity function ψb(c2) to reduce

computational time:

1. If ψb(cL) = ψb(cU ) = 0, then ψb(c2) = 0;

2. If ψb(cL) = ψb(cU ) = 1, then ψb(c2) = 1.

Step 3 (Update)

(i) If hα(c2) ≥ 0, then set cU = c2. Otherwise set cL = c2.

(ii) Set c−2 = c−1, c−1 = c0, c0 = cL, and c1 = cU .

(iii) Update corresponding function values hα(·).

Step 4 (Convergence)

(i) If hα(cU ) ≤ Tol or if |cU − cL| ≤ Tol , then output ĉn(θ) = cU and exit. Note: hα(cU ) ≥ 0, so this criterion

ensures that we have at least 1− α coverage.

(ii) Otherwise, return to Step 1.

The computationally difficult part of the algorithm is computing ψb(·) in Step 2. This is simplified for two reasons.

First, evaluation of ψb(c) entails determining whether a constraint set comprised of J + 2d − 2 linear inequalities

in d− 1 variables is feasible. This can be accomplished efficiently employing commonly used software.3 Second, we

exploit monotonicity in ψb(·), reducing the number of linear programs needed to be solved.

Appendix C Verification of Assumptions for the Canonical Moment

(In)equalities Examples

In this section we verify: (i) Assumption B.1 which is the crucial condition in Theorem B.1, and (ii) Assumption

4.3-(II), for the canonical examples in the moment (in)equalities literature:

3Examples of high-speed solves for linear programs include CVXGEN, availiable from http://www.cvxgen.com and
Gurobi, available from http://www.gurobi.com.
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1. Mean with interval data (of which missing data is a special case). Here we assume that W0,W1 are

two observable random variables such that P (W0 ≤W1) = 1. The identified set is defined as

ΘI(P ) = {θ ∈ Θ ⊂ R : EP (W0)− θ ≤ 0, θ − EP (W1) ≤ 0}. (C.1)

2. Linear regression with interval outcome data and discrete regressors. Here the modeling assumption

is that W = Z ′θ + u, where Z = [Z1; . . . ;Zd] is a d × 1 random vector with Z1 = 1. We assume that Z

has k points of support denoted z1, . . . , zk ∈ Rd with maxr=1,...,k ‖zr‖ < M < ∞. The researcher observes

{W0,W1, Z} with P (W0 ≤W ≤W1|Z = zr) = 1, r = 1, . . . , k. The identified set is

ΘI(P ) = {θ ∈ Θ ⊂ Rd : EP (W0|Z = zr)− zr′θ ≤ 0, zr′θ − EP (W1|Z = zr) ≤ 0, r = 1, . . . , k}. (C.2)

3. Best linear prediction with interval outcome data and discrete regressors. Here the variables are

defined as for the linear regression case. Beresteanu and Molinari (2008) show that the identified set for the

parameters of a best linear predictor of W conditional on Z is given by the set ΘI(P ) = EP (ZZ ′)−1EP (ZW),

where W = [W0,W1] is a random closed set and, with some abuse of notation, EP (ZW) denotes the Aumann

expectation of ZW.

Here we go beyond the results in Beresteanu and Molinari (2008) and derive a moment inequality representa-

tion for ΘI(P ) when Z has a discrete distribution. We denote by ur the vector ur = er′(M ′PMP )−1M ′PEP (ZZ ′),

r = 1, . . . , k, where er is the r-th basis vector in Rk and MP is a d×K matrix with r-th column equal to P (Z =

zr)zr; we let qr = urEP (ZZ ′)−1. Observe that for any selection W̃ ∈W a.s. one has urEP (ZZ ′)−1EP (ZW̃ ) =

er′[EP (W̃ |Z = z1); . . . ;EP (W̃ |Z = zk)], so that the support function in direction ur is maximized/minimized

by setting EP (W̃ |Z = zr) equal to EP (W1|Z = zr) and EP (W0|Z = zr), respectively. Hence, the identified

set can be written in terms of moment inequalities as

ΘI(P ) = {θ ∈ Θ ⊂ Rd : qr[EP (Z(Z ′θ −W0 − 1(qrZ > 0)(W1 −W0)))] ≤ 0

− qr[EP (Z(Z ′θ −W0 − 1(qrZ < 0)(W1 −W0)))] ≤ 0, r = 1, . . . , k}. (C.3)

The set is expressed through evaluation of its support function, given in Bontemps, Magnac, and Maurin

(2012, Proposition 2), at directions ±ur; these are the directions orthogonal to the flat faces of ΘI(P ).

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.

Here again we assume that the vector Z has k points of support with bounded norm, and the identified set is

ΘI(P ) = {θ ∈ Θ ⊂ Rd : equations (5.1), (5.2), (5.3), (5.4) hold for all Z = zr, r = 1, . . . , k}. (C.4)

In the first three examples we let X ≡ (W0,W1, Z)′. In the last example we let X ≡ (Y1, Y2, Z)′. Throughout,

we propose to estimate EP (W`|Z = zr) and EP (Y1 = s, Y2 = t|Z = zr), ` = 0, 1, (s, t) ∈ {0, 1} × {0, 1} and

r = 1, . . . , k, using

Ên(W`|Z = zr) =

∑n
i=1W`,i1(Zi = zr)∑n
i=1 1(Zi = zr)

, (C.5)

Ên(Y1 = s, Y2 = t|Z = zr) =

∑n
i=1 1(Y1,i = s, Y2,i = t, Zi = zr)∑n

i=1 1(Zi = zr)
, (C.6)

as it is done in, e.g., Ciliberto and Tamer (2009). We assume that for each of the four canonical examples under

consideration, Assumption 4.1 as well as one of the assumptions below hold.
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Assumption C.1: The model P for P satisfies min`=0,1 minr=1,...,k V arP (W`|Z = zr) > σ > 0 and

minr=1,...,k P (Z = zr) > $ > 0.

Assumption C.2: The model P for P satisfies: (1) eig(M ′PMP ) > ς; (2) eig(EP (ZZ ′)) > ς;

(3) eig(CorrP ([vech(ZZ ′);W0])) > ς and eig(CorrP ([vech(ZZ ′);W1])) > ς; for some ς > 0, where vech(A) denotes

the half-vectorization of the matrix A.

Assumption C.3: The model P for P satisfies minr=1,...,k,(s,t)∈{0,1}×{0,1} P (Y1 = s, Y2 = t, Z = zr) > $ > 0.

These are simple to verify low level conditions. We note that Imbens and Manski (2004) and Stoye (2009)

directly assume the unconditional version of C.1, while Beresteanu and Molinari (2008) assume C.1 itself.

C.1 Verification of Assumption B.1 in Theorem B.1

We show that in each of the four examples
mj(x,θ)
σP,j(θ)

, j = 1, . . . , J is Lipschitz continuous in θ ∈ Θ for all x ∈ X and

that DP can be estimated at rate n−1/2.

1. Mean with interval data. Here σP,`(θ) = σP,`, and under Assumption C.1 it is uniformly bounded from

below. Then ∣∣∣∣mj(x, θ)

σP,j
− mj(x, θ

′)

σP,j

∣∣∣∣ =
‖(θ′ − θ)‖
σP,j(θ)

, ` = 0, 1,

DP,`(θ) =
(−1)(1−`)

σP,`
, ` = 0, 1.

Assumption C.1 then guarantees that Assumption B.1 is satisfied.

2. Linear regression with interval outcome data and discrete regressors. Here again σP,`r(θ) = σP,`r,

and under Assumptions C.1-C.2 it is uniformly bounded from below. We first consider the rescaled function
(−1)j(W`1(Z=zr)/P (Z=zr)−zr′θ)

σP,`r
:∣∣∣∣ (−1)j(W`1(Z = zr)/P (Z = zr)− zr′θ)

σP,`r
− (−1)j(W`1(Z = zr)/P (Z = zr)− zr′θ′)

σP,`r

∣∣∣∣ = ‖zr‖‖(θ
′ − θ)‖

σP,`r(θ)
, ` = 0, 1,

so that Assumption B.1 is satisfied for these rescaled functions by Assumptions C.1-C.2. Next, we observe

that

DP,j =
(−1)(1−j)zr′

σP,`r
, ` = 0, 1, r = 1, . . . , k,

and it can be estimated at rate n−1/2 by Lemma E.12. Theorem B.1 then holds observing that |P (Z =

zr)/
∑n
i=1 1(Zi = zr) − 1| = OP(n−1/2) and treating this random element similarly to how we treat ηn,j(·)

in the proof of Theorem B.1.

3. Best linear prediction with interval outcome data and discrete regressors. Here

mr(Xi, θ) = qr[Zi(Z
′
iθ − (W0,i + 1(qrZi > 0)(W1,i −W0,i)))] (C.7)

hence is Lipschitz in θ with constant ZiZ
′
i. Under Assumptions C.1-C.2, V arP (mr(Xi, θ)) is uniformly

bounded from below, and Lipschitz in θ with a constant that depends on Z4
i . Hence mr(Xi,θ)

σP,r(θ) is Lipschitz in θ
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with a constant that depends on powers of Z. Because Z has bounded support, Assumption B.1 is satisfied.

A simple argument yields that DP can be estimated at rate n−1/2.

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.

Here again σP,str(θ) = σP,str, and under Assumptions 4.1 and C.3 it is uniformly bounded from below. The

result then follows from a similar argument as the one used in Example 2 (Linear regression with interval

outcome data and discrete regressors), observing that the rescaled function of interest is now

1(Y1 = s, Y2 = t|Z = zr)/P (Z = zr)− gstr(θ)
σP,str

, (s, t) ∈ {0, 1} × {0, 1}, r = 1, . . . , k,

and the gradient is

1

σP,str
∇θgstr(θ), (s, t) ∈ {0, 1} × {0, 1}, r = 1, . . . , k,

where gstr(θ) are model-implied entry probabilities, and hence taking their values in [0, 1]. The entry models

typically posited assume that payoff shocks have smooth distributions (e.g., multivariate normal), yielding

that ∇θgstr(θ) is well defined and bounded.

C.2 Verification of Assumption 4.3-(II)

Here we verify Assumption 4.3-(II) for the canonical examples in the moment (in)equalities literature:

1. Mean with interval data. In the generalization of this example in Imbens and Manski (2004) and Stoye

(2009), equations (4.1)-(4.2) are satisfied by construction, equation (4.3) is directly assumed.

2. Linear regression with interval outcome data and discrete regressors. Equation (4.1) is satisfied by

construction. Given the estimator that we use for the population moment conditions, we verify equation (4.3)

for the variances of the limit distribution of the vector [
√
n(Ên(W`|Z = zr)−EP (W`|Z = zr))]`∈{0,1},r=1,...,k.

We then have that equation (4.3) follows from Assumption C.1. Concerning equation (4.3), this needs to be

verified for the correlation matrix of the limit distribution of a r× 1 random vector that for each r = 1, . . . , k

equals any choice in {
√
n(Ên(W0|Z = zr)−EP (W0|Z = zr)),

√
n(Ên(W1|Z = zr)−EP (W1|Z = zr))}, which

suffices for our results to hold. We then have that (4.2) holds because the correlation matrix is diagonal.

3. Best linear prediction with interval outcome data and discrete regressors. Equation (4.1) is again

satisfied by construction. Equation (4.2) holds under Assumptions C.1-C.2. Equation (4.3) is verified to hold

under Assumption C.1 in Beresteanu and Molinari (2008, p. 808).

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.

In this case equations (5.3) and (5.4) are paired, but the corresponding moment functions differ by the model

implied probability of the region of multiplicity, hence equation (4.1) is satisfied by construction. Given

the estimator that we use for the population moment conditions, we verify equations (4.2) and (4.3) for the

variances and for the correlation matrix of the limit distribution of the vector
√
n(Ên(Y1 = s, Y2 = t|Z =

zr) − EP (Y1 = s, Y2 = t|Z = zr)(s,t)∈{0,1}×{0,1},r=1,...,k), which suffices for our results to hold. Equation

(4.2) holds provided that |Corr(Yi1(1 − Yi2), Yi1Yi2)| < 1 − ε for some ε > 0 and Assumption C.3 holds.4

To see that equation (4.3) also holds, note that Assumption C.3 yields that P (Yi1 = 1, Yi2 = 0, Zi = zr) is

4In more general instances with more than two players, it follows if the multinomial distribution of outcomes of the game
(reduced by one element) has a correlation matrix with eigenvalues uniformly bounded away from zero.
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uniformly bounded away from 0 and 1, thereby implying that for each (s, t) ∈ {0, 1} × {0, 1}, r = 1, . . . , k,

(P (Y1 = s, Y2 = t|Z = zr)(1−P (Y1 = s, Y2 = t|Z = zr)))/(P (Z = zr)(1−P (Z = zr))) is uniformly bounded

away from zero.

Appendix D Proof of Theorems 4.1, 4.2, 4.3 and 4.4

D.1 Notation and Structure of the Proof of Theorem 4.1

For any sequence of random variables {Xn} and a positive sequence an, we write Xn = oP(an) if for any ε, η > 0,

there is N ∈ N such that supP∈P P (|Xn/an| > ε) < η, ∀n ≥ N . We write Xn = OP(an) if for any η > 0, there is a

M ∈ R+ and N ∈ N such that supP∈P P (|Xn/an| > M) < η,∀n ≥ N .

Table D.0: Important notation. Here (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} is a subsequence as defined in (D.3)-(D.4) below,

θ′n ∈ (θn + ρ/
√
nBd) ∩Θ, Bd = {x ∈ Rd : |xi| ≤ 1, i = 1, . . . , d}, Bdn,ρ ≡

√
n
ρ (Θ− θn) ∩Bd, Bd

ρ = limn→∞Bdn,ρ, and λ ∈ Rd.

Gn,j(·) =
√
n(m̄n,j(·)−EP (mj(Xi,·)))

σP,j(·) , j = 1, . . . , J Sample empirical process.

Gb
n,j(·) =

√
n(m̄bn,j(·)−m̄n,j(·))

σ̂n,j(·) , j = 1, . . . , J Bootstrap empirical process.

ηn,j(·) =
σP,j(·)
σ̂n,j(·) − 1, j = 1, . . . , J Estimation error in sample moments’ asymptotic standard deviation.

DP,j(·) = ∇θ
(
EP (mj(Xi,·))

σP,j(·)

)
, j = 1, . . . , J Gradient of population moments w.r.t. θ, with estimator D̂n,j(·).

γ1,Pn,j(·) =
EPn (mj(Xi,·))

σPn,j(·)
, j = 1, . . . , J Studentized population moments.

π1,j = limn→∞ κ
−1
n

√
nγ1,Pn,j(θ

′
n) Limit of rescaled population moments, constant ∀θ′n ∈ (θn + ρ/

√
nBd) ∩Θ

by Lemma E.5.

π∗1,j =

{
0, if π1,j = 0,
−∞, if π1,j < 0.

“Oracle” GMS.

ξ̂n,j(·) =

{
κ−1
n

√
nm̄n,j(·)/σ̂n,j(·), j = 1, . . . , J1

0, j = J1 + 1, . . . , J
Rescaled studentized sample moments, set to 0 for equalities.

ϕ∗j (ξ) =


ϕj(ξ) π1,j = 0

−∞ π1,j < 0

0 j = J1 + 1, · · · , J.
Infeasible GMS that is less conservative than ϕj .

un,j,θn(λ) = {Gn,j(θn + λρ√
n

) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn + λρ√
n

)) Mean value expansion of nonlinear constraints with sample empirical process

and “oracle” GMS, with θ̄n componentwise between θn and θn + λρ√
n

.

Un(θn, c) =
{
λ ∈ Bd

n,ρ : p′λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J
}

Feasible set for nonlinear sample problem intersected with p′λ = 0.

wj(λ) = Zj + ρDjλ+ π∗1,j Linearized constraints with a Gaussian shift and “oracle” GMS.

W(c) =
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}

Feasible set for linearized limit problem intersected with p′λ = 0.

cπ∗ = inf{c ∈ R+ : Pr(W(c) 6= ∅) ≥ 1− α}. Limit problem critical level.

vbn,j,θ′n(λ) = Gb
n,j(θ

′
n) + ρD̂n,j(θ

′
n)λ+ ϕj(ξ̂n,j(θ

′
n)) Linearized constraints with bootstrap empirical process and sample GMS.

V b
n (θ′n, c) =

{
λ ∈ Bd

n,ρ : p′λ = 0 ∩ vbn,j,θ′n(λ) ≤ c, ∀j = 1, . . . , J
}

Feasible set for linearized bootstrap problem with sample GMS and p′λ = 0.

vIn,j,θ′n(λ) = Gb
n,j(θ

′
n) + ρD̂n,j(θ

′
n)λ+ ϕ∗j (ξ̂n,j(θ

′
n)) Linearized constraints with bootstrap empirical process and infeasible sample GMS.

V I
n (θ′n, c) =

{
λ ∈ Bd

n,ρ : p′λ = 0 ∩ vIn,j,θ′n(λ) ≤ c, ∀j = 1, . . . , J
}

Feasible set for linearized bootstrap problem with infeasible sample GMS and p′λ = 0.

ĉn(θ) = inf{c ∈ R+ : P ∗(V b
n (θ, c) 6= ∅) ≥ 1− α} Bootstrap critical level.

ĉn,ρ(θ) = infλ∈Bdn,ρ ĉn(θ + λρ√
n

) Smallest value of the bootstrap critical level in a Bd
n,ρ neighborhood of θ.

σ̂Mn,j(θ) = µ̂n,j(θ)σ̂n,j(θ) + (1− µ̂n,j(θ))σ̂n,j+R1(θ) Weighted sum of the estimators of the standard deviations of paired inequalities
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Figure D.1: Structure of Lemmas used in the proof of Theorem 4.1.

Theorem 4.1

Lemma E.1

Lemma E.3Lemma E.2

Lemma E.4 Lemma E.5

Lemma E.6

Lemma E.9Lemma E.8Lemma E.7

Lemma E.10

Table D.1: Heuristics for the role of each Lemma in the proof of Theorem 4.1. Notes: (i) Uniformity in Theorem 4.1 is enforced
arguing along subsequences; (ii) When needed, random variables are realized on the same probability space as shown in Lemma
E.1 and Lemma E.17 (see Appendix E.3 for details); (iii) Here (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} is a subsequence as defined
in (D.3)-(D.4) below; (iv) All results hold for any θ′n ∈ (θn + ρ/

√
nBd) ∩Θ.

Theorem 4.1 Pn(p′θn ∈ CI) ≥ Pn (Un(θn, ĉn,ρ(θn)) 6= ∅) .
Coverage is conservatively estimated by the probability that Un is nonempty.

Lemma E.1 lim inf Pn (Un(θn, ĉn,ρ(θn)) 6= ∅) ≥ 1− α.
Lemma E.2 Pn(U(θn, c

I
n(θn)) 6= ∅,W(cπ∗) = ∅) + Pn(U(θn, c

I
n(θn)) = ∅,W(cπ∗) 6= ∅) = oP(1).

Argued by comparing Un and its limit W (after coupling).

Lemma E.3 P ∗n(V I
n (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)→ 0 and cIn(θ′n)

Pn→ cπ∗ if cπ∗ > 0.
The bootstrap critical value that uses the less conservative GMS yileds a convergent critical value.

Lemma E.4 supλ∈Bd |maxj(un,j,θn(λ)− cIn(θn))−maxj(wj(λ)− cπ∗)| = oP(1), and similarly for wj and vIn,j,θ′n .

The criterion functions entering Un and W converge to each other.

Lemma E.5 Local-to-binding constraints are selected by GMS uniformly over the ρ-box (intuition: ρn−1/2 = oP(κ−1
n )),

and ‖ξ̂n(θ′n)− κ−1
n

√
nσ−1

Pn,j
(θ′n)EPn [mj(Xi, θ

′
n)]‖ = oP(1).

Lemma E.6 ∀η > 0 ∃δ > 0, : Pr({W(c) 6= ∅} ∩ {W−δ(c) = ∅}) < η, and similarly for V I
n .

It is unlikely that these sets are nonempty but become empty upon slightly tightening stochastic constraints.

Lemma E.7 Intersections of constraints whose gradients are almost linearly dependent are unlikely to realize inside W.
Hence, we can ignore irregularities that occur as linear dependence is approached.

Lemma E.8 If there are weakly more equality constraints than parameters, then c is uniformly bounded away from zero.
This simplifies some arguments.

Lemma E.9 If two paired inequalities are local to binding, then they are also asymptotically identical up to sign.
This justifies “merging” them.

Lemma E.10 ηn,j(·) converges to zero uniformly in P and θ.
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D.2 Proof of Theorems 4.1 and 4.2

D.2.1 Main Proofs

Proof of Theorem 4.1

Following Andrews and Guggenberger (2009), we index distributions by a vector of nuisance parameters relevant

for the asymptotic size. For this, let γP ≡ (γ1,P , γ2,P , γ3,P ), where γ1,P = (γ1,P,1, · · · , γ1,P,J) with

γ1,P,j(θ) = σ−1
P,j(θ)EP [mj(Xi, θ)], j = 1, · · · , J, (D.1)

γ2,P = (s(p,ΘI(P )), vech(ΩP (θ)), vec(DP (θ))), and γ3,P = P . We proceed in steps.

Step 1. Let {Pn, θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} be a sequence such that

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) = lim inf
n→∞

Pn(p′θn ∈ CIn), (D.2)

with CIn = [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))]. We then let {ln} be a subsequence of {n} such that

lim inf
n→∞

Pn(p′θn ∈ CIn) = lim
n→∞

Pln(p′θln ∈ CIln). (D.3)

Then there is a further subsequence {an} of {ln} such that

lim
an→∞

κ−1
an

√
anσ

−1
Pan ,j

(θan)EPan [mj(Xi, θan)] = π1,j ∈ R[−∞], j = 1, . . . , J. (D.4)

To avoid multiple subscripts, with some abuse of notation we write (Pn, θn) to refer to (Pan , θan) throughout this

Appendix. We let

π∗1,j =

{
0 if π1,j = 0,

−∞ if π1,j < 0.
(D.5)

The projection of θn is covered when

− s(−p, Cn(ĉn)) ≤ p′θn ≤ s(p, Cn(ĉn))

⇔

{
inf p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j

}
≤ p′θn ≤

{
sup p′ϑ

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉn(ϑ),∀j

}

⇔

 infλ p
′λ

s.t.λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉn(θn + λρ√

n
),∀j

 ≤ 0

≤

 supλ p
′λ

s.t.λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉn(θn + λρ√

n
),∀j

 (D.6)

⇔


infλ p

′λ

s.t.λ ∈
√
n
ρ (Θ− θn),

{Gn,j(θn + λρ√
n

) + ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn + λρ√

n
)}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈
√
n
ρ (Θ− θn),

{Gn,j(θn + λρ√
n

) + ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j

 , (D.7)

with ηn,j(·) ≡ σP,j(·)/σ̂n,j(·)− 1 and where we localized ϑ in a
√
n/ρ-neighborhood of Θ− θn and we took a mean
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value expansion yielding ∀j
√
nm̄n,j(θn + λρ√

n
)

σ̂n,j(θn + λρ√
n

)
= {Gn,j(θn +

λρ√
n

) + ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1 + ηn,j(θn +

λρ√
n

)). (D.8)

Denote Bdn,ρ ≡
√
n
ρ (Θ− θn) ∩Bd, with Bd = {x ∈ Rd : |xi| ≤ 1, i = 1, . . . , d}. The event in (D.7) is implied by

⇐


infλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j

 ,

(D.9)

Step 2. This step is used only when Assumption 4.3-(II) is invoked. When this assumption is invoked, recall that

in equation (2.5) we use the estimator specified in Lemma E.10 equation (E.188) for σP,j , j = 1, . . . , 2R1 (with

R1 ≤ J1/2 defined in the statement of the assumption). In equation (3.1) we use the sample analog estimators of

σP,j for all j = 1, . . . , J . To keep notation manageable, we explicitly denote the estimator used in (2.5) by σ̂Mj only

in this step but in almost all other parts of this Appendix we use the generic notation σ̂j .

For each j = 1, . . . , R1 such that

π∗1,j = π∗1,j+R1
= 0, (D.10)

where π∗1 is defined in (D.5), let

µ̃j =

 1 if γ1,Pn,j(θn) = 0 = γ1,Pn,j+R1
(θn),

γ1,Pn,j+R1
(θn)(1+ηn,j+R1

(θn+ λρ√
n

))

γ1,Pn,j+R1
(θn)(1+ηn,j+R1

(θn+ λρ√
n

))+γ1,Pn,j(θn)(1+ηn,j(θn+ λρ√
n

))
otherwise,

(D.11)

µ̃j+R1
=

 0 if γ1,Pn,j(θn) = 0 = γ1,Pn,j+R1(θn),
γ1,Pn,j(θn)(1+ηn,j(θn+ λρ√

n
))

γ1,Pn,j+R1
(θn)(1+ηn,j+R1

(θn+ λρ√
n

))+γ1,Pn,j(θn)(1+ηn,j(θn+ λρ√
n

))
otherwise,

(D.12)

For each j = 1, . . . , R1, replace the constraint indexed by j, that is

√
nm̄n,j(θn + λρ√

n
)

σ̂Mn,j(θn + λρ√
n

)
≤ ĉn(θn +

λρ√
n

), (D.13)

with the following weighted sum of the paired inequalities

µ̃j

√
nm̄n,j(θn + λρ√

n
)

σ̂Mn,j(θn + λρ√
n

)
− µ̃j+R1

√
nm̄j+R1,n(θn + λρ√

n
)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ ĉn(θn +

λρ√
n

), (D.14)

and for each j = 1, . . . , R1, replace the constraint indexed by j +R1, that is

√
nm̄j+R1,n(θn + λρ√

n
)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ ĉn(θn +

λρ√
n

), (D.15)
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with

−µ̃j

√
nm̄n,j(θn + λρ√

n
)

σ̂Mn,j(θn + λρ√
n

)
+ µ̃j+R1

√
nm̄j+R1,n(θn + λρ√

n
)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ ĉn(θn +

λρ√
n

), (D.16)

It then follows from Assumption 4.3-(II) that these replacements are conservative because

m̄j+R1,n(θn + λρ√
n

)

σ̂Mn,j+R1
(θn + λρ√

n
)
≤ −

m̄n,j(θn + λρ√
n

)

σ̂Mn,j(θn + λρ√
n

)
,

and therefore (D.14) implies (D.13) and (D.16) implies (D.15).

Step 3. Next, we make the following comparisons:

π∗1,j = 0⇒ π∗1,j ≥
√
nγ1,Pn,j(θn), (D.17)

π∗1,j = −∞⇒
√
nγ1,Pn,j(θn)→ −∞. (D.18)

For any constraint j for which π∗1,j = 0, (D.17) yields that replacing
√
nγ1,Pn,j(θn) in (D.9) with π∗1,j introduces a

conservative distortion. Under Assumption 4.3-(II), for any j such that (D.10) holds, the substitutions in (D.14)

and (D.16) yield µ̃j
√
nγ1,Pn,j(θn)(1 + ηn,j(θn + λρ√

n
)) − µ̃j+R1

√
nγ1,Pn,j+R1(θn)(1 + ηn,j+R1(θn + λρ√

n
)) = 0, and

therefore replacing this term with π∗1,j = 0 = π∗1,j+R1
is inconsequential.

For any j for which π∗1,j = −∞, (D.18) yields that for n large enough,
√
nγ1,Pn,j(θn) can be replaced with π∗1,j .

To see this, note that by the Cauchy-Schwarz inequality, Assumption 4.4 (i)-(ii), and λ ∈ Bdn,ρ, it follows that

ρDPn,j(θ̄n)λ ≤ ρ
√
d(‖DPn,j(θ̄n)−DPn,j(θn)‖+ ‖DPn,j(θn)‖) ≤ ρ

√
d(ρM/

√
n+ M̄), (D.19)

where M̄ and M are as defined in Assumption 4.4-(i) and (ii) respectively, and we used that θ̄n lies component-wise

between θn and θn + λρ√
n

. Using that Gn,j is asymptotically tight by Assumption 4.5, we have that for any τ > 0,

there exists a T > 0 and N1 ∈ N such that for all n ≥ N1,

Pn

(
max

j:π∗1,j=−∞
{Gn,j(θn +

λρ√
n

) + ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1 + ηn,j(θn +

λρ√
n

)) ≤ 0, ∀λ ∈ Bdn,ρ
)
> 1− τ/2.

(D.20)

To see this, note that π∗ij = −∞ if and only if limn→∞
√
n

κn
γ1Pnj(θn) = π1j ∈ [−∞, 0). Suppose first that π1j > −∞.

Then for all ε > 0 there exists N2 ∈ N such that
∣∣∣√nκn γ1Pnj(θn)− π1j

∣∣∣ ≤ ε, for all n ≥ N2. Choose ε > 0 such that

π1j + ε < 0. Let N = max{N1, N2}. Then we have

Pn

(
max

j:π∗1,j=−∞
{Gn,j(θn +

λρ√
n

) + ρDPn,j(θ̄n)λ+
√
nγ1,Pn,j(θn)}(1 + ηn,j(θn +

λρ√
n

)) ≤ 0, ∀λ ∈ Bdn,ρ
)

≥ Pn

(
max

j:π∗1,j=−∞
{T + ρ(M̄ + ρM/

√
n) +

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn +

λρ√
n

)) ≤ 0 ∩ max
j:π∗1,j=−∞

Gn,j(θn +
λρ√
n

) ≤ T

)

≥ Pn

(
max

j:π∗1,j=−∞
{T + ρ(M̄ + ρM/

√
n) + κn(π1j + ε)}(1 + ηn,j(θn +

λρ√
n

)) ≤ 0 ∩ max
j:π∗1,j=−∞

Gn,j(θn +
λρ√
n

) ≤ T

)

= Pn

(
max

j:π∗1,j=−∞

{
T

κn
+

ρ

κn
(M̄ + ρM/

√
n) + (π1j + ε)

}
(1 + ηn,j(θn +

λρ√
n

)) ≤ 0 ∩ max
j:π∗1,j=−∞

Gn,j(θn +
λρ√
n

) ≤ T

)

=Pn

(
max

j:π∗1,j=−∞
Gn,j(θn +

λρ√
n

) ≤ T
)
> 1− τ/2, ∀n ≥ N.
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If π1j = −∞ the same argument applies a fortiori. We therefore have that for n ≥ N ,

Pn

(
infλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j


)

(D.21)

≥Pn

(
infλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn + λρ√

n
)) ≤ ĉn(θn + λρ√

n
),∀j


)
− τ/2. (D.22)

Since the choice of τ is arbitrary, the limit of the term in (D.21) is not smaller than the limit of the first term in

(D.22). Hence, we continue arguing for the event whose probability is evaluated in (D.22).

Finally, by definition ĉn(·) ≥ 0 and therefore infλ∈Bdn,ρ ĉn(θn+ λρ√
n

) exists. Therefore, the event whose probability

is evaluated in (D.22) is implied by the event
infλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn + λρ√

n
)) ≤ infλ∈Bdn,ρ ĉn(θn + λρ√

n
),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈ Bdn,ρ,
{Gn,j(θn + λρ√

n
) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn + λρ√

n
)) ≤ infλ∈Bdn,ρ ĉn(θn + λρ√

n
),∀j

 (D.23)

For each λ ∈ Rd, define

un,j,θn(λ) ≡ {Gn,j(θn +
λρ√
n

) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + ηn,j(θn +
λρ√
n

)), (D.24)

where under Assumption 4.3-(II) when π∗1,j = 0 and π∗1,j+R1
= 0 the substitutions of equation (D.13) with equation

(D.14) and of equation (D.15) with equation (D.16) have been performed. Let

Un(θn, c) ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
, (D.25)

and define

ĉn,ρ ≡ inf
λ∈Bdn,ρ

ĉn(θ +
λρ√
n

). (D.26)

Then by (D.23) and the definition of Un, we obtain

Pn(p′θn ∈ CIn) ≥ Pn (Un(θn, ĉn,ρ) 6= ∅) . (D.27)
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By passing to a further subsequence, we may assume that

DPn(θn)→ D, (D.28)

for some J×d matrix D such that ‖D‖ ≤M and ΩPn
u→ Ω for some correlation matrix Ω. By Lemma 2 in Andrews

and Guggenberger (2009) and Assumption 4.5 (i), uniformly in λ ∈ Bd, Gn(θn + λρ√
n

)
d→ Z for a normal random

vector with the correlation matrix Ω. By Lemma E.1,

lim inf
n→∞

Pn (Un(θn, ĉn,ρ) 6= ∅) ≥ 1− α. (D.29)

The conclusion of the theorem then follows from (D.2), (D.3), (D.27), and (D.29).

Proof of Theorem 4.2

The argument of proof is the same as for Theorem 4.1, with the following modification. Take (Pn, θn) as defined

following equation (D.4). Then f(θn) is covered when{
inf f(ϑ)

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉfn(ϑ),∀j

}
≤ f(θn) ≤

{
sup f(ϑ)

s.t. ϑ ∈ Θ,
√
nm̄n,j(ϑ)
σ̂n,j(ϑ) ≤ ĉfn(ϑ),∀j

}

⇔

 infλ∇f(θ̃n)λ

s.t.λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉfn(θn + λρ√

n
),∀j

 ≤ 0

≤

 supλ∇f(θ̃n)λ

s.t.λ ∈
√
n
ρ (Θ− θn),

√
nm̄n,j(θn+ λρ√

n
)

σ̂n,j(θn+ λρ√
n

)
≤ ĉfn(θn + λρ√

n
),∀j

 ,

where we took a mean value expansion yielding

f(θn +
λρ√
n

) = f(θn) +
ρ√
n
∇f(θ̃n)λ, (D.30)

for θ̃n a mean value that lies componentwise between θn and θn + λρ√
n

, and we used that the sign of the last term

in (D.30) is the same as the sign of ∇f(θ̃n)λ. With the objective function in (D.30) so redefined, all expression in

the proof of Theorem 4.1 up to (D.24) continue to be valid. We can then redefine the set Un(θn, c) in (D.25) as

Un(θn, c) ≡
{
λ ∈ Bdn,ρ : ‖∇f(θ̃n)‖−1∇f(θ̃n)λ = 0 ∩ un,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
.

Replace p′ with ‖∇f(θ̃n)‖−1∇f(θ̃n) in all expressions involving the set Un(θn, ĉ
f
n,ρ(θn)), and replace p′ with

‖∇f(θn)′‖−1∇f(θ′n) in all expressions for the sets V In (θ′n, ĉ
f
n(θ′n)), and in all the almost sure representation counter-

parts of these sets. Observe that we can select a convergent subsequence from {‖∇f(θn)′‖−1∇f(θ′n)} that converges

to some p in the unit sphere, so that the form of W(cπ∗) in (E.17) is unchanged. This yields the result, noting that

by the assumption ‖∇f(θ̃n)−∇f(θ′n)‖ = OP(ρ/
√
n)

D.2.2 A High Level Condition Replacing Assumption 4.3 and the ρ-Box Constraints

Next, we consider an assumption which is composed of two parts. The first part aims at informally mimicking

Assumption A.2 in Bugni, Canay, and Shi (2017) and replaces Assumption 4.3. The second part replaces the use

of the ρ-box constraints. Below, for a given set A ⊂ Rd, let ‖A‖H = supa∈A ‖a‖ denote its Hausdorff norm.
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Assumption D.1: Consider any sequence {Pn, θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} such that

κ−1
n

√
nγ1,Pn,j(θn)→ π1j ∈ R[−∞], j = 1, . . . , J,

ΩPn
u→ Ω,

DPn(θn)→ D.

Let π∗1j = 0 if π1j = 0 and π∗1j = −∞ if π1j < 0. Let Z be a Gaussian process with covariance kernel Ω. Let

wj(λ) ≡ Zj + ρDjλ+ π∗1,j . (D.31)

(I) Let

W(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}
, (D.32)

cπ∗ ≡ inf{c ∈ R+ : Pr(W(c) 6= ∅) ≥ 1− α}. (D.33)

Then:

(a) If cπ∗ > 0, Pr (W(c) 6= ∅) is continuous and strictly increasing at c = cπ∗ .

(b) If cπ∗ = 0, lim infn→∞ Pn(Un(θn, 0) 6= ∅) ≥ 1− α, where Un(θn, c), c ≥ 0 is as in (D.25).

(II) Let

W̄(c) ≡
{
λ ∈ Rd : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J

}
,

which differs from (D.32) by not constraining λ to Bd
ρ, and let c̄ ≡ Φ−1(1 − α/J) denote the asymptotic

Bonferroni critical value. Then for every η > 0 there exists Mη <∞ s.t. Pr(‖W̄(c̄)‖H > Mη) ≤ η.

D.2.3 Proof of Theorem 4.1 with High Level Assumption D.1-I Replacing Assumption 4.3,

and Dropping the ρ-Box Constraints Under Assumption D.1-II

Lemma D.1: Suppose that Assumption 4.1, 4.2, 4.4 and 4.5 hold.

(I) Let also Assumption D.1-I hold. Let 0 < α < 1/2. Then,

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) ≥ 1− α.

(II) Let also Assumption D.1-II and either Assumption 4.3 or D.1-I hold. Let ĉn = inf{c ∈ R+ : P ∗({Λbn(θ,+∞, c)∩
{p′λ = 0}} 6= ∅) ≥ 1 − α}, where Λbn is defined in equation (3.1) and CIn ≡ [−s(−p, Cn(ĉn)), s(p, Cn(ĉn))]

with s(q, Cn(ĉn)), q ∈ {p,−p} defined in equation (2.5). Then

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (p′θ ∈ CIn) ≥ 1− α.

Proof. We establish each part of the Lemma separately.

Part I. This part of the lemma replaces Assumptions 4.3 with Assumption D.1-I. Hence we establish the result

by showing that all claims that were made under Assumption 4.3 remain valid under Assumption D.1-I. We proceed

in steps.

Step 1. Revisiting the proof of Lemma E.6, equation (E.133).

Let J ∗ be as defined in (E.29). If J ∗ = ∅ we immediately have that Lemma E.6 continues to hold. Hence we

assume that J ∗ 6= ∅. To keep the notation simple, below we argue as if all j = 1, . . . , J belong to J ∗.
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Consider the case that cπ∗ > 0. For some cπ∗ > δ > 0, let

W(c− δ) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c− δ, ∀j = 1, . . . , J
}
, (D.34)

where we emphasize that the set W(c− δ) is obtained by a δ-contraction of all constraints, including those indexed

by j = J1 + 1, . . . , J . By Assumption D.1-I, for any η > 0 there exists a δ such that

η ≥ |Pr (W(cπ∗) 6= ∅)− Pr (W(cπ∗ − δ) 6= ∅)| = Pr ({W(cπ∗) 6= ∅} ∩ {W(cπ∗ − δ) = ∅}) ,

η ≥ |Pr (W(cπ∗ + δ) 6= ∅)− Pr (W(cπ∗) 6= ∅)| = Pr ({W(cπ∗ + δ) 6= ∅} ∩ {W(cπ∗) = ∅}) .

The result follows.

Step 2. Revisiting the proof of Lemma E.2.

Case 1 of Lemma E.2 is unaltered. Case 2 of Lemma E.2 follows from the same argument as used in Case 1 of

Lemma E.2, because under Assumption D.1-I as shown in step 1 of this proof all inequalities are tightened. In Case

3 of Lemma E.2 the result in (D.29) holds automatically by Assumption D.1-I-(ii). (As a remark, Lemmas E.7-E.8

are no longer needed to establish Lemma E.2.)

Step 3. Revisiting the proof of Lemma E.3. Under Assumption D.1 we do not need to merge paired inequalities.

Hence, part (iii) of Lemma E.3 holds automatically because ϕ∗j (ξ) ≤ ϕj(ξ) for any j and ξ. We are left to establish

parts (i) and (ii) of Lemma E.3. These follow immediately, because Lemma E.6 remains valid as shown in step 1

and by Assumption D.1-I, Pr(W(c) 6= ∅) is strictly increasing at c = cπ∗ if cπ∗ > 0. (As a remark, Lemma E.9 is no

longer needed to establish Lemma E.3.)

In summary, the desired result follows by applying Lemma E.1 in the proof of Theorem 4.1 as Lemmas E.2, E.3

and E.6 remain valid, Lemmas E.4, E.5, E.10 and the Lemmas in Appendix E.3 are unaffected, and Lemmas E.7,

E.8, E.9 are no longer needed.

Part II. This is established by adapting the proof of Theorem 4.1 as follows:

In the main proof, we pass to an a.s. representation early on, so that W realizes jointly with other random

variables (we denote almost sure representations adding a superscript “∗” on the original variable). At the same

time, we entirely drop ρ. This means that algebraic expressions, e.g. in the main proof, simplify as if ρ = 1, but it

also removes any constraints along the lines of λ ∈ Bdn,ρ in equation (D.9). Indeed, (D.9) is replaced by:

· · · ⇐


infλ p

′λ

s.t.λ ∈ W̄∗(c̄),

{G∗n,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λ/

√
n)) ≤ ĉn(θn + λ/

√
n),∀j

 ≤ 0

≤


supλ p

′λ

s.t.λ ∈ W̄∗(c̄),

{G∗n,j(θn + λ/
√
n) +DPn,j(θ̄n)λ+

√
nγ1,Pn,j(θn)}(1 + ηn,j(θn + λ/

√
n)) ≤ ĉn(θn + λ/

√
n),∀j

 ,

yielding a new definition of the set U∗n as

U∗n(θn, c) ≡
{
λ ∈ W̄∗(c̄) : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c, ∀j = 1, . . . , J

}
.

Subsequent uses of ρ in the main proof use that ‖λ‖ ≤
√
dρ = OP(1). For example, consider the argument following

equation (E.30) or the argument just preceding equation (D.29), and so on. All these continue to go through because

W̄∗(c̄) = O(1) by assumption.

Similar uses occur in Lemma E.1. The next major adaptation is that in (E.27) and (E.28): we again drop ρ
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but nominally introduce the constraint that λ ∈ W̄∗(c̄). However, for c ≤ c̄, this condition cannot constrain W∗(c),

and so we can as well drop it: The modified W∗(c) equals W̄∗(c).

Next we argue that Lemma E.7 continues to hold, now claimed for W̄∗. To verify that this is the case, replace

Bd with W̄(c̄) throughout in Lemma E.7. This requires straightforward adaptation of algebra as W̄(c̄) is only

stochastically and not deterministically bounded.

Finally, in Lemma E.3 we remove the ρ-constraint from V bn and V In without replacement, and note that the

lemma is now claimed for θ′n ∈ θ + ‖W̄(c̄)‖H/
√
nBd. Recall that in the lemma the a.s. representation of a set A is

denoted by Ã, and with some abuse of notation let the a.s. representation of W̄ be denoted ˜̄W. Now we compare

Ṽ bn and Ṽ In with ˜̄W. To ensure that λ is uniformly stochastically bounded in expressions like (E.95), we verify that

the modified Ṽ bn and Ṽ In inherit the property in Assumption D.1-II. To see this, fix any unit vector t ⊥ p and notice

that any t = λ/‖λ‖ for λ ∈ ˜̄W(c) or for λ ∈ Ṽ bn (θ′n, c) or for λ ∈ Ṽ In (θ′n, c), 0 < c ≤ c̄, satisfies this condition.

By Assumption D.1-II and the Cauchy-Schwarz inequality, max
λ∈˜̄W(c)

t′λ = O(1) for any c ≤ c̄. Since the value

of this program is necessarily attained by a basic solution whose associated gradients span t, it must be the case

that such solution is itself O(1). Formally, let C be the index set characterizing the solution, ZCi be the vector

of realizations Zji corresponding to j ∈ C, and KC(θ′n) the matrix that stacks the corresponding gradients; then

(KC(θ′n))−1(c̄1 − ZCi ) = O(1). By Lemma E.7 and the fact that D̂n(θ′n)
P→ D by Assumption 4.4, we then also

have that (K̂C(θ′n))−1(c̄1−Gbn,j) = OP(1), and so for c ≤ c̄, V b is bounded in this same direction. It follows that,

by similar reasoning to the preceding paragraph, the comparison between V In (θ′n, c) and W̄(c) in Lemma E.3 goes

through.

D.3 Proof of Theorems 4.3 and 4.4

D.3.1 Assumptions in Pakes, Porter, Ho, and Ishii (2011), Chernozhukov, Hong, and

Tamer (2007), and Bugni, Canay, and Shi (2017) That Allow for Simplifications

of the Method

We analyze calibrated projection under assumptions that are more stringent than for Theorem 4.1. The reward

is considerable computational simplification and, in some cases, removal of a tuning parameter. The additional

assumptions have been used in the related literature. Their logical relation to each other and to explicit constraint

qualifications is further analyzed in Kaido, Molinari, and Stoye (2017). For our purposes in this paper, we just state

without proof that, given Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5, all assumptions below, including the minorant

assumptions attributed to other papers, are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011); hence,

all results reported below apply under the Pakes, Porter, Ho, and Ishii (2011) assumptions.5

For θ ∈ ∂ΘI(P ), denote by J (P, θ) the set of inequalities j s.t. EP (mj(Xi, θ)) = 0. Denote by N (P, θ) the

positive span of (DP,j)j∈J (P,θ) and by T (P, θ) = {t : D′P,jt ≤ 0, j ∈ J (P, θ)} the corresponding dual cone. (These

are the normal and tangent cones of ΘI(P ) at θ.) For a given p ∈ Rd : ‖p‖ = 1, let s(p,ΘI(P )) = maxθ∈ΘI(P ) p
′θ

and H(p,ΘI(P )) ≡ arg maxθ∈ΘI(P ) p
′θ.

Assumption D.2 (A weakening of Assumption 4(a) in Pakes, Porter, Ho, and Ishii (2011)): There is a class

of DGPs Q ⊂ P such that any P ∈ Q satisfies the following conditions:

5Our own assumptions meaningfully exceed those of Pakes, Porter, Ho, and Ishii (2011) only through Assumption 4.3.
The absence of such an assumption in Pakes, Porter, Ho, and Ishii (2011) is actually an oversight, and ours or a similar
assumption must be added for their Theorem 2 to hold.
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1. There exists a (universal) εD > 0 s.t.

min
θ∈H(p,ΘI(P ))

min
‖t‖=1

max
j∈{1,...,J}:

EP (mj(Xi,θ)/σj(θ))>−εD

t′DP,j(θ) < −εD.

2. There exists a (universal) εD > 0 s.t.

max
θ∈H(p,ΘI(P ))

min
‖t‖=1

max
j∈{1,...,J}:

EP (mj(Xi,θ)/σj(θ))>−εD

t′DP,j(θ) < −εD.

There are two layers to these assumptions. First, they say that from some support point (part (1)) or all support

points (part (2)), there are directions that point uniformly inside ΘI(P ) in the sense of all moment inequalities

decreasing in value. The obvious counterexample would be an extremely pointy corner (a “spike”).

In addition, the assumptions apply to “tightened” tangent cones that use all inequalities which are almost

binding, where “almost” is operationalized with the small but positive constant εD. Together with smoothness of

moment conditions, this implies that, by moving a small (but boundedly nonzero) distance in the direction of steepest

descent from the support point, one can find a point θ at which maxj EP (mj(Xi, θ)/σj(θ)) is boundedly negative.

This implies that the sample analog of ΘI(P ) is nonempty with probability approaching 1 (the proof in Appendix

D.3.2 includes a formal version of this argument). In particular, it implies that a vestige of the “degeneracy”

assumption in Chernozhukov, Hong, and Tamer (2007) is imposed. Some invocations of the assumption strictly

speaking only use one of the two features (again, see Kaido, Molinari, and Stoye (2017) for details), but we do not

disentangle them here. Note, however, that the second implication renders the assumption implausible whenever

the sample analog of ΘI(P ) is empty, an empirically frequent occurrence.

Next, consider:

Assumption D.3 (Linear Minorant – Chernozhukov, Hong, and Tamer (2007) display (4.5)): There exist

universal constants C, δ > 0 and a class of DGPs Q ⊂ P such that for each P ∈ Q,

max
j=1,...,J

EP (mj(Xi, θ)/σj(θ)) ≥ C min {δ, d (θ,ΘI(P ))} .

Assumption D.4 (Linear Minorant Along Support Plane – Bugni, Canay, and Shi (2017) Assumption A3(a)):

There exist universal constants C, δ > 0 and a class of DGPs Q ⊂ P such that for each P ∈ Q and for each

q ∈ {p,−p},
max

j=1,...,J
EP (mj(Xi, θ)/σj(θ)) ≥ C min {δ, d (θ,H(q,ΘI(P )))}

for all θ with q′θ = s(q,ΘI(P )).

These assumptions are lifted from the cited papers. In the original papers, they are polynomial minorant

conditions: The minima are raised to some power χ. However, for our setting and criterion function, the special

case χ = 1 applies. Note also that Assumption D.4 is closely analogous to Assumption D.3 but imposes the minorant

condition on the “null restricted model in which the parameter space is restricted to the true supporting hyperplane

of ΘI(P ). It is easy to see that the assumptions are logically independent.

A further strengthening of assumptions is:

Assumption D.5 (A Weakening of Assumption 3 in Pakes, Porter, Ho, and Ishii (2011)): There exists a

universal constant δ > 0 and a class of DGPs Q ⊂ P such that for any P ∈ Q and for each q ∈ {p,−p} and any

θ ∈ H(q,ΘI(P )), T (θ) ⊆ {t : q′t/ ‖t‖ ≤ −δ}.
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Note the implication that T (P, θ) is uniformly pointy. The assumption is weaker than in Pakes, Porter, Ho,

and Ishii (2011) because they also assume ΘI(P ) ⊆ T (θ) and separately (although it is also an implication) that

H(p,ΘI(P )) is a singleton.

Our final assumption gives a further strengthening by requiring the support set in direction of projection to be

a singleton:

Assumption D.6 (Assumption 1 in Pakes, Porter, Ho, and Ishii (2011)): There is a class of DGPs Q ⊂ P such

that for any P ∈ Q and q ∈ {p,−p}, H(q,ΘI(P )) is a singleton. (Its sole element will be denoted θ∗q below.)

D.3.2 Proof of Theorem 4.3: Simplifications for Calibrated Projection

Part I

Let θ∗p attain the outer minimum in Assumption D.2-1, let t∗ attain the inner minimum given θ∗p, and consider

any η ≤ εD/2M , where εD is from Assumption D.2-1 and M is from Assumption 4.4(ii). Then a Mean Value

Theorem yields

EP (mj(Xi, θ
∗
p + ηt∗))

σP,j(θ∗p + ηt∗)
=

EP (mj(Xi, θ
∗
p))

σP,j(θ∗p)
+ ηDPj (θ̄)t

∗

≤ 0 + η(ηM − εD)

=⇒ max
j

EP (mj(Xi, θ
∗
p + ηt∗))

σP,j(θ∗p + ηt∗)
≤ −ηεD/2. (D.35)

This will be used later but also implies

max
j

EP (mj(Xi, θ
∗
p + t∗εD/2M))

σP,j(θ∗p + t∗εD/2M)
≤ −ε2

D/4M < 0 (D.36)

=⇒ P

(
max
j

m̄j(Xi, θ
∗
p + t∗εD/2M)

σ̂j(θ∗p + t∗εD/2M))
< 0

)
→ 1

=⇒ P (θ∗p + t∗εD/2M ∈ CIn)→ 1

uniformly in Q. Hence, noncoverage risk for any γ ∈
[
−s(−p,ΘI(P )), p′(θ∗p + t∗εD/2M)

]
is entirely driven by the

possibility that CIn is too high, and conversely for γ ∈
[
p′(θ∗p + t∗εD/2M, s(p,ΘI(P )))

]
. As these noncoverage risks

are monotonic in γ, the simplification is justified.

Part II

Note first that, as an immediate implication of D.36, the event that minθ∈Θ maxj |m̄n,j(θ)/σ̂n,j(θ)|+ = 0, hence

this value is attained on Θ̂I , occurs w.p.a. 1 uniformly in Q.

Next, we show that
√
n(s(p, Θ̂I)− s(p,ΘI(P ))) = OQ(1). Define

C(−ε) =

{
θ ∈ Θ : max

j=1,...,J
EP (mj(Xi, θ)/σP,j(θ)) ≤ −ε

}
.

Note that in this notation, ΘI(P ) = C(0). By (D.36) and because C(−ε) is closed by assumptions on mj , we have

that H(p, C(−ε)) is nonempty for ε ∈ [0, ε2
D/4M ]. Next, consider any η ≤ εD/2M , then p′(θ∗p + ηt∗) ≥ p′θ∗p − η,

which together with (D.35) implies

s(p, C(−ηεD/2))− s(p,ΘI) ≥ −η.

Set ε = ηεD/2, then equivalently we find that for ε ≤ ε2
D/4M , s(p, C(−ε) − s(p,ΘI)) ≥ −2ε/εD. Next, we have
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that uniformly over θ ∈ ∪ε∈[0,ε2D/4M ]H(p, C(−ε)),

√
nmax

j
|m̄n,j(θ)/σ̂n,j(θ)|+ = max

j

{
(1− ηn,j(θ))

∣∣Gn,j(θ) +
√
nEP (mj(Xi, θ)/σP,j(θ))

∣∣
+

}
≤

∑
j

(1− ηn,j(θ))
∣∣Gn,j(θ) +

√
nEP (mj(Xi, θ)/σP,j(θ))

∣∣
+

≤ J(1 + oQ(1))
∣∣OQ(1)−

√
nε
∣∣
+
,

so in analogy to CHT (Theorem 4.2, step 1 of proof) we find
√
n|s(p, Θ̂I)−s(p,ΘI)|− = OQ(1). On the other hand,

from Assumption D.3 we have that uniformly over θ ∈ Θ,

√
nmax

j
|m̄n,j(θ)/σ̂n,j(θ)|+ = max

j

{
(1− ηn,j(θ))

∣∣Gn,j(θ) +
√
nEP (mj(Xi, θ)/σP,j(θ))

∣∣
+

}
≥ 1

J

J∑
j=1

(1− ηn,j(θ))
∣∣Gn,j(θ) +

√
nEP (mj(Xi, θ)/σP,j(θ))

∣∣
+

≥ 1

J

J∑
j=1

(1 + oQ(1))
∣∣OQ(1) +

√
nC min {δ, d(θ,ΘI(P ))}

∣∣
+
,

hence
√
n|s(p, Θ̂I)− s(p,ΘI(P ))|+ = OQ(1).

We next argue that d(θ̂p, H(p,ΘI(P ))) = OQ(n−1/2) (the proof for d(θ̂−p, H(−p,ΘI(P ))) is identical). To do

so, let k̂ ≡ s(p,ΘI(P )) − s(p, Θ̂I) and define θ̃ = θ̂p + k̂p, noting that p′θ̃ = s(p,ΘI(P )) by construction and so

Assumption D.4 applies to θ̃. Let θ̄ ∈ H(p,ΘI(P )) be such that d(θ̃, H(p,ΘI(P ))) = ‖θ̄ − θ̃‖, then

d
(
θ̂p, H(p,ΘI(P ))

)
≤ d

(
θ̂p, θ̃

)
+ d

(
θ̃, H(p,ΘI(P ))

)
≤
∥∥∥θ̂p − θ̃∥∥∥+

∥∥∥θ̃ − θ̄∥∥∥ =
∥∥∥θ̃ − θ̄∥∥∥+ k̂.

We already have
√
nk̂ = OQ(1), so it suffices to show

√
n|θ̃ − θ̄| = OQ(1). Using Assumption D.4, we have

C min
{
δ, ‖θ̃ − θ̄‖

}
≤ max
j=1,...,J

{
EP (mj(Xi, θ̃))

σP,j(θ̃)

}

= max
j=1,...,J

{
EP (mj(Xi, θ̂p))

σP,j(θ̂p)
+ k̂DPj (θ̌j)p

}

≤ max
j=1,...,J

{
EP (mj(Xi, θ̂p))

σP,j(θ̂p)

}
+ max
j=1,...,J

{
k̂DPj (θ̌j)p

}
.

Here, the equality step uses that θ̃ = θ̂p + k̂p and introduces θ̌j , which lies componentwise between θ̃ and θ̂p. In

the last line, the first term equals 0 w.p.a. 1 because θ̂p ∈ Θ̂I , and the second term is bounded by k̂M̄ , hence the

result. To justify Simplification 2, combine the above algebra with the following observations:

(i) For a sequence Pn ∈ Q, coverage of p′θ for some θ ∈ H(p,ΘI(Pn)) implies coverage of s(p,ΘI(Pn)). In

the proof of Theorem 4.1, starting with display D.7, it therefore suffices to show the claim for some, possibly

data dependent, sequence θn ∈ H(p,ΘI(Pn)), and then again (in case of two-sided testing) for a sequence θn ∈
H(−p,ΘI(Pn)).

(ii) All proofs go through if coverage is evaluated at θn but DP,j and Gn,j are estimated at some θ̂n,p =

θn +OQ(n−1/2). To give one example, Assumption 4.4 implies that ‖D̂n,j(θ̂n,p)−DPn,j(θn)‖ = oQ(1).

Part III

This is established by showing that Assumption D.1-II is implied. Thus, let W be as in (D.32). Because the
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marginals of Z are standard normal, for any η > 0 we have the Bonferroni bounds

Pr (W(c̄) ⊆ Lη) ≥ 1− η,

where

Lη =

{
λ ∈ Rd : p′λ = 0 ∩max

j

{
Φ−1(η/J) +DPjλ

}
≤ c̄
}

=

{
λ ∈ Rd : p′λ = 0 ∩max

j
DPjλ ≤ c̄+ Φ−1(1− η/J)

}
.

It remains to bound ‖Lη‖H = max {‖λ‖ : λ ∈ Lη}. To do so, we show below that

p′λ = 0⇒ max
j

{
DPjλ/ ‖λ‖

}
≥
√

1 + δ̄2 − 1√
1 + δ̄2 + 1︸ ︷︷ ︸

=:a

εD, (D.37)

where δ̄ is from Assumption D.5 and εD is from Assumption D.2. Solving (D.37) for ‖λ‖ and inspecting the

definition of Lη yields

max {‖λ‖ : λ ∈ Lη} ≤
c̄+ Φ−1(1− η/J)

aεD

and therefore an O(1) upper bound on ‖W(c̄)‖. It remains to show (D.37). Suppose by contradiction that

maxj {Djλ/ ‖λ‖} < aεD. Let the unit vector t∗ achieve the minimum from Assumption D.2-2, then maxj {Dj(λ/ ‖λ‖+ dt∗)} <
0 and therefore t ≡ λ/ ‖λ‖+ dt∗ ∈ T . We compute

λ′t

‖λ‖ ‖t‖
=

λ′
(

λ
‖λ‖ + at∗

)
‖λ‖

∥∥∥ λ
‖λ‖ + at∗

∥∥∥ =
1 + aλ

′t∗

‖λ‖∥∥∥ λ
‖λ‖ + at∗

∥∥∥ > 1− a
1 + a

= 1/
√

1 + δ̄2,

where the inequality is strict because λ 6= t∗. We conclude that maxt∈T
λ′t
‖λ‖‖t‖ > 1/

√
1 + δ̄2. In particular, if λ̂ is

the projection of λ onto T , then λ′λ̂
‖λ‖‖λ̂‖

> 1/
√

1 + δ̄2.6

However, we also have p′λ̂/‖λ̂‖ ≤ −δ̄ by Assumption D.5. It follows that p′(λ− λ̂)/‖λ̂‖ ≥ δ̄, hence ‖λ− λ̂‖2 ≥
δ̄2‖λ̂‖2 by Cauchy-Schwarz (recall p is a unit vector). But also ‖λ− λ̂‖2 + ‖λ̂‖2 = ‖λ‖2. Simple algebra then yields

‖λ̂‖/‖λ‖ ≤ 1/
√

1 + δ̄2. But ‖λ̂‖/‖λ‖ is also the cosine of the angle formed by λ and λ̂. Thus, λ′λ̂
‖λ‖‖λ̂‖

≤ 1/
√

1 + δ̄2,

a contradiction.7

D.3.3 Proof of Theorem 4.4: Asymptotic Equivalence with BCS-Profiling in Well-Behaved

Cases

Recall that under this Theorem’s assumptions, H(p,ΘI) is a singleton {θ∗p} whose element is
√
n-consistently

estimated by a sample analog θ̂p. We restrict attention to s ≥ p′(θ∗p + t∗εD/2M), where terms are as in the proof of

Theorem 4.3-(I). The proof for s < p′(θ∗p + t∗εD/2M) is analogous. Similarly to earlier proofs, consider a sequence

(Pn, sn) that asymptotically minimizes the probability from the Theorem. If
√
n(sn − s(p,ΘI(Pn))) → ∞, then

minp′θ=sn Tn(θ) → ∞ by arguments in the proof of Theorem 4.3-(II), and the conclusion obtains because both

6Verbally, if λ is near tangential to all constraints, it is near tangential to T . The counterexample to this would be a
“spike,” which is excluded by Assumption D.2-2.

7Verbally, if p′λ = 0, then λ cannot be near tangential to T because of the “pointy cone” assumption D.5, yielding a
contradiction.
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indicator functions vanish. Similarly, if
√
n(sn − s(p,ΘI(Pn))) → −∞, then both indicator functions equal 1 with

probability approaching 1 (indeed, recall the sample support function is
√
n-consistent). It remains to analyze the

case where
√
n(sn − s(p,ΘI(Pn))) = OQ(1).

Recalling that no ρ-box is used, ĉn(θ̂p) is the (1− α) quantile of

T bn = min
p′λ=0

max
j

{
Gbn,j(θ̂p) + κ−1

n

√
n
∣∣m̄n,j(θ̂p)/σ̂n,j(θ̂p)

∣∣
− + D̂n,j(θ̂p)λ

}
(1)
= min

p′λ=0
max
j

{
Gbn,j(θ̂p) + κ−1

n

√
nEP

∣∣mj(Xi, θ̂p)/σP,j(θ̂p)
∣∣
− + D̂n,j(θ̂p)λ

}
+ oQ(1)

(2)
= min

p′λ=0
max
j

{
Gbn,j(θ∗p) + κ−1

n

√
nEP

∣∣mj(Xi, θ
∗
p)/σP,j(θ

∗
p)
∣∣
− +Dn,j(θ

∗
p)λ
}

+ oQ(1),

Here, (1) uses Lemma E.5-(iii). Step (2) uses that by Theorem 4.3-(III), the values of λ solving the optimization

problems are OQ(1); by 4.3-(II),
√
n(θ̂p − θ∗p) = OQ(1); and smoothness conditions as well as consistent estimation

of gradients. These jointly imply that |D̂n,j(θ̂p)λ−Dn,j(θ
∗
p)λ| = oQ(1) uniformly over the relevant range of λ.

To compare BCS-profiling, let θ̂p,sn be the selection from arg minp′θ=sn |m̄n,j(θ)/σ̂n,j(θ)|+ that solves the prob-

lem in the definition of TDRn (sn) below. Arguments very similar to Theorem 4.3-(II) imply that
√
n(θ̂p,sn − θ∗p) =

OQ(1). We can use this, again Lemma E.5-(iii), and smoothness conditions to write

TDRn (sn) = min
θ

max
j

{
Gbn,j(θ) + κ−1

n

√
n |m̄n,j(θ)/σ̂n,j(θ)|−

}
s.t. θ ∈ arg min

p′θ=sn
max
j
|m̄n,j(θ)/σ̂n,j(θ)|+

= max
j

{
Gbn,j(θ̂p,sn) + κ−1

n

√
n
∣∣m̄n,j(θ̂p,sn)/σ̂n,j(θ̂p,sn)

∣∣
−

}
= max

j

{
Gbn,j(θ̂p,sn) + κ−1

n

√
nEP

∣∣mj(Xi, θ̂p,sn)/σP,j(θ̂p,sn)
∣∣
−

}
+ oQ(1)

= max
j

{
Gbn,j(θ∗p) + κ−1

n

√
nEP

∣∣mj(Xi, θ
∗
p)/σP,j(θ

∗
p)
∣∣
−

}
+ oQ(1).

Next,

TPRn (sn) = min
θ∈Θ:p′θ=sn

max
j

{
Gbn,j(θ) + κ−1

n

√
nm̄n,j(θ)/σ̂n,j(θ)

}
(1)
= min

θ∈Θ:p′θ=sn
max
j

{
Gbn,j(θ) + κ−1

n

√
nEP (mj(Xi, θ)/σP,j(θ))

)
}+ oQ(1)

(2)
= min

θ∈Θ:p′θ=s(p,ΘI)
max
j

{
Gbn,j(θ) + κ−1

n

√
nEP (mj(Xi, θ)/σP,j(θ))

)
}+ oQ(1)

(3)
= min

p′λ=0
max
j

{
Gbn,j(θ∗p + λκnn

−1/2) + κ−1
n

√
nEP

(
mj(Xi, θ

∗
p + λκnn

−1/2)/σP,j(θ
∗
p + λκnn

−1/2)
)}

+ oQ(1)

(4)
= min

p′λ=0
max
j

{
Gbn,j(θ∗p) + κ−1

n

√
nEP

(
mj(Xi, θ

∗
p)/σP,j(θ

∗
p)
)

+DP,j(θ
∗
p)λ
}

+ oQ(1)

(5)
= min

p′λ=0
max
j

{
Gbn,j(θ∗p) + κ−1

n

√
nEP

∣∣mj(Xi, θ
∗
p)/σP,j(θ

∗
p)
∣∣
− +DP,j(θ

∗
p)λ
}

+ oQ(1)

Here, (1) uses Lemma E.5-(iii). The first crucial step is (2), which uses that the distance between the hyperplanes

{p′θ = sn} and {p′θ = s(ΘI , p)} is of order OQ(n−1/2), together with smoothness conditions. Step (3) reparam-

eterizes θ = θ∗p + λκnn
−1/2. Crucially, BCS prove that the λ solving the problem is OQ(1). This means the

problem can be uniformly linearized, justifying step (4). Step (4) also observes cancellation of factors multiplying

DP,j(θ
∗
p)λ. Step (5) uses that θ∗p ∈ ΘI . Finally, Assumption 4.3 ensures that the true distribution of Tn, as well as

the above approximations, are of order OQ(1). We conclude that TPRn (sn) asymptotically agrees with, and TDRn (sn)

asymptotically dominates, T bn.
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Appendix E Auxiliary Lemmas

E.1 Lemmas Used to Prove Theorems 4.1 and 4.2

Throughout this Appendix, we let (Pn, θn) ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )} be a subsequence as defined in the proof

of Theorem 4.1. That is, along (Pn, θn), one has

κ−1
n

√
nγ1,Pn,j(θn)→ π1j ∈ R[−∞], j = 1, . . . , J, (E.1)

ΩPn
u→ Ω, (E.2)

DPn(θn)→ D. (E.3)

Fix c ≥ 0. For each λ ∈ Rd and θ ∈ (θn + ρ/
√
nBd) ∩Θ, let

wj(λ) ≡ Zj + ρDjλ+ π∗1,j , (E.4)

where π∗1,j is defined in (D.5) and we used Lemma E.5. Under Assumption 4.3-(II) if

π∗1,j = 0 = π∗1,j+R1
, (E.5)

we replace the constraints

Zj + ρDjλ ≤ c, (E.6)

Zj+R1
+ ρDj+R1

λ ≤ c, (E.7)

with

µj(θ){Zj + ρDjλ} − µj+R1(θ){Zj+R1 + ρDj+R1λ} ≤ c, (E.8)

−µj(θ){Zj + ρDjλ}+ µj+R1
(θ){Zj+R1

+ ρDj+R1
λ} ≤ c, (E.9)

where

µj(θ) =

{
1 if γ1,Pn,j(θ) = 0 = γ1,Pn,j+R1

(θ),
γ1,Pn,j+R1

(θ)

γ1,Pn,j+R1
(θ)+γ1,Pn,j(θ)

otherwise,
(E.10)

µj+R1
(θ) =

{
0 if γ1,Pn,j(θ) = 0 = γ1,Pn,j+R1(θ),

γ1,Pn,j(θ)
γ1,Pn,j+R1

(θ)+γ1,Pn,j(θ)
otherwise,

(E.11)

When Assumption 4.3-(II) is invoked with hard-threshold GMS, replace constraints j and j+R1 in the definition

of Λbn(θ′n, ρ, c), θ
′
n ∈ (θn + ρ/

√
nBd)∩Θ in equation (3.1) as described on p.14 of the paper; when it is invoked with

a GMS function ϕ that is smooth in its argument, replace them, respectively, with

µ̂n,j(θ
′
n){Gbn,j(θ′n) + D̂n,j(θ

′
n)λ} − µ̂n,j+R1

(θ′n){Gbn,j+R1
(θ′n) + D̂n,j+R1

(θ′n)λ}+ ϕj(ξ̂n,j(θ
′
n)) ≤ c, (E.12)

−µ̂n,j(θ′n){Gbn,j(θ′n) + D̂n,j(θ
′
n)λ}+ µ̂n,j+R1

(θ′n){Gbn,j+R1
(θ′n) + D̂n,j+R1

(θ′n)λ}+ ϕj+R1
(ξ̂n,j+R1

(θ′n)) ≤ c, (E.13)

where

µ̂n,j+R1
(θ′n) = min

max

0,

m̄n,j(θ
′
n)

σ̂n,j(θ′n)

m̄n,j+R1
(θ′n)

σ̂n,j+R1
(θ′n) +

m̄n,j(θ′n)
σ̂n,j(θ′n)

 , 1

 , (E.14)

µ̂n,j(θ
′
n) = 1− µ̂n,j+R1

(θ′n). (E.15)
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Let Bd
ρ = limn→∞Bdn,ρ. Let the intersection of {λ ∈ Bd

ρ : p′λ = 0} with the level set associated with the so

defined function wj(λ) be

W(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}
. (E.16)

Due to the substitutions in equations (E.6)-(E.9), the paired inequalities (i.e., inequalities for which (E.5) holds

under Assumption 4.3-(II)) are now genuine equalities relaxed by c. With some abuse of notation, we index them

among the j = J1 + 1, . . . , J . With that convention, for given δ ∈ R, define

Wδ(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c+ δ, ∀j = 1, . . . , J1,

∩wj(λ) ≤ c, ∀j = J1 + 1, . . . , J
}
. (E.17)

Define the (J + 2d+ 2)× d matrix

KP (θ, ρ) ≡



[ρDP,j(θ)]
J1+J2
j=1

[−ρDP,j−J2(θ)]Jj=J1+J2+1

Id

−Id
p′

−p′


. (E.18)

Given a square matrix A, we let eig(A) denote its smallest eigenvalue. In all Lemmas below, we assume α < 1/2.

Lemma E.1: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let {Pn, θn} be a sequence such that Pn ∈ P and

θn ∈ ΘI(Pn) for all n and κ−1
n

√
nγ1,Pn,j(θn)→ π1j ∈ R[−∞], j = 1, . . . , J, ΩPn

u→ Ω, and DPn(θn)→ D. Then,

lim inf
n→∞

Pn (Un(θn, ĉn,ρ) 6= ∅) ≥ 1− α. (E.19)

Proof. We consider a subsequence along which lim infn→∞ Pn(Un(θn, ĉn,ρ 6= ∅) is achieved as a limit. For notational

simplicity, we use {n} for this subsequence below.

Below, we construct a sequence of critical values such that

ĉn(θ′n) ≥ cIn(θ′n) + oPn(1), (E.20)

and cIn(θ′n)
Pn→ cπ∗ for any θ′n ∈ (θn+ρ/

√
nBd)∩Θ. The construction is as follows. When cπ∗ = 0, let cIn(θ′n) = 0 for

all θ′n ∈ (θn + ρ/
√
nBd)∩Θ, and hence cIn(θ′n)

Pn→ cπ∗ . If cπ∗ > 0, let cIn(θn) ≡ inf{c ∈ R+ : P ∗n(V In (θn, c)) ≥ 1−α},
where V In is defined as in Lemma E.3. By Lemma E.3 (iii), this critical value sequence satisfies (E.20) with

probability approaching 1. Further, by Lemma E.3 (ii), cIn(θ′n)
Pn→ cπ∗ for any θ′n ∈ (θn + ρ/

√
nBd) ∩Θ.

For each θ ∈ Θ, let

cIn,ρ(θ) ≡ inf
λ∈Bdn,ρ

cIn(θ +
λρ√
n

). (E.21)

Since the oPn(1) term in (E.20) does not affect the argument below, we redefine cIn,ρ(θn) as cIn,ρ(θn) + oPn(1). By
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(E.20) and simple addition and subtraction,

Pn

(
Un(θn, ĉn,ρ(θn)) 6= ∅

)
≥ Pn

(
Un(θn, c

I
n,ρ(θn)) 6= ∅

)
= Pr(W(cπ∗) 6= ∅) +

[
Pn

(
Un(θn, c

I
n,ρ(θn)) 6= ∅

)
− Pr

(
W(cπ∗) 6= ∅

)]
. (E.22)

As previously argued, Gn(θn + λρ√
n

)
d→ Z. Moreover, by Lemma E.10, supθ∈Θ ‖ηn(θ)‖ p→ 0 uniformly in P, and by

Lemma E.3, cIn,ρ(θn)
p→ cπ∗ . Therefore, uniformly in λ ∈ Bd, the sequence {(Gn(θn + λρ√

n
), ηn(θn + λρ√

n
), cIn,ρ(θn))}

satisfies

(Gn(θn +
λρ√
n

), ηn(θn +
λρ√
n

), cIn,ρ(θn))
d→ (Z, 0, cπ∗). (E.23)

In what follows, using Lemma 1.10.4 in van der Vaart and Wellner (2000) we take (G∗n(θn + λρ√
n

), η∗n, c
∗
n) to be the

almost sure representation of (Gn(θn+ λρ√
n

), ηn(θn+ λρ√
n

), cIn,ρ(θn)) defined on some probability space (Ω,F ,P) such

that (G∗n(θn + λρ√
n

), η∗n, c
∗
n)

a.s.→ (Z∗, 0, cπ∗), where Z∗ d
= Z.

For each λ ∈ Rd, we define analogs to the quantities in (D.24) and (E.4) as

u∗n,j,θn(λ) ≡ {G∗n,j(θn +
λρ√
n

) + ρDPn,j(θ̄n)λ+ π∗1,j}(1 + η∗n,j), (E.24)

w∗j (λ) ≡ Z∗j + ρDjλ+ π∗1,j . (E.25)

where we used that by Lemma E.5, κ−1
n

√
nγ1,P,j(θn)−κ−1

n

√
nγ1,P,j(θ

′
n) = o(1) uniformly over θ′n ∈ (θn+ρ/

√
nBd)∩

Θ and therefore π∗1,j is constant over this neighborhood, and we applied a similar replacement as described in

equations (E.6)-(E.9) for the case that π∗1,j = 0 = π∗1,j+R1
. Similarly, we define analogs to the sets in (D.25) and

(E.16) as

U∗n(θn, c
∗
n) ≡

{
λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c∗n, ∀j = 1, . . . , J

}
, (E.26)

W∗(cπ∗) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩w∗j (λ) ≤ cπ∗ , ∀j = 1, . . . , J
}
. (E.27)

It then follows that equation (E.22) can be rewritten as

Pn

(
Un(θn, ĉn,ρ(θn)) 6= ∅

)
≥ P(W∗(cπ∗) 6= ∅) +

[
P
(
U∗n(θn, c

∗
n) 6= ∅

)
−P

(
W∗(cπ∗) 6= ∅

)]
. (E.28)

By the definition of cπ∗ , we have P(W∗(cπ∗) 6= ∅) ≥ 1− α. Therefore, we are left to show that the second term on

the right hand side of (E.28) tends to 0 as n→∞.

Define

J ∗ ≡ {j = 1, · · · , J : π∗1,j = 0}. (E.29)

Case 1. Suppose first that J ∗ = ∅, which implies J2 = 0 and π∗1,j = −∞ for all j. Then we have

U∗n(θn, c
∗
n) = {λ ∈ Bdn,ρ : p′λ = 0}, W∗(cπ∗) = {λ ∈ Bd

ρ : p′λ = 0}, (E.30)

with probability 1, and hence

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗(cπ∗) 6= ∅}

)
= 1. (E.31)

This in turn implies that ∣∣∣P(U∗n(θn, c
∗
n) 6= ∅}

)
−P

(
W∗(cπ∗) 6= ∅}

)∣∣∣ = 0, (E.32)
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where we used |P(A)−P(B)| ≤ P(A∆B) ≤ 1−P(A ∩B) for any pair of events A and B. Hence, the term in the

square brackets in (E.28) is 0.

Case 2. Now consider the case that J ∗ 6= ∅. We show that the term in the square brackets in (E.28) converges to

0. To that end, note that for any events A,B,∣∣∣P(A 6= ∅)−P(B 6= ∅)
∣∣∣ ≤ ∣∣∣P({A = ∅} ∩ {B 6= ∅}) + P({A 6= ∅} ∩ {B = ∅})

∣∣∣ (E.33)

Hence, we aim to establish that for A = U∗n(θn, c
∗
n), B = W∗(cπ∗), the right hand side of equation (E.33) converges

to zero. But this is guaranteed by Lemma E.2. Therefore, the conclusion of the lemma follows.

Lemma E.2: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let (Pn, θn) have the almost sure representations

given in Lemma E.1, and let J ∗ be defined as in (E.29). Assume that J ∗ 6= ∅. Then for any η > 0, there exists

N ∈ N such that

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
≤ η/2, (E.34)

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗(cπ∗) 6= ∅}

)
≤ η/2, (E.35)

for all n ≥ N , where the sets in the above expressions are defined in equations (E.26) and (E.27).

Proof. We begin by observing that for j /∈ J ∗, π∗1,j = −∞, and therefore the corresponding inequalities(
G∗n,j(θn +

λρ√
n

) + ρDPn,j(θ̄n)λ+ π∗1,j

)
(1 + η∗n,j) ≤ c∗n,

Z∗j + ρDjλ+ π∗1,j ≤ cπ∗

are satisfied with probability approaching one by similar arguments as in (D.20). Hence, we can redefine the sets

of interest as

U∗n(θn, c
∗
n) ≡

{
λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c∗n, ∀j ∈ J ∗

}
, (E.36)

W∗(cπ∗) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩w∗j (λ) ≤ cπ∗ , ∀j ∈ J ∗
}
. (E.37)

We first show (E.34). For this, we start by defining the events

An ≡
{

sup
λ∈Bd

max
j∈J ∗

∣∣(u∗n,j,θn(λ)− c∗n)− (w∗j (λ)− cπ∗)
∣∣ ≥ δ} . (E.38)

By Lemma E.4, using the assumption that J ∗ 6= ∅, for any η > 0 there exists N ∈ N such that

P(An) < η/2, ∀n ≥ N. (E.39)

Define the sets of λs, U∗,+δn and W∗,+δ by relaxing the constraints shaping U∗n and W∗ by δ:

U∗,+δn (θn, c) ≡ {λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c+ δ, j ∈ J ∗}, (E.40)

W∗,+δ(c) ≡ {λ ∈ Bd
ρ : p′λ = 0 ∩w∗j (λ) ≤ c+ δ, j ∈ J ∗}. (E.41)

Compared to the set in equation (E.17), here we replace u∗n,j,θn(λ) for un,j,θn(λ) and w∗j (λ) for wj(λ), we retain

only constraints in J ∗, and we relax all such constraints by δ > 0 instead of relaxing only those in {1, . . . , J1}.
Next, define the event Ln ≡ {U∗n(θn, c

∗
n) ⊂W∗,+δ(cπ∗)} and note that Acn ⊆ Ln.
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We may then bound the left hand side of (E.34) as

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
≤ P

(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗,+δ(cπ∗) = ∅}

)
+ P

(
{W∗,+δ(cπ∗) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
, (E.42)

where we used P (A ∩ B) ≤ P (A ∩ C) + P (B ∩ Cc) for any events A,B, and C. The first term on the right hand

side of (E.42) can further be bounded as

P
(
{U∗n(θn, c

∗
n) 6= ∅} ∩ {W∗,+δ(cπ∗) = ∅}

)
≤ P

(
{U∗n(θn, c

∗
n) 6⊆W∗,+δ(cπ∗)}

)
= P(Lcn) ≤ P(An) < η/2, ∀n ≥ N , (E.43)

where the penultimate inequality follows from Acn ⊆ Ln as argued above, and the last inequality follows from (E.39).

For the second term on the left hand side of (E.42), by Lemma E.6, there exists N ′ ∈ N such that

P
(
{W∗,+δ(cπ∗) 6= ∅} ∩ {W∗(cπ∗) = ∅}

)
≤ η/2, ∀n ≥ N ′. (E.44)

Hence, (E.34) follows from (E.42), (E.43), and (E.44).

To establish (E.35), we distinguish three cases.

Case 1. Suppose first that J2 = 0 (recalling that under Assumption 4.3-(II) this means that there is no j = 1, . . . , R1

such that π∗1,j = 0 = π∗1,j+R1
), and hence one has only moment inequalities. In this case, by (E.36) and (E.37), one

may write

U∗n(θn, c) ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ u∗n,j,θn(λ) ≤ c, j ∈ J ∗

}
, (E.45)

W∗,−δ(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩w∗j (λ) ≤ c− δ, j ∈ J ∗
}
, (E.46)

where W∗,−δ, δ > 0, is obtained by tightening the inequality constraints shaping W∗. Define the event

R2n ≡ {W∗,−δ(cπ∗) ⊂ U∗n(θn, c
∗
n)}, (E.47)

and note that Acn ⊆ R2n. The result in equation (E.35) then follows by Lemma E.6 using again similar steps to

(E.42)-(E.44).

Case 2. Next suppose that J2 ≥ d. In this case, we define W∗,−δ to be the set obtained by tightening by δ the

inequality constraints as well as each of the two opposing inequalities obtained from the equality constraints. That

is,

W∗,−δ(cπ∗) ≡ {λ ∈ Bd
ρ : p′λ = 0 ∩w∗j (λ) ≤ c− δ, j ∈ J ∗}, (E.48)

that is, the same set as in (E.133) with w∗j (λ) replacing wj(λ) and defining the set using only inequalities in J ∗.
Note that, by Lemma E.8, there exists N ∈ N such that for all n ≥ N cIn(θ) is bounded from below by some c > 0

with probability approaching one uniformly in P ∈ P and θ ∈ ΘI(P ). This ensures cπ∗ is bounded from below

by c > 0. This in turn allows us to construct a non-empty tightened constraint set with probability approaching

1. Namely, for δ < c, W∗,−δ(cπ∗) is nonempty with probability approaching 1 by Lemma E.6, and hence its

superset W∗(cπ∗) is also non-empty with probability approaching 1. However, note that Acn ⊆ R2n, where R2n is

in (E.47) now defined using the tightened constraint set W∗,−δ(cπ∗) being defined as in (E.48), and therefore the

same argument as in the previous case applies.

[32]



Case 3. Finally, suppose that 1 ≤ J2 < d. Recall that, with probability 1 (under P),

cπ∗ = lim
n→∞

c∗n, (E.49)

and note that by construction cπ∗ ≥ 0. Consider first the case that cπ∗ > 0. Then, by taking δ < cπ∗ , the argument

in Case 2 applies.

Next consider the case that cπ∗ = 0. Observe that

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗(cπ∗) 6= ∅}

)
≤ P

(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗,−δ(0) 6= ∅}

)
+ P

(
{W∗,−δ(0) = ∅} ∩ {W∗(0) 6= ∅}

)
, (E.50)

with W∗,−δ(0) defined as in (E.17) with c = 0 and with w∗j (λ) replacing wj(λ). By Lemma E.6, for any η > 0 there

exists δ > 0 and N ∈ N such that

P
(
{W∗,−δ(0) = ∅} ∩ {W∗(0) 6= ∅}

)
< η/3 ∀n ≥ N. (E.51)

Therefore, the second term on the right hand side of (E.50) can be made arbitrarily small.

We now consider the first term on the right hand side of (E.50). Let g be a J + 2d+ 2 vector with

gj =


−Zj , j ∈ J ∗,
0, j ∈ {1, · · · , J} \ J ∗,
1, j = J + 1, . . . , J + 2d,

0, j = J + 2d+ 1, J + 2d+ 2,

(E.52)

where we used that π∗1,j = 0 for j ∈ J ∗ and where the last assignment is without loss of generality because of the

considerations leading to the sets in (E.36)-(E.37).

For a given set C ⊂ {1, . . . , J + 2d+ 2}, let the vector gC collect the entries of gC corresponding to indices in

C. Let

K ≡



[ρDj ]
J1+J2
j=1

[−ρDj−J2 ]Jj=J1+J2+1

Id

−Id
p′

−p′


. (E.53)

Let the matrix KC collect the rows of K corresponding to indices in C.

Let C̃ collect all size d subsets C of {1, ..., J + 2d+ 2} ordered lexicographically by their smallest, then second

smallest, etc. elements. Let the random variable C equal the first element of C̃ s.t. detKC 6= 0 and λC =

(KC)−1gC ∈ W∗,−δ(0) if such an element exists; else, let C = {J + 1, ..., J + d} and λC = 1d, where 1d denotes a

d vector with each entry equal to 1. Recall that W∗,−δ(0) is a (possibly empty) measurable random polyhedron in

a compact subset of Rd, see, e.g., Molchanov (2005, Definition 1.1.1). Thus, if W∗,−δ(0) 6= ∅, then W∗,−δ(0) has

extreme points, each of which is characterized as the intersection of d (not necessarily unique) linearly independent

constraints interpreted as equalities. Therefore, W∗,−δ(0) 6= ∅ implies that λC ∈ W∗,−δ(0) and therefore also that

C ⊂ J ∗ ∪{J + 1, . . . , J + 2d+ 2}. Note that the associated random vector λC is a measurable selection of a random

closed set that equals W∗,−δ(0) if W∗,−δ(0) 6= ∅ and equals Bd
ρ otherwise, see, e.g., Molchanov (2005, Definition

1.2.2).
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Lemma E.7 establishes that for any η > 0, there exist εη > 0 and N s.t. n ≥ N implies

P
(
W∗,−δ(0) 6= ∅,

∣∣detKC
∣∣ ≤ εη) ≤ η, (E.54)

which in turn, given our definition of C, yields that there is M > 0 and N such that

P
(∣∣det

(
KC
)−1 ∣∣ ≤M) ≥ 1− η, ∀n ≥ N. (E.55)

Let gn be a J + 2d+ 2 vector with

gn,j(θ + λ/
√
n) ≡


c∗n/(1 + η∗n,j)−G∗n,j(θ + λρ√

n
) if j ∈ J ∗,

0, if j ∈ {1, · · · , J} \ J ∗,
1, if j = J + 1, . . . , J + 2d,

0, if j = J + 2d+ 1, J + 2d+ 2,

(E.56)

using again that π∗1,j = 0 for j ∈ J ∗. For each P ∈ P, let

KP (θ, ρ) ≡



[ρDP,j(θ)]
J1+J2
j=1

[−ρDP,j−J2
(θ)]Jj=J1+J2+1

Id

−Id
p′

−p′


. (E.57)

For each n and λ ∈ Bd, define the mapping φn : Bd → Rd[±∞] by

φn(λ) ≡
(
KCPn(θ̄(θn, λ), ρ)

)−1
gCn(θn +

λρ√
n

), (E.58)

where the notation θ̄(θn, λ) emphasizes that θ̄ depends on θn and λ because it lies component-wise between θn and

θn + λρ√
n

. We show that φn is a contraction mapping and hence has a fixed point.

For any λ, λ′ ∈ Bd write

‖φn(λ)− φn(λ′)‖ =
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1
gCn(θn +

λρ√
n

)−
(
KCPn(θ̄(θn, λ

′), ρ)
)−1

gCn(θn +
λ′ρ√
n

)
∥∥∥

≤
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2

∥∥∥gCn(θn +
λρ√
n

)− gCn(θn +
λ′ρ√
n

)
∥∥∥

+
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1 −
(
KCPn(θ̄(θn, λ

′), ρ)
)−1
∥∥∥

2

∥∥∥gCn(θn +
λ′ρ√
n

)
∥∥∥, (E.59)

where ‖ · ‖2 denotes the spectral norm (induced by the Euclidean norm).

By Assumption 4.5 (ii), for any η > 0, k > 0, there is N ∈ N such that

P

(∥∥∥∥gCn(θn +
λρ√
n

)− gCn(θn +
λ′ρ√
n

)

∥∥∥∥ ≤ k‖λ− λ′‖)
= P

(
‖G∗,Cn (θn +

λρ√
n

)−G∗,Cn (θn +
λ′ρ√
n

)‖ ≤ k‖λ− λ′‖
)
≥ 1− η, ∀n ≥ N. (E.60)
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Moreover, by arguing as in equation (D.20), for any η there exist 0 < L <∞ and N ∈ N such that ∀n ≥ N

P

(
sup
λ′∈Bd

∥∥∥∥gCn(θn +
λ′ρ√
n

)

∥∥∥∥ ≤ L) ≥ 1− η. (E.61)

For any invertible matrix K, ‖K−1‖2 = (min{
√
α : α is an eigenvalue of KK ′})−1

. Hence, by the proof of Lemma

E.7 and the definition of C, for any η > 0, there exist 0 < L <∞ and N ∈ N such that

P
(∥∥(KC)−1∥∥

2
≤ L

)
≥ 1− η, ∀n ≥ N, (E.62)

By Horn and Johnson (1985, ch. 5.8), for any invertible matrices K, K̃ such that ‖K̃−1(K − K̃)‖2 < 1,

‖K−1 − K̃−1‖2 ≤
‖K̃−1(K − K̃)‖2

1− ‖K̃−1(K − K̃)‖2
‖K̃−1‖2. (E.63)

By the assumption that DPn(θn)→ D and Assumption 4.4, for any η > 0, there exists N ∈ N such that

sup
λ∈Bd

‖KCPn(θ̄(θn, λ), ρ)−KC‖2 ≤ η, ∀n ≥ N. (E.64)

By (E.63), the definition of the spectral norm, and the triangle inequality, for any η > 0, there exist 0 < L1, L2 <∞
and N ∈ N such that

P
(

sup
λ∈Bd

∥∥(KCPn(θ̄(θn, λ), ρ)
)−1∥∥

2
≤ 2L1

)
≥ P

(∥∥(KC)−1∥∥
2

+ sup
λ∈Bd

‖KCPn(θ̄(θn, λ), ρ)−1 − (KC)−1‖2 ≤ 2L1

)
≥ P

(∥∥(KC)−1∥∥
2
≤ L1,

‖
(
KC
)−1‖22

1− ‖
(
KC
)−1

(KCPn(θ̄(θn, λ), ρ)−KC)‖2
≤ L2, sup

λ∈Bd
‖KCPn(θ̄(θn, λ), ρ)−KC‖2 ≤

L1

L2

)
≥ 1− 2η, ∀n ≥ N, (E.65)

Again by applying (E.63), for any k > 0, there exists N ∈ N such that

P
(∥∥(KCPn(θ̄(θn, λ))

)−1 −
(
KCPn(θ̄(θn, λ

′))
)−1∥∥

2
≤ k‖λ− λ′‖

)
≥ P

(
sup
λ∈Bd

∥∥(KCPn(θ̄(θn, λ))
)−1∥∥2

2
Mρ‖θ̄(θn, λ)− θ̄(θn, λ′)‖ ≤ k‖λ− λ′‖

)
≥ 1− η, ∀n ≥ N, (E.66)

where the first inequality follows from ‖KCPn(θ̄(θn, λ))−KCPn(θ̄(θn, λ
′))‖2 ≤Mρ‖θ̄(θn, λ)−θ̄(θn, λ′)‖ ≤Mρ2/

√
n‖λ−

λ′‖ by Assumption 4.4 (ii), and the last inequality follows from (E.65).

By (E.59)-(E.61) and (E.65)-(E.66), it then follows that there exists β ∈ [0, 1) such that for any η > 0, there

exists N ∈ N such that

P
(
|φn(λ)− φn(λ′)| ≤ β‖λ− λ′‖, ∀λ, λ′ ∈ Bd

)
≥ 1− η, ∀n ≥ N. (E.67)

This implies that with probability approaching 1, each φn(·) is a contraction, and therefore by the Contraction

Mapping Theorem it has a fixed point (e.g., Pata (2014, Theorem 1.3)). This in turn implies that for any η > 0

there exists a N ∈ N such that

P
(
∃λfn : λfn = φn(λfn)

)
≥ 1− η, ∀n ≥ N. (E.68)
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Next, define the mapping

ψn(λ) ≡
(
KC
)−1

gC . (E.69)

This map is constant in λ and hence is uniformly continuous and a contraction with Lipschitz constant equal to

zero. It therefore has λCn as its fixed point. Moreover, by (E.58) and (E.69) arguing as in (E.59), it follows that for

any λ ∈ Bd,

‖ψn(λ)− φn(λ)‖ ≤
∥∥∥(KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2

∥∥∥gC − gCn(θn +
λρ√
n

)
∥∥∥

+
∥∥∥(KC)−1 −

(
KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2

∥∥gC∥∥. (E.70)

By (E.52) and (E.56)∥∥∥gC − gCn(θn +
λρ√
n

)
∥∥∥ ≤ max

j∈J ∗
| − Z∗j − c∗n/(1 + η∗n,j) + G∗n,j(θn +

λρ√
n

)|

≤ max
j∈J ∗

|Z∗j −G∗n,j(θn +
λρ√
n

)|+ max
j∈J ∗

|c∗n/(1 + η∗n,j)|. (E.71)

We note that when Assumption 4.3-(II) is used, for each j = 1, . . . , R1 such that π∗1,j = 0 = π∗1,j+R1
we have that

|µ̃j −µj | = oP(1) because supθ∈Θ |ηj(θ)| = oP(1), where µ̃j and µj were defined in (D.11)-(D.12) and (E.10)-(E.11)

respectively. Moreover, G∗n,j(θn + λρ√
n

)
a.s.→ Z∗ and (E.49) implies c∗n → 0 so that we have

sup
λ∈Bd

‖gC − gCn(θn +
λρ√
n

)‖ a.s.→ 0. (E.72)

Further, by (E.63), DPn → D and, Assumption 4.4-(ii), for any η > 0, there exists N ∈ N such that

sup
λ∈Bd

∥∥∥(KC)−1 −
(
KCPn(θ̄(θn, λ), ρ)

)−1
∥∥∥

2
≤ η, ∀n ≥ N. (E.73)

In sum, by (E.61), (E.65), and (E.71)-(E.73), for any η, ν > 0, there exists N ≥ N such that

P

(
sup
λ∈Bd

‖ψn(λ)− φn(λ)‖ < ν

)
≥ 1− η, ∀n ≥ N. (E.74)

Hence, for a specific choice of ν = κ(1− β), where β is defined in equation (E.67), we have that supλ∈Bd ‖ψn(λ)−
φn(λ)‖ < κ(1− β) implies

‖λCn − λfn‖ = ‖ψn(λCn)− φn(λfn)‖

≤ ‖ψn(λCn)− φn(λCn)‖+ ‖φn(λCn)− φn(λfn)‖

≤ κ(1− β) + β‖λCn − λfn‖ (E.75)

Rearranging terms, we obtain ‖λCn − λfn‖ ≤ κ. Note that by Assumptions 4.4 (i) and 4.5 (i), for any δ > 0, there

exists κδ > 0 and N ∈ N such that

P
(

sup
‖λ−λ′‖≤κδ

|u∗n,j,θn(λ)− u∗n,j,θn(λ′)| < δ
)
≥ 1− η, ∀n ≥ N. (E.76)

For λCn ∈W∗,−δ(0), one has

w∗j (λ
C
n) + δ ≤ 0, j ∈ {1, · · · , J1} ∩ J ∗. (E.77)
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Hence, by (E.39), (E.49), and (E.76)-(E.77), ‖λCn − λfn‖ ≤ κδ/4, for each j ∈ {1, · · · , J1} ∩ J ∗ we have

u∗n,j,θn(λfn)− c∗n(θn) ≤ u∗n,j,θn(λCn)− c∗n(θn) + δ/4 ≤ w∗j (λ
C
n) + δ/2 ≤ 0. (E.78)

For j ∈ {J1 + 1, · · · , 2J2} ∩ J ∗, the inequalities hold by construction given the definition of C.
In sum, for any η > 0 there exists δ > 0 and N ∈ N such that for all n ≥ N we have

P
(
{U∗n(θn, c

∗
n) = ∅} ∩ {W∗,−δ(0) 6= ∅}

)
≤ P

(
@λfn ∈ U∗n(θn, c

∗
n),∃λCn ∈W∗,−δ(0)

)
≤ P

({
sup
λ∈Bd

‖ψn(λ)− φn(λ)‖ < κδ(1− β) ∩An
}c)

≤ η/3, (E.79)

where Ac denotes the complement of the set A, and the last inequality follows from (E.39) and (E.74).

Lemma E.3: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let {Pn, θn} ∈ {(P, θ) : P ∈ P, θ ∈ ΘI(P )}
be a sequence satisfying (E.1)-(E.3). For each j, let

vIn,j,θn(λ) ≡ Gbn,j(θn) + ρD̂n,j(θn)λ+ ϕ∗j (ξ̂n,j(θn)), (E.80)

wj(λ) ≡ Zj + ρDjλ+ π∗1,j , (E.81)

where

ϕ∗j (ξ) =


ϕj(ξ) π1,j = 0

−∞ π1,j < 0

0 j = J1 + 1, · · · , J.

(E.82)

For each c ≥ 0, define

V In (θn, c) ≡ {λ ∈ Bdn,ρ : p′λ = 0 ∩ vIn,j,θn(λ) ≤ c, j = 1, · · · , J}, (E.83)

W(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c, ∀j = 1, . . . , J
}
. (E.84)

We then let cIn(θn) ≡ inf{c ∈ R+ : P ∗n(V In (θn, c) 6= ∅) ≥ 1− α} and cπ∗ ≡ inf{c ∈ R+ : Pr(W(c) 6= ∅) ≥ 1− α}.
Then, (i) for any c > 0 and {θ′n} ⊂ Θ such that θ′n ∈ (θn + ρ/

√
nBd) ∩Θ for all n,

P ∗n(V In (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)→ 0, (E.85)

with probability approaching 1;

(ii) If cπ∗ > 0, cIn(θ′n)
Pn→ cπ∗ ;

(iii) For any {θ′n} ⊂ Θ such that θ′n ∈ (θn + ρ/
√
nBd) ∩Θ for all n,

ĉn(θ′n) ≥ cIn(θ′n) + oPn(1). (E.86)

Proof. Throughout, let c > 0 and let {θ′n} ⊂ Θ be a sequence such that θ′n ∈ (θn + ρ/
√
nBd) ∩ Θ for all n. By

Lemma E.15, in l∞(Θ) uniformly in P conditional on {Xi}∞i=1, and by Assumption 4.4 ‖D̂n(θ′n)−DPn(θn)‖ p→ 0.

Further, by Lemma E.5, ξ̂n,j(θ
′
n)

Pn→ π1,j . Therefore,

(Gbn(θ′n), D̂n(θ′n), ξ̂n(θ′n))|{Xi}∞i=1
d→ (Z, D, π1). (E.87)

for almost all sample paths {Xi}∞i=1. By Lemma E.17, conditional on the sample path, there exists an almost sure

representation (G̃bn(θ′n), D̃n, ξ̃n) of (Gbn(θ′n), D̂n(θ′n), ξ̂n(θ′n)) defined on another probability space (Ω̃, F̃ , P̃) such

that (G̃bn(θ′n), D̃n, ξ̃n)
d
= (Gbn(θ′n), D̂n(θ′n), ξ̂n(θ′n)) conditional on the sample path. In particular, conditional on the
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sample, (D̂n(θ′n), ξ̂n(θ′n)) are non-stochastic. Therefore, we set (D̃n, ξ̃n) = (D̂n(θ′n), ξ̂n(θ′n)), P̃ − a.s. The almost

sure representation satisfies (G̃bn(θ′n), D̃n, ξ̃n,j)
a.s.→ (Z̃, D, π1) for almost all sample paths, where Z̃ d

= Z. The almost

sure representation (G̃bn, D̃n, ξ̃n) is defined for each sample path x∞ = {xi}∞i=1, but we suppress its dependence on

x∞ for notational simplicity (see Appendix E.3 for details). Using this representation, define

ṽIn,j,θ′n(λ) ≡ G̃bn,j(θ′n) + ρD̃nλ+ ϕ∗j (ξ̃n,j), (E.88)

and

w̃j(λ) ≡ Z̃j + ρDjλ+ π∗1,j , (E.89)

where Z̃ d
= Z, and G̃bn(θ′n)→ Z̃, P̃− a.s. conditional on {Xi}∞i=1. With this construction, one may write

|P ∗n(V In (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)| = |P̃(Ṽ In (θ′n, c) 6= ∅)− P̃(W̃(c) 6= ∅)|

≤ |P̃(Ṽ In (θ′n, c) = ∅ ∩ W̃(c) 6= ∅) + P̃(Ṽ In (θ′n, c) 6= ∅ ∩ W̃(c) = ∅)|, (E.90)

where the inequality is due to (E.33). First, we bound the first term on the right hand side of (E.90). Note that

P̃(Ṽ In (θ′n, c) = ∅ ∩ W̃(c) 6= ∅) ≤ P̃(Ṽ I,+δn (θ′n, c) = ∅ ∩ W̃(c) 6= ∅) + P̃(Ṽ I,+δn (θ′n, c) 6= ∅ ∩ Ṽ In (θ′n, c) = ∅), (E.91)

where Ṽ I,+δn is defined as

Ṽ I,+δn ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ ṽIn,j,θ′n(λ) ≤ c+ δ, j ∈ J ∗

}
. (E.92)

Let

An ≡
{
ω̃ ∈ Ω̃ : sup

λ∈Bd
max
j∈J ∗

|ṽIn,j,θ′n(λ)− w̃j(λ)| ≥ δ
}
. (E.93)

Let

E ≡ {{xi}∞i=1 : ‖D̂n(θ′n)−D‖ < η, max
j∈J ∗

|ϕ∗j (ξ̂n,j(θ′n))− π∗1,j | < η}. (E.94)

Note that, Pn(E) ≥ 1− η for all n sufficiently large by Assumption 4.4 and Lemma E.5. On E, we therefore have

‖D̃n −D‖ < η and maxj∈J ∗ |ξ̃n,j − π∗1,j | < η, P̃− a.s. Below, we condition on {Xi}∞i=1 ∈ E. For any j ∈ J ∗,

|ṽIn,j,θ′n(λ)− w̃j(λ)| ≤ |G̃bn,j(θ′n)− Z̃j |+ ρ‖D̃j,n −Dj‖‖λ‖+ |ϕ∗j (ξ̃n,j)− π∗1,j | ≤ (2 + ρ)η, (E.95)

uniformly in λ ∈ Bd, where we used G̃bn → Z̃, P̃− a.s. Since η can be chosen arbitrarily small, this in turn implies

P̃
(
An
)
< η/2,

for all n sufficiently large. Note also that supλ∈Bd maxj∈J ∗ |ṽIn,j,θ′n(λ) − w̃j(λ)| < δ implies W̃(c) ⊆ Ṽ I,+δn (θ′n, c),

and hence Acn is a subset of

Ln ≡
{
ω̃ ∈ Ω̃ : W̃(c) ⊆ Ṽ I,+δn (θ′n, c)

}
. (E.96)

Using this,

P̃(Ṽ I,+δn (θ′n, c) = ∅ ∩ W̃(c) 6= ∅) ≤ P̃(W̃(c) 6⊆ Ṽ I,+δn (θ′n, c)) = P̃(Lcn) ≤ P̃(An) < η/2, (E.97)

[38]



for all n sufficiently large. Also, by Lemma E.6,

P̃(Ṽ I,+δn (θ′n, c) 6= ∅ ∩ Ṽ In (θ′n, c) = ∅) < η/2, (E.98)

for all n sufficiently large.

Combining (E.91), (E.93), (E.97), (E.98), and using Pn(E) ≥ 1− η for all n, we have∫
E

P̃(Ṽ In (θ′n, c) = ∅ ∩ W̃(c) 6= ∅)dPn +

∫
Ec

P̃(Ṽ In (θ′n, c) = ∅ ∩ W̃(c) 6= ∅)dPn ≤ η(1− η) + η ≤ 2η. (E.99)

The second term of the right hand side of (E.90) can be bounded similarly. Therefore, |P ∗(V In (θ′n, c) 6= ∅) −
Pr(W(c) 6= ∅)| → 0 with probability (under Pn) approaching 1. This establishes the first claim.

(ii) By Part (i), for c > 0, we have

P ∗n(V In (θ′n, c) 6= ∅)− Pr(W(c) 6= ∅)→ 0. (E.100)

Fix c > 0, and set

gj =


c− Zj , j = 1, . . . , J,

1, j = J + 1, . . . , J + 2d,

0, j = J + 2d+ 1, J + 2d+ 2.

(E.101)

Mimic the argument following (E.137). Then, this yields

|Pr (W(c) 6= ∅)− Pr (W(c− δ) 6= ∅)| = Pr ({W(c) 6= ∅} ∩ {W(c− δ) = ∅}) ≤ η, (E.102)

|Pr (W(c+ δ) 6= ∅)− Pr (W(c) 6= ∅)| = Pr ({W(c+ δ) 6= ∅} ∩ {W(c) = ∅}) ≤ η, (E.103)

which therefore ensures that c 7→ Pr(W(c) 6= ∅) is continuous at c > 0.

Next, we show c 7→ Pr (W(c) 6= ∅) is strictly increasing at any c > 0. For this, consider c > 0 and c− δ > 0 for

δ > 0. Define the J vector e to have elements ej = c − Zj , j = 1, . . . , J . Suppose for simplicity that J ∗ contains

the first J∗ inequality constraints. Let e[1:J∗] denote the subvector of e that only contains elements corresponding

to j ∈ J ∗, define D[1:J∗,:] correspondingly, and write

K =


D[1:J∗,:]

Id

−Id
p′

−p′

 , g =


e[1:J∗]

ρ · 1d
ρ · 1d

0

0

 , τ =


1J∗

0d

0d

0

0

 . (E.104)

By Farkas’ lemma (Rockafellar, 1970, Theorem 22.1) and arguing as in (E.142),

Pr ({W(c) 6= ∅} ∩ {W(c− δ) = ∅}) = Pr ({µ′g ≥ 0,∀µ ∈M} ∩ {µ′(g − δτ) < 0,∃µ ∈M}) , (E.105)

where M = {µ ∈ RJ
∗+2d+2

+ : µ′K = 0}. By Minkowski-Weyl’s theorem (Rockafellar and Wets, 2005, Theorem

3.52), there exists {νt ∈M, t = 1, · · · , T}, for which one may write

M = {µ : µ = b

T∑
t=1

atν
t, b > 0, at ≥ 0,

T∑
t=1

at = 1}. (E.106)
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This implies

µ′g ≥ 0, ∀µ ∈M ⇔ νt′g ≥ 0, ∀t ∈ {1, · · · , T} (E.107)

µ′(g − δτ) < 0, ∃µ ∈M ⇔ νt′g < δνt′τ, ∃t ∈ {1, · · · , T}. (E.108)

Hence,

Pr ({µ′g ≥ 0,∀µ ∈M} ∩ {µ′(g − δτ) < 0,∃µ ∈M}) = Pr
(
0 ≤ νs′g, 0 ≤ νt′g < δνt′τ, ∀s,∃t

)
(E.109)

Note that by (E.104), for each s ∈ {1, · · · , T},

νs′g = νs,[1:J∗]′(c1J ∗ − ZJ ∗) + ρ

J∗+2d∑
j=J∗+1

νs,[j], (E.110)

νs′τ =

J∗∑
j=1

νs,[j]. (E.111)

For each s ∈ {1, · · · , T}, let

hUs ≡ c
J∗∑
j=1

νs,[j] + ρ

J∗+2d∑
j=J∗+1

νs,[j] (E.112)

hLs ≡ (c− δ)
J∗∑
j=1

νs,[j], (E.113)

where 0 ≤ hLs < hUs for all s ∈ {1, · · · , T} due to 0 < c− δ < c and νs ∈ RJ
∗+2d+2

+ . One may therefore rewrite the

probability on the right hand side of (E.109) as

Pr
(
0 ≤ νs′g, 0 ≤ νt′g < δνt′τ, ∀s,∃t

)
= Pr

(
νs,[1:J∗]′ZJ ∗ ≤ hUs , hLt < νt,[1:J∗]′ZJ ∗ ≤ hUt ∀s,∃t

)
> 0, (E.114)

where the last inequality follows because ZJ ∗ ’s correlation matrix Ω has an eigenvalue bounded away from 0 by

Assumption 4.3. By (E.105), (E.109), and (E.114), c 7→ Pr (W(c) 6= ∅) is strictly increasing at any c > 0.

Suppose that cπ∗ > 0, then arguing as in Lemma 5.(i) of Andrews and Guggenberger (2010), we obtain

cIn(θ′n)
Pn→ cπ∗ .

(iii) Begin with observing that one can equivalently express ĉn (originally defined in (3.5)) as ĉn(θ) = inf{c ∈
R+ : P ∗n(V bn (θ, c) 6= ∅) ≥ 1− α}.

Suppose first that Assumption 4.3-(I) holds. In this case, there are no paired inequalities, and V In differs from

V bn only in terms of the function ϕ∗j in (E.82) used in place of the GMS function ϕj . In particular, ϕ∗j (ξ) ≤ ϕj(ξ)

for any j and ξ, and therefore ĉn(θn) ≥ cIn(θn) by construction.

Next, suppose Assumption 4.3-(II) holds and V In (θ′n, c) is defined with hard threshold GMS as in equation (3.3),

i.e. with GMS function ϕ1 in AS. The only case that might create concern is one in which

π1,j ∈ [−1, 0) and π1,j+R1 = 0. (E.115)

In this case, only the j+R1-th inequality binds in the limit, but with probability approaching 1, GMS selects both
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of the pair. Therefore, we have

π∗1,j = −∞, and π∗1,j+R1
= 0, (E.116)

ϕj(ξ̂n,j(θ
′
n)) = 0, and ϕj+R1

(ξ̂n,j+R1
(θ′n)) = 0, (E.117)

so that in V In (θ′n, c), inequality j +R1, which is

Gbn,j+R1
(θ′n) + ρD̂n,j+R1

(θ′n)λ ≤ c, (E.118)

is replaced with inequality

−Gbn,j(θ′n)− ρD̂n,j(θ
′
n)λ ≤ c, (E.119)

as explained in Section 4.1. In this case, ĉn(θn) ≥ cIn(θn) is not guaranteed in finite sample. However, let vIPn be as

in (E.80) but replacing j +R1-th component Gbn,j+R1
(θn) + D̂n,j+R1(θn)λ+ ϕ∗j+R1

(ξ̂n,j+R1(θn)) with −Gbn,j(θn)−
D̂n,j(θn)λ − ϕ∗j (ξ̂n,j(θn)). Define V IPn as in (E.83) but replacing vIn with vIPn . Define cIPn (θn) ≡ inf{c ∈ R+ :

P ∗(V IPn (θn, c)) ≥ 1−α}. By construction, ĉn(θ′n) ≥ cIPn (θ′n) for any θ′n ∈ (θn + ρ/
√
nBd)∩Θ. Therefore, it suffices

to show that cIPn (θ′n)− cIn(θ′n)
Pn→ 0. For this, note that Lemma E.9-(3) establishes

sup
λ∈Bdn,ρ

‖Gbn,j+R1
(θ′n) + ρD̂n,j+R1

(θ′n)λ+ Gbn,j(θ′n) + ρD̂n,j(θ
′
n)λ‖ = oP∗(1), (E.120)

for almost all sample paths {Xi}∞i=1. Therefore, replacing the j +R1-th inequality with the j-th inequality in V IPn
is asymptotically negligible. Mimicking the arguments in Parts (i) and (ii) then yields

cIPn (θ′n)
Pn→ cπ∗ . (E.121)

This therefore ensures cIPn (θ′n)− cIn(θ′n)
Pn→ 0.

If the set V In (θ′n, c) is defined with a GMS function satisfying Assumption 4.2 and continuous in its argument,

we can mimic the above argument using the replacements in (E.12)-(E.13) with µ̂n,j+R1
as defined in (E.14) and

µ̂n,j(θ
′
n) as in (E.15). Then when both πj ∈ (−∞, 0] and πj+R1

∈ (−∞, 0] we have:

∆(µ, µ̂) ≡
∥∥∥µ̂n,j(θ′n){Gbn,j(θ′n) + ρD̂n,j(θ

′
n)λ} − µ̂n,j+R1(θ′n){Gbn,j+R1

(θ′n) + ρD̂n,j+R1
(θ′n)λ}

−µj(θ′n){Gbn,j(θ′n) + ρD̂n,j(θ
′
n)λ}+ µj+R1

(θ′n){Gbn,j+R1
(θ′n) + ρD̂n,j+R1

(θ′n)λ}
∥∥∥ = oP(1),

where µj , µj+R1 are defined in equations (E.10)-(E.11) for θ ∈ θn+(θn+ρ/
√
nBd)∩Θ. Replacing µ̂n,j = 1−µ̂n,j+R1

and µj = 1− µj+R1
in the definition of ∆(µ, µ̂), we have

∆(µ, µ̂) ≤
∣∣µ̂n,j+R1(θ′n)− µj+R1(θ′n)

∣∣∥∥{Gbn,j+R1
(θ′n) + ρD̂n,j+R1(θ′n)λ}+ {Gbn,j(θ′n) + ρD̂n,j(θ

′
n)λ}

∥∥. (E.122)

If both πj ∈ (−∞, 0], πj+R1 ∈ (−∞, 0], the result follows by the fact that λ ∈ Bdn,ρ and µ̂n,j , µ̂n,j+R1 , µj , µj+R1 are

bounded in [0, 1], by Lemma E.9-(3)-(4), and by Assumption 4.4-(i). The rest of the argument follows similarly as

for the case of hard-threshold GMS.

Lemma E.4: Let Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Let (Pn, θn) be the sequence satisfying (E.1)-(E.3),

let J ∗ be defined as in (E.29), and assume that J ∗ 6= ∅. Then, for any ε, η > 0 and θ′n ∈ (θn + ρ/
√
nBd)∩Θ, there
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exists N ′ ∈ N and N
′′ ∈ N such that for all n ≥ max{N ′, N ′′},

P

(
sup
λ∈Bd

∣∣∣∣ max
j=1,··· ,J

(u∗n,j,θn(λ)− c∗n)− max
j=1,··· ,J

(w∗j (λ)− cπ∗)
∣∣∣∣ ≥ ε

)
< η, (E.123)

P̃

(
sup
λ∈Bd

∣∣∣∣ max
j=1,··· ,J

w̃j(λ)− max
j=1,··· ,J

ṽIn,j,θ′n(λ)

∣∣∣∣ ≥ ε
)
< η, w.p.1, (E.124)

where the functions u∗n,w
∗, ṽn, w̃ are defined in equations (E.24),(E.25), (E.88), and (E.89).

Proof. We first establish (E.123). By definition, π∗1,j = −∞ for all j /∈ J ∗ and therefore

P
(

sup
λ∈Bd

| max
j=1,··· ,J

(u∗n,j,θn(λ)− c∗n)− max
j=1,··· ,J

(w∗j (λ)− cπ∗)| ≥ ε
)

= P
(

sup
λ∈Bd

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j (λ)− cπ∗)| ≥ ε
)
. (E.125)

Hence, for the conclusion of the lemma, it suffices to show, for any ε > 0,

lim
n→∞

P
(

sup
λ∈Bd

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j (λ)− cπ∗)| ≥ ε
)

= 0.

For each λ ∈ Rd, define rn,j,θn(λ) ≡ (u∗n,j,θn(λ) − c∗n)− (w∗j (λ)− cn). Using the fact that π∗1,j = 0 for j ∈ J ∗,
and the triangle and Cauchy-Schwarz inequalities, for any λ ∈ Bd ∩

√
n
ρ (Θ− θn) and j ∈ J ∗, we have

|rn,j,θn(λ)| ≤ |G∗n,j(θn +
λρ√
n

)− Z∗j |+ ρ‖DPn,j(θ̄n)−Dj‖‖λ‖

+ |G∗n,j(θn +
λρ√
n

) + ρDPn,j(θ̄n)λ|η∗n,j + |c∗n − cπ∗ |

= |G∗n,j(θn +
λρ√
n

)− Z∗j |+ o(1) + {OP(1) +O(1)})η∗n,j + oP(1)

= oP(1) (E.126)

where the first equality follows from ‖λ‖ ≤
√
d, DPn(θ̄n) → D due to DPn(θn) → D, Assumption 4.4-(ii), and

θ̄n being a mean value between θn and θn + λρ/
√
n. We also note that ‖Gn,j(θ + λ/

√
n)‖ = OP(1), ‖DP,j(θ)‖

being uniformly bounded for θ ∈ ΘI(P ) (Assumption 4.4-(i)), and c∗n
a.s.→ cπ∗ . The last equality follows from

G∗n,j(θn + λρ√
n

)− Z∗j
a.s.→ 0 and supθ∈Θ |ηn,j(θ)| = oP(1) by Lemma E.10.

We note that when paired inequalities are merged, for each j = 1, . . . , R1 such that π∗1,j = 0 = π∗1,j+R1
we

have that |µ̃j − µj | = oP(1) because supθ∈Θ |ηj(θ)| = oP(1), where µ̃j and µj were defined in (D.11)-(D.12) and

(E.10)-(E.11) respectively.

By (E.126) and the fact that j ∈ J ∗, we have

sup
λ∈Bd

|max
j∈J ∗

(u∗n,j,θn(λ)− c∗n)− max
j∈J ∗

(w∗j (λ)− cπ∗)| ≤ sup
λ∈Bd

max
j∈J ∗

|rn,j,θn(λ)| = oP(1). (E.127)

The conclusion of the lemma then follows from (E.125) and (E.127).

The result in (E.124) follows from similar arguments.

Lemma E.5: Let Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Given a sequence {Qn, ϑn} ∈ {(P, θ) : P ∈ P, θ ∈
ΘI(P )} such that limn→∞ κ−1

n

√
nγ1,Qn,j(ϑn) exists for each j = 1, . . . , J , let χj({Qn, ϑn}) be a function of the
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sequence {Qn, ϑn} defined as

χj({Qn, ϑn}) ≡

{
0, if limn→∞ κ−1

n

√
nγ1,Qn,j(ϑn) = 0,

−∞, if limn→∞ κ−1
n

√
nγ1,Qn,j(ϑn) < 0.

(E.128)

Then for any θ′n ∈ θn+ ρ√
n
Bd for all n, one has: (i) κ−1

n

√
nγ1,Pn,j(θn)−κ−1

n

√
nγ1,Pn,j(θ

′
n) = o(1); (ii) χ({Pn, θn}) =

χ({Pn, θ′n}) = π∗1,j; and (iii) κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n) − κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n) = oP(1).

Proof. For (i), the mean value theorem yields

sup
P∈P

sup
θ∈ΘI(P ),θ′∈θ+ρ/

√
nBd

∣∣∣∣∣
√
nEP (mj(X, θ))

κnσP,j(θ)
−
√
nEP (mj(X, θ

′))

κnσP,j(θ′)

∣∣∣∣∣
≤ sup
P∈P

sup
θ∈ΘI(P ),θ′∈θ+ρ/

√
nBd

√
n‖DP,j(θ̃)‖‖θ′ − θ‖

κn
= o(1), (E.129)

where θ̃ represents a mean value that lies componentwise between θ and θ′ and where we used the fact that DP,j(θ)

is Lipschitz continuous and supP∈P supθ∈ΘI(P ) ‖DP,j(θ)‖ ≤ M̄ . Result (ii) then follows immediately from (E.128).

For (iii), note that

sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n)
− κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

∣∣∣
≤ sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
n(m̄n,j(θ

′
n)− EPn [mj(Xi, θ

′
n)])

σn,j(θ′n)
(1 + ηn,j(θ

′
n)) + κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣

≤ sup
θ′n∈θn+ρ/

√
nBd
|κ−1
n Gn(θ′n)(1 + ηn,j(θ

′
n))|+

∣∣∣√nEPn [mj(Xi, θ
′
n)]

κnσPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣ = oP(1), (E.130)

where the last equality follows from supθ∈Θ |Gn(θ)| = OP(1) due to asymptotic tightness of {Gn} (uniformly in P )

by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8 in van der Vaart and Wellner

(2000), and supθ∈Θ |ηn,j(θ)| = oP(1) by Lemma E.10-(i).

Lemma E.6: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. For any θ′n ∈ (θn + ρ/
√
nBd) ∩Θ,

(i) For any η > 0, there exist δ > 0 such that

sup
c≥0

Pr({W(c) 6= ∅} ∩ {W−δ(c) = ∅}) < η. (E.131)

Moreover, for any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥0

P ∗n({V In (θ′n, c) 6= ∅} ∩ {V I,−δn (θ′n, c) = ∅}) < η, ∀n ≥ N. (E.132)

(ii) Fix c > 0 and redefine

W−δ(c) ≡
{
λ ∈ Bd

ρ : p′λ = 0 ∩wj(λ) ≤ c− δ, ∀j = 1, . . . , J
}
, (E.133)

and

V I,−δn (θ′n, c) ≡
{
λ ∈ Bdn,ρ : p′λ = 0 ∩ vIn,j,θ′n(λ) ≤ c− δ, ∀j = 1, . . . , J

}
. (E.134)
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Then for any η > 0, there exists δ > 0 such that

sup
c≥c

Pr({W(c) 6= ∅} ∩ {W−δ(c) = ∅}) < η. (E.135)

with W−δ(c) defined in (E.133). Moreover, for any η > 0, there exist δ > 0 and N ∈ N such that

sup
c≥c

P ∗n({V In (θ′n, c) 6= ∅} ∩ {V I,−δn (θ′n, c) = ∅}) < η, ∀n ≥ N, (E.136)

with V −δn (θ′n, c) defined in (E.134).

Proof. We first show (E.131). If J ∗ = ∅, with J ∗ as defined in (E.29), then the result is immediate. Assume then

that J ∗ 6= ∅. Any inequality indexed by j /∈ J ∗ is satisfied with probability approaching one by similar arguments

as in (D.20) (both with c and with c − δ). Hence, one could argue for sets W(c),W−δ(c) defined as in equations

(E.16) and (E.17) but with j ∈ J ∗. To keep the notation simple, below we argue as if all j = 1, . . . , J belong to

J ∗. Let c ≥ 0 be given. Let g be a J + 2d+ 2 vector with entries

gj =


c− Zj , j = 1, . . . , J,

1, j = J + 1, . . . , J + 2d,

0, j = J + 2d+ 1, J + 2d+ 2,

(E.137)

recalling that π∗1,j = 0 for j = J1 + 1, · · · , J . Let τ be a (J + 2d+ 2) vector with entries

τj =

{
1, j = 1, . . . , J1,

0, j = J1 + 1, . . . , J + 2d+ 2.
(E.138)

Then we can express the sets of interest as

W(c) = {λ : Kλ ≤ g}, (E.139)

W−δ(c) = {λ : Kλ ≤ g − δτ}. (E.140)

By Farkas’ Lemma, e.g. Rockafellar (1970, Theorem 22.1), a solution to the system of linear inequalities in (E.139)

exists if and only if for all µ ∈ RJ+2d+2
+ such that µ′K = 0, one has µ′g ≥ 0. Similarly, a solution to the system of

linear inequalities in (E.140) exists if and only if for all µ ∈ RJ+2d+2 such that µ′K = 0, one has µ′(g − δτ) ≥ 0.

Define

M≡ {µ ∈ RJ+2d+2
+ : µ′K = 0}. (E.141)

Then, one may write

Pr({W(c) 6= ∅} ∩ {W−δ(θ′n, c) = ∅})

= Pr({µ′g ≥ 0,∀µ ∈M} ∩ {µ′(g − δτ) < 0,∃µ ∈M})

= Pr({µ′g ≥ 0,∀µ ∈M} ∩ {µ′g < δµ′τ,∃µ ∈M}). (E.142)

Note that the set M is a non-stochastic polyhedral cone which may change with n. By Minkowski-Weyl’s theorem

(see, e.g. Rockafellar and Wets (2005, Theorem 3.52)), for each n there exist {νt ∈ M, t = 1, · · · , T}, with T <∞
a constant that depends only on J and d, such that any µ ∈M can be represented as
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µ = b

T∑
t=1

atν
t, (E.143)

where b > 0 and at ≥ 0, t = 1, . . . , T,
∑T
t=1 at = 1. Hence, if µ ∈M satisfies µ′g < δµ′τ , denoting νt′ the transpose

of vector νt, we have

T∑
t=1

atν
t′g < δ

T∑
t=1

atν
t′τ. (E.144)

However, due to at ≥ 0,∀t and νt ∈ M, this means νt′g < δνt′τ for some t ∈ {1, . . . , T}. Furthermore, since

νt ∈M, we have 0 ≤ νt′g. Therefore,

Pr ({µ′g ≥ 0,∀µ ∈M} ∩ {µ′g < δµ′τ,∃µ ∈M})

≤ Pr
(
0 ≤ νt′g < δνt′τ,∃t ∈ {1, · · · , T}

)
≤

T∑
t=1

Pr
(
0 ≤ νt′g < δνt′τ

)
. (E.145)

Case 1. Consider first any t = 1, . . . , T such that νt assigns positive weight only to constraints in {J + 1, . . . , J +

2d+ 2}. Then

νt′g =

J+2d∑
j=J+1

νtj ,

δνt′τ = δ

J+2d+2∑
j=J+1

νtjτj = 0,

where the last equality follows by (E.138). Therefore Pr (0 ≤ νt′g < δνt′τ) = 0.

Case 2. Consider now any t = 1, . . . , T such that νt assigns positive weight also to constraints in {1, . . . , J}. Recall

that indices j = J1 + 1, . . . , J1 + 2J2 correspond to moment equalities, each of which is written as two moment

inequalities, therefore yielding a total of 2J2 inequalities with Dj+J2 = −Dj for j = J1 + 1, . . . , J1 + J2, and:

g =

{
c− Zj j = J1 + 1, . . . , J1 + J2,

c+ Zj−J2 j = J1 + J2 + 1, . . . , J.
(E.146)

For each νt, (E.146) implies

J1+2J2∑
j=J1+1

νtjgj = c

J1+2J2∑
j=J1+1

νtj +

J1+J2∑
j=J1+1

(νtj − νtj+J2
)Zj . (E.147)

For each j = 1, · · · , J1 + J2, define

ν̃tj ≡

νtj j = 1, · · · , J1

νtj − νtj+J2
j = J1 + 1, · · · , J1 + J2.

. (E.148)

We then let ν̃t ≡ (ν̃tn,1, · · · , ν̃tn,J1+J2
)′ and have

νt′g =

J1+J2∑
j=1

ν̃tjZj + c

J∑
j=1

νtj +

J+2d∑
j=J+1

νtj . (E.149)
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Case 2-a. Suppose ν̃t 6= 0. Then, by (E.149), νt′g
νt′τ is a normal random variable with variance (ν̃t′τ)−2ν̃′tΩν̃t. By

Assumption 4.3, there exists a constant ω > 0 such that the smallest eigenvalue of Ω is bounded from below by ω

for all θ′n. Hence, letting ‖ · ‖p denote the p-norm in RJ+2d+2, we have

ν̃′tΩν̃t

(ν̃t′τ)2
≥ ω‖ν̃t‖22

(J + 2d+ 2)2‖ν̃t‖22
≥ ω

(J + 2d+ 2)2
. (E.150)

Therefore, the variance of the normal random variable in (E.145) is uniformly bounded away from 0, which in turn

allows one to find δ > 0 such that Pr(0 ≤ νt′g
νt′τ < δ) ≤ η/T .

Case 2-b. Next, consider the case ν̃t = 0. Because we are in the case that νt assigns positive weight also to

constraints in {1, . . . , J}, this must be because νtj = 0 for all j = 1, · · · , J1 and νtj = νtj+J2
for all j = J1 +

1, · · · , J1 + J2, while νtj 6= 0 for some j = J1 + 1, · · · , J1 + J2. Then we have
∑J
j=1 ν

t
jg ≥ 0, and

∑J
j=1 ν

t
jτj = 0

because τj = 0 for each j = J1 + 1, . . . , J . Hence, the argument for the case that νt assigns positive weight only to

constraints in {J+1, . . . , J+2d+2} applies and again Pr (0 ≤ νt′g < δνt′τ) = 0. This establishes equation (E.131).

To see why equation (E.132) holds, observe that the bootstrap distribution is conditional on X1, . . . , Xn. There-

fore, the matrix K̂n, defined as the matrix in equation (E.57) but with D̂n replacing DP , can be treated as non-

stochastic. This implies that the set M̂n, defined as the set in equation (E.141) but with K̂n replacing K, can be

treated as nonstochastic as well.

By an application of Lemma D.2.8 in Bugni, Canay, and Shi (2015) together with Lemma E.17 (through an ar-

gument similar to that following equation (E.87)), Gbn
d→ GP in l∞(Θ) uniformly in P conditional on {X1, · · · , Xn},

and by Assumption 4.4 D̂n(θ′n)
Pn→ D, for almost all sample paths. Set

gPn,j(θ
′
n) =


c− ϕ∗j (ξn,j(θ′n))−Gbn,j(θ′n), j = 1, . . . , J,

1, j = J + 1, . . . , J + 2d,

0, j = J + 2d+ 1, J + 2d+ 2,

(E.151)

and note that |ϕ∗j (ξn,j(θ′n))| < η for all j ∈ J ∗, and Gbn,j(θ′n)|{Xi}∞i=1
d→ N(0,Ω). Then one can mimic the argument

following (E.137) to conclude (E.132).

The results in (E.135)-(E.136) follow by similar arguments, with proper redefinition of τ in equation (E.138).

Lemma E.7: Let Assumptions 4.3 and 4.5 hold. Let (Pn, θn) have the almost sure representations given in

Lemma E.1, let J ∗ be defined as in (E.29), and assume that J ∗ 6= ∅. Let C̃ collect all size d subsets C of

{1, ..., J + 2d + 2} ordered lexicographically by their smallest, then second smallest, etc. elements. Let the random

variable C equal the first element of C̃ s.t. detKC 6= 0 and λC = (KC)−1gC ∈W∗,−δ(0) if such an element exists;

else, let C = {J + 1, ..., J + d} and λC = 1d, where 1d denotes a d vector with each entry equal to 1, and K, g and

W∗,−δ are as defined in Lemma E.2. Then, for any η > 0, there exist 0 < εη <∞ and N ∈ N s.t. n ≥ N implies

P
(
W∗,−δ(0) 6= ∅,

∣∣detKC
∣∣ ≤ εη) ≤ η. (E.152)
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Proof. We bound the probability in (E.152) as follows:

P
(
W∗,−δ(0) 6= ∅,

∣∣detKC
∣∣ ≤ εη) ≤ P

(
∃C ∈ C̃ : λC ∈ Bd,

∣∣detKC
∣∣ ≤ εη) (E.153)

≤
∑

C∈C̃:|detKC |≤εη
P
(
λC ∈ Bd

)
(E.154)

≤
∑

C∈C̃:|αC |≤ε2/dη

P
(
λC ∈ Bd

)
, (E.155)

where αC denote the smallest eigenvalue of KCKC′. Here, the first inequality holds because W∗,−δ ⊆ Bd and so

the event in the first probability implies the event in the next one; the second inequality is Boolean algebra; the

last inequality follows because |detKC | ≥ |αC |d/2. Noting that C̃ has
(
J+2d+2

d

)
elements, it suffices to show that∣∣αC∣∣ ≤ ε2/d

η =⇒ P
(
λC ∈ Bd

)
≤ η ≡ η(

J+2d+2
d

) .
Thus, fix C ∈ C̃. Let qC denote the eigenvector associated with αC and recall that because KCKC′ is symmetric,∥∥qC∥∥ = 1. Thus the claim is equivalent to:

|qC′KCKC′qC | ≤ ε2/d
η =⇒ P((KC)−1gC ∈ Bd

ρ) ≤ η. (E.156)

Now, if |qC′KCKC′qC | ≤ ε2/d
η and (KC)−1gC ∈ Bd

ρ, then the Cauchy-Schwarz inequality yields∣∣qC′gCPn ∣∣ =
∣∣∣qC′KC

(
KC

)−1
gC
∣∣∣ < √dε1/d

η , (E.157)

hence

P((KC)−1gC ∈ Bd
ρ) ≤ P

(
|qC′gC | <

√
dε1/d
η

)
. (E.158)

If qC assigns non-zero weight only to non-stochastic constraints, the result follows immediately. If qC assigns

non-zero weight also to stochastic constraints, Assumptions 4.3 and 4.5 (iii) yield

eig(Ω̃) ≥ ω

=⇒ V arP(qC′gC) ≥ ω

=⇒ P
(
|qC′gC | <

√
dε1/d
η

)
= P

(
−
√
dε1/d
η < qC′gC <

√
dε1/d
η

)
<

2
√
dε

1/d
η√

2ωπ
, (E.159)

where the result in (E.159) uses that the density of a normal r.v. is maximized at the expected value. The result

follows by choosing

εη =

(
η
√

2ωπ

2
√
d

)d
.

Lemma E.8: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. If J2 ≥ d, then ∃c > 0 s.t.

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (cIn(θ) ≥ c) = 1.

Proof. Fix any c ≥ 0 and restrict attention to constraints {J1 + 1, ..., J1 + d, J1 + J2 + 1, ..., J1 + J2 + d}, i.e.
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the inequalities that jointly correspond to the first d equalities. We separately analyze the case when (i) the

corresponding estimated gradients {D̂n,j(θ) : j = J1 + 1, ..., J1 + d} are linearly independent and (ii) they are

not. If {D̂n,j(θ) : j = J1 + 1, ..., J1 + d} converge to linearly independent limits, then only the former case occurs

infinitely often; else, both may occur infinitely often, and we conduct the argument along two separate subsequences

if necessary.

For the remainder of this proof, because the sequence {θn} is fixed and plays no direct role in the proof, we

suppress dependence of D̂n,j(θ) and Gbn,j(θ) on θ. Also, if C is an index set picking certain constraints, then D̂C
n is

the matrix collecting the corresponding estimated gradients, and similarly for Gb,Cn .

Suppose now case (i), then there exists an index set C̄ ⊂ {J1 + 1, ..., J1 + d, J1 +J2 + 1, . . . , J1 +J2 + d} picking

one direction of each constraint s.t. p is a positive linear combination of the rows of D̂C̄
P . (This choice ensures

that a Karush-Kuhn-Tucker condition holds, justifying the step from (E.160) to (E.161) below.) Then the coverage

probability P ∗(V In (θ, c) 6= ∅) is asymptotically bounded above by

P ∗
(

sup
λ∈ρBdn,ρ

{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ J ∗

}
≥ 0
)
≤P ∗

(
sup
λ∈Rd

{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄

}
≥ 0
)

(E.160)

=P ∗
(
p′(D̂C̄

n )−1(c1d −Gb,C̄n ) ≥ 0
)

(E.161)

=P ∗
(
p′(D̂C̄

n )−1(c1d −Gb,C̄n )√
p′(D̂C̄

n )−1ΩCP (D̂C̄
n )−1p

≥ 0

)
(E.162)

=P ∗
(

p′adj(D̂C̄
n )(c1d −Gb,C̄n )√

p′(adj(D̂C̄
n )ΩCP adj(D̂

C̄
n )p
≥ 0

)
(E.163)

=Φ

(
p′adj(D̂C̄

n )c1d√
p′(adj(D̂C̄

n )ΩCP adj(D̂
C̄
n )p

)
+ oP(1) (E.164)

≤Φ(dω−1/2c) + oP(1). (E.165)

Here, (E.160) removes constraints and hence enlarges the feasible set; (E.161) solves in closed form; (E.162) divides

through by a positive scalar; (E.163) eliminates the determinant of D̂C̄
n , using that rows of D̂C̄

n can always be

rearranged so that the determinant is positive; (E.164) follows by Assumption 4.5, using that the term multiplying

Gb,C̄n is OP(1); and (E.165) uses that by Assumption 4.3, there exists a constant ω > 0 that does not depend

on θ such that the smallest eigenvalue of ΩP is bounded from below by ω. The result follows for any choice of

c ∈ (0,Φ−1(1− α)× ω1/2/d).

In case (ii), there exists an index set C̄ ⊂ {J1 + 2, ..., J1 + d, J1 + J2 + 2, ..., J1 + J2 + d} collecting d − 1 or

fewer linearly independent constraints s.t. D̂n,J1+1 is a positive linear combination of the rows of D̂C̄
P . (Note that

C̄ cannot contain J1 + 1 or J1 + J2 + 1.) One can then write

P ∗
(

sup
λ∈ρBdn,ρ

{
p′λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄ ∪ {J1 + J2 + 1}

}
≥ 0
)

(E.166)

≤ P ∗
(
∃λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄ ∪ {J1 + J2 + 1}

)
(E.167)

≤ P ∗
(

sup
λ∈ρBdn,ρ

{
D̂n,J1+1λ : D̂n,jλ ≤ c−Gbn,j , j ∈ C̄

}
≥ inf
λ∈ρBdn,ρ

{
D̂n,J1+1λ : D̂n,J1+J2+1λ ≤ c−Gbn,J1+J2+1

})
(E.168)

= P ∗
(
D̂n,J1+1D̂

C̄′
n (D̂C̄

n D̂
C̄′
n )−1(c1d̄ −Gb,C̄n ) ≥ −c+ Gbn,J1+J2+1

)
. (E.169)
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Here, the reasoning from (E.166) to (E.168) holds because we evaluate the probability of increasingly larger events;

in particular, if the event in (E.168) fails, then the constraint sets corresponding to the sup and inf can be separated

by a hyperplane with gradient D̂n,J1+1 and so cannot intersect. The last step solves the optimization problems

in closed form, using (for the sup) that a Karush-Kuhn-Tucker condition again holds by construction and (for the

inf) that D̂n,J1+J2+1 = −D̂n,J1+1. Expression (E.169) resembles (E.162), and the argument can be concluded in

analogy to (E.163)-(E.165).

Lemma E.9: Let Assumptions 4.1, 4.2, 4.3-(II), 4.4, and 4.5 hold. Suppose that both π1,j and π1,j+R1
are

finite, with π1,j , j = 1, . . . , J , defined in (D.4). Let (Pn, θn) be the sequence satisfying the conditions of Lemma

E.3. Then for any θ′n ∈ (θn + ρ/
√
nBd) ∩Θ,

(1) σ2
Pn,j

(θ′n)/σ2
Pn,j+R1

(θ′n)→ 1 for j = 1, · · · , R1.

(2) CorrPn(mj(Xi, θ
′
n),mj+R1

(Xi, θ
′
n))→ −1 for j = 1, · · · , R1.

(3) |Gn,j(θ′n) + Gn,j+R1(θ′n)| Pn→ 0, and |Gbn,j(θ′n) + Gbn,j+R1
(θ′n)| P

∗
n→ 0 for almost all {Xi}∞i=1.

(4) ρ‖DPn,j+R1
(θ′n) +DPn,j(θ

′
n)‖ → 0.

Proof. By Lemma E.5, for each j, limn→∞ κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n) = π1,j , and hence the condition that π1,j , π1,j+R1

are finite is inherited by the limit of the corresponding sequences κ−1
n

√
nEPn [mj(Xi,θ

′
n)]

σPn,j(θ
′
n) and κ−1

n

√
nEPn [mj+J11(Xi,θ

′
n)]

σPn,j+J11(θ′n) .

We first establish Claims 1 and 2. We consider two cases.

Case 1.

lim
n→∞

κn√
n
σPn,j(θ

′
n) > 0, (E.170)

which implies that σPn,j(θ
′
n)→∞ at rate

√
n/κn or faster. Claim 1 then holds because

σ2
Pn,j+R1

(θ′n)

σ2
Pn,j

(θ′n)
=
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n)) + 2CovPn(mj(Xi, θ

′
n), tj(Xi, θ

′
n))

σ2
Pn,j

(θ′n)
→ 1, (E.171)

where the convergence follows because V arPn(tj(Xi, θ
′
n)) is bounded due to Assumption 4.3-(II),

|CovPn(mj(Xi, θ
′
n), tj(Xi, θ

′
n))/σ2

Pn,j(θ
′
n)| ≤ (V arPn(tj(Xi, θ

′
n)))1/2/σPn,j(θ

′
n),

and the fact that σPn,j(θ
′
n)→∞. A similar argument yields Claim 2.

Case 2.

lim
n→∞

κn√
n
σPn,j(θ

′
n) = 0. (E.172)

In this case, π1,j being finite implies that EPnmj(Xi, θ
′
n)→ 0. Again using the upper bound on tj(Xi, θ

′
n) similarly

to (E.171), it also follows that

lim
n→∞

κn√
n
σPn,j+R1(θ′n) = 0, (E.173)

and hence that EPn(tj(Xi, θ
′
n))→ 0. We then have, using Assumption 4.3-(II) again,

V arPn(tj(Xi, θ
′
n)) =

∫
tj(x, θ

′
n)2dPn(x)− EPn [tj(Xi, θ

′
n)]2

≤M
∫
tj(x, θ

′
n)dPn(x)− EPn [tj(Xi, θ

′
n)]2 → 0. (E.174)
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Hence,

σ2
Pn,j+R1

(θ′n)

σ2
Pn,j

(θ′n)
=
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n)) + 2CovPn(mj(Xi, θ

′
n), tj(Xi, θ

′
n))

σ2
Pn,j

(θ′n)

≤
σ2
Pn,j

(θ′n) + V arPn(tj(Xi, θ
′
n))

σ2
Pn,j

(θ′n)
+

2(V arPn(tj(Xi, θ
′
n)))1/2

σPn,j(θ
′
n)

→ 1, (E.175)

and the first claim follows.

To obtain claim 2, note that

CorrPn(mj(Xi, θ
′
n),mj+R1(Xi, θ

′
n)) =

−σ2
Pn,j

(θ′n)− CovPn(mj(Xi, θ
′
n), tj(Xi, θ

′
n))

σPn,j(θ
′
n)σPn,j+R1

(θ′n)

→ −1, (E.176)

where the result follows from (E.174) and (E.175).

To establish Claim 3, consider Gn below. Note that, for j = 1, · · · , R1,[
Gn,j(θ′n)

Gn,j+R1(θ′n)

]
=

 1√
n

∑n
i=1(mj(Xi,θ

′
n)−EPn [mj(Xi,θ

′
n)])

σPn,j(θ
′
n)

− 1√
n

∑n
i=1(mj(Xi,θ

′
n)−EPn [mj(Xi,θ

′
n)])+ 1√

n

∑n
i=1(tj(Xi,θ

′
n)−EPn [tj(Xi,θ

′
n)])

σPn,j+R1
(θ′n)

 . (E.177)

Under the conditions of Case 1 above, we immediately obtain

|Gn,j(θ′n) + Gn,j+R1
(θ′n)| Pn→ 0. (E.178)

Under the conditions in Case 2 above, 1√
n

∑n
i=1(tj(Xi, θ

′
n) − EPn [tj(Xi, θ

′
n)] = oP(1) due to the variance of this

term being equal to V arPn(tj(Xi, θ
′
n)) → 0 and Chebyshev’s inequality. Therefore, (E.178) obtains again. These

results imply that Zj+Zj+R1
= 0, a.s. By Lemma E.15, {Gbn} converges in law to the same limit as {Gn} for almost

all sample paths {Xi}∞i=1. This and (E.178) then imply the second half of Claim 3.

To establish Claim 4, finiteness of π1,j and π1,j+R1
implies that

EPn

(
mj(X, θ

′
n)

σPn,j(θ
′
n)

+
mj+R1

(X, θ′n)

σPn,j+R1
(θ′n)

)
= OP

(
κn√
n

)
. (E.179)

Define the 1× d vector

qn ≡ DPn,j+R1
(θ′n) +DPn,j(θ

′
n). (E.180)

Suppose by contradiction that

ρqn → ς 6= 0,

where ‖ς‖ might be infinite. Write

r̃n =
q′n
‖qn‖

. (E.181)

Let

rn = r̃nρκ
2
n/
√
n. (E.182)
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Using a mean value expansion (where θ̄n and θ̃n in the expressions below are two potentially different vectors that

lie component-wise between θ′n and θ′n + rn) we obtain

EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1

(X, θ′n + rn)

σPn,j+R1(θ′n + rn)

)
= EPn

(
mj(X, θ

′
n)

σPn,j(θ
′
n)

+
mj+R1

(X, θ′n)

σPn,j+R1(θ′n)

)
+
(
DPn,j(θ̄n) +DPn,j+R1

(θ̃n)
)
rn

=OP(
κn√
n

) + (DPn,j(θ
′
n) +DPn,j+R1

(θ′n)) rn +
(
DPn,j(θ̄n)−DPn,j(θ

′
n)
)
rn +

(
DPn,j+R1

(θ̃n)−DPn,j+R1
(θ′n)

)
rn

=OP(
κn√
n

) +
ρκ2

n√
n

+OP(
ρ2κ4

n

n
). (E.183)

It then follows that there exists N ∈ N such that for all n ≥ N , the right hand side in (E.183) is strictly greater

than zero.

Next, observe that

EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1

(X, θ′n + rn)

σPn,j+R1
(θ′n + rn)

)
=EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1(X, θ′n + rn)

σPn,j(θ
′
n + rn)

)
−
(
σPn,j+R1(θ′n + rn)

σPn,j(θ
′
n + rn)

− 1

)
EPn(mj+R1(X, θ′n + rn))

σPn,j+R1
(θ′n + rn)

=EPn

(
mj(X, θ

′
n + rn)

σPn,j(θ
′
n + rn)

+
mj+R1

(X, θ′n + rn)

σPn,j(θ
′
n + rn)

)
− oP(

ρκ2
n√
n

). (E.184)

Here, the last step is established as follows. First, using that σPn,j(θ
′
n + rn) is bounded away from zero for n large

enough by the continuity of σ(·) and Assumption 4.3-(II), we have

σPn,j+R1
(θ′n + rn)

σPn,j(θ
′
n + rn)

− 1 =
σPn,j+R1

(θ′n)

σPn,j(θ
′
n)

− 1 + oP(1) = oP(1), (E.185)

where we used Claim 1. Second, using Assumption 4.4, we have that

EPn(mj+R1
(X, θ′n + rn))

σPn,j+R1
(θ′n + rn)

=
EPn(mj+R1

(X, θ′n))

σPn,j+R1
(θ′n)

+DPn,j+R1
(θ̃n)rn = OP(

κn√
n

) +OP(
ρκ2

n√
n

). (E.186)

The product of (E.185) and (E.186) is therefore oP(
ρκ2
n√
n

) and (E.184) follows.

To conclude the argument, note that for n large enough, mj+R1
(X, θ′n+ rn) ≤ −mj(X, θ

′
n+ rn) a.s. because for

any θn ∈ ΘI(Pn) and θ′n ∈ (θn + ρ/
√
nBd) ∩Θ for n large enough, θ′n + rn ∈ Θε and Assumption 4.3-(II) applies.

Therefore, there exists N ∈ N such that for all n ≥ N , the left hand side in (E.183) is strictly less than the right

hand side, yielding a contradiction.

Below, we let R1 = {1, · · · , R1} and R2 = {R1 + 1, · · · , 2R1}.

Lemma E.10: Suppose Assumptions 4.1, 4.2, and 4.5 hold. For each θ ∈ Θ, let ηn,j(θ) = σP,j(θ)/σ̂n,j(θ) − 1.

Then, (i) for each j = 1, . . . , J1 + J2

inf
P∈P

P
(

sup
θ∈Θ
|ηn,j(θ)| → 0

)
= 1. (E.187)

(ii) For any j = 1, . . . , R1 let

σ̂Mn,j(θ) = σ̂Mn,j+R1
(θ) ≡ µ̂n,j(θ)σ̂n,j(θ) + (1− µ̂n,j(θ))σ̂n,j+R1(θ). (E.188)

Let (Pn, θn) be a sequence such that Pn ∈ P, θn ∈ Θ for all n, and κ−1
n

√
nγ1,Pn,j(θn) → π1j ∈ R[−∞]. Let J ∗ be
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defined as in (E.29). Then, for any η > 0, there exists N ∈ N such that

Pn

(
max

j∈(R1∪R2)∩J ∗

∣∣∣σPn,j(θn)

σ̂Mn,j(θn)
− 1
∣∣∣ > η

)
< η (E.189)

for all n ≥ N .

Proof. We first show that, for any ε > 0 and for any j = 1, . . . , J1 + J2,

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣ σ̂n,j(θ)
σP,j(θ)

− 1
∣∣∣ ≤ ε)→ 1. (E.190)

For this, define the following sets:

Mj ≡ {mj(·, θ)/σP,j(θ) : θ ∈ Θ, P ∈ P} (E.191)

Sj ≡ {(mj(·, θ)/σP,j(θ))2 : θ ∈ Θ, P ∈ P}. (E.192)

By Assumptions 4.1-(a), 4.1 (iv), 4.5 (i), (iii), and arguing as in the proof of Lemma D.2.2 (and D.2.1) in Bugni,

Canay, and Shi (2015), it follows that Sj and Mj are Glivenko-Cantelli (GC) classes uniformly in P ∈ P (in the

sense of van der Vaart and Wellner, 2000, page 167).

Therefore, for any ε > 0,

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣n−1
∑n
i=1mj(Xi, θ)

2

σ2
P,j(θ)

− EP [mj(X, θ)
2]

σ2
P,j(θ)

∣∣∣ ≤ ε)→ 1 (E.193)

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣m̄n,j(θ)− EP [mj(X, θ)]

σP,j(θ)

∣∣∣ ≤ ε)→ 1. (E.194)

Note that, by Assumption 4.1 (iv), |EP [mj(X, θ)]/σP,j(θ)| ≤M for some constant M > 0 that does not depend on

P and (x2 − y2) ≤ |x+ y||x− y| ≤ 2M |x− y| for all x, y ∈ [−M,M ]. By (E.194), for any ε > 0, it follows that

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣m̄n,j(θ)
2 − EP [mj(X, θ)]

2

σ2
P,j(θ)

∣∣∣ ≤ ε)→ 1. (E.195)

By the uniform continuity of x 7→
√
x on R+, for any ε > 0, there is a constant η > 0 such that∣∣∣ σ̂2
n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ η ⇒ ∣∣∣ σ̂n,j(θ)

σP,j(θ)
− 1
∣∣∣ ≤ ε. (E.196)

By the definition of σ2
P,j(θ) and the triangle inequality,∣∣∣ σ̂2

n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ ∣∣∣n−1

∑n
i=1m(Xi, θ)

2 − E[mj(Xi, θ)
2]

σ2
P,j(θ)

∣∣∣+
∣∣∣m̄n,j(θ)

2 − E[mj(Xi, θ)]
2

σ2
P,j(θ)

∣∣∣. (E.197)

By (E.196)-(E.197), bounding each of the terms on the right hand side of (E.197) by η/2 implies |σ̂n,j(θ)/σP,j(θ)−
1| ≤ ε. This, together with (E.193) and (E.195), ensures that, for any ε > 0, (E.190) holds.

Note that |σ̂n,j(θ)/σP,j(θ) − 1| ≤ ε implies σ̂n,j(θ) > 0, and argue as in the proof of Lemma D.2.4 in Bugni,

Canay, and Shi (2015) to conclude that

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ

∣∣∣σP,j(θ)
σ̂n,j(θ)

− 1
∣∣∣ ≤ ε)→ 1. (E.198)
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Finally, recall that ηn,j(θ) = σP,j(θ)/σ̂n,j(θ)− 1 and note that for any ε > 0,

1 = lim
n→∞

inf
P∈P

P
(

sup
m≥n

sup
θ∈Θ
|ηn,j(θ)| ≤ ε

)
≤ inf
P∈P

lim
n→∞

P
( ⋂
m≥n

{
sup
θ∈Θ
|ηn,j(θ)| ≤ ε

})
= inf
P∈P

P
(

lim
n→∞

⋂
m≥n

{sup
θ∈Θ
|ηn,j(θ)| ≤ ε

})
= inf
P∈P

P
(

sup
θ∈Θ
|ηn,j(θ)| ≤ ε, for almost all n

)
, (E.199)

where the second equality is due to the continuity of probability with respect to monotone sequences. Therefore,

the first conclusion of the lemma follows.

(ii) We first give the limit of µ̂n,j(θn). Recall the definitions of µ̂n,j+R1 and µ̂n,j(θn) in (E.14)-(E.15).

Note that

sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
nm̄n,j(θ

′
n)

σ̂n,j(θ′n)
− κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

∣∣∣
≤ sup
θ′n∈θn+ρ/

√
nBd

∣∣∣κ−1
n

√
n(m̄n,j(θ

′
n)− EPn [mj(Xi, θ

′
n)])

σn,j(θ′n)
(1 + ηn,j(θ

′
n)) + κ−1

n

√
nEPn [mj(Xi, θ

′
n)]

σPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣

≤ sup
θ′n∈θn+ρ/

√
nBd
|κ−1
n Gn(θ′n)(1 + ηn,j(θ

′
n))|+

∣∣∣√nEPn [mj(Xi, θ
′
n)]

κnσPn,j(θ
′
n)

ηn,j(θ
′
n)
∣∣∣ = oP(1), (E.200)

where the last equality follows from supθ∈Θ |Gn(θ)| = OP(1) due to asymptotic tightness of {Gn} (uniformly in P )

by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8 in van der Vaart and Wellner

(2000), and supθ∈Θ |ηn,j(θ)| = oP(1) by part (i) of this Lemma. Hence,

µ̂n,j(θn)
Pn→ 1−min

{
max(0,

π1,j

π1,j+R1
+ π1,j

), 1
}
, (E.201)

unless π1,j+R1 + π1,j = 0 (this case is considered later). This implies that if π1,j ∈ (−∞, 0] and π1,j+R1 = −∞, one

has

µ̂n,j(θn)
Pn→ 1. (E.202)

Similarly, if π1,j = −∞ and π1,j+R1 ∈ (−∞, 0], one has

µ̂n,j+R1
(θn)

Pn→ 1. (E.203)

Now, one may write

σPn,j(θn)

σ̂Mn,j(θn)
− 1 =

σPn,j(θn)

σ̂n,j(θn)

( σ̂n,j(θn)

σ̂Mn,j(θn)
− 1
)

+
(σPn,j(θn)

σ̂n,j(θn)
− 1
)

= OPn(1)
( σ̂n,j(θn)

σ̂Mn,j(θn)
− 1
)

+ oPn(1), (E.204)

where the second equality follows from the first conclusion of the lemma. Hence, for the second conclusion of the

lemma, it suffices to show σ̂n,j(θn)/σ̂Mn,j(θn)− 1 = oP(1). For this, we consider three cases.
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Suppose first j ∈ R1 ∩ J ∗ and j +R1 /∈ J ∗. Then, π∗1,j = 0 and π∗1,j+R1
= −∞. Then,

σ̂Mn,j(θn) = µ̂n,j(θn)σ̂n,j(θn) + (1− µ̂n,j(θn))σ̂n,j+R1
(θn) (E.205)

= (1 + oPn(1))σ̂n,j(θn) + (1− µ̂n,j(θn))OPn(σ̂n,j(θn)), (E.206)

where the second equality follows from (E.202) and the fact that

σ̂n,j+R1(θn) =
(
σ̂2
n,j(θn) + 2Ĉovn(mj(Xi, θ), tj(Xi, θ)) + V̂ arn(tj(Xi, θ))

)1/2

=
(
σ̂2
n,j(θn) +OPn(σ̂n,j(θn)) +OPn(1)

)1/2

= OPn(σ̂n,j(θn)), (E.207)

where the second equality follows from, V arPn(tj(Xi, θ)) being bounded by Assumption 4.3-(II) and

V̂ arn(tj(Xi, θ)) = V arPn(tj(Xi, θ)) + oPn(1) (E.208)

Ĉovn(mj(Xi, θ), tj(Xi, θ)) ≤ σ̂n,j(θn)V̂ arn(tj(Xi, θ))
1/2, (E.209)

where the last inequality is due to the Cauchy-Schwarz inequality.

Therefore,

σ̂n,j(θn)

σ̂Mn,j(θn)
− 1 =

σ̂n,j(θn)− σ̂Mn,j(θn)

σ̂Mn,j(θn)
=

(1− µ̂n,j(θn))OPn(σ̂n,j(θn))

(1 + oPn(1))σ̂n,j(θn) + (1− µ̂n,j(θn))OPn(σ̂n,j(θn))
= oPn(1), (E.210)

where we used σ̂−1
n,j(θn) = OPn(1) by equation (4.3) and part (i) of the lemma. By (E.204) and (E.210), σPn,j(θn)/σ̂Mn,j(θn)−

1 = oPn(1). Using a similar argument, the same conclusion follows when j ∈ R1, j /∈ J ∗, but j +R1 ∈ R2 ∩ J ∗.
Now consider the case j ∈ R1 ∩ J ∗ and j + R1 ∈ R2 ∩ J ∗. Then, π∗1,j = 0 and π∗1,j+R1

= 0. In this case,

µ̂n,j(θn) ∈ [0, 1] for all n and by Lemma E.9 (1),∣∣∣ σPn,j(θn)

σPn,j+R1(θn)
− 1
∣∣∣ = oPn(1), for j = 1, · · · , R1, (E.211)

and therefore,

σPn,j(θn)

σ̂Mn,j(θn)
− 1 =

σPn,j(θn)− σ̂Mn,j(θn)

σ̂Mn,j(θn)

=
[µ̂n,j(θn) + (1− µ̂n,j(θn))]σPn,j(θn)− [µ̂n,j(θn)σ̂n,j(θn) + (1− µ̂n,j(θn))σ̂n,j+R1

(θn)]

σ̂Mn,j(θn)

=
µ̂n,j(θn)[σPn,j(θn)− σ̂n,j(θn)]

σ̂Mn,j(θn)
+

(1− µ̂n,j(θn))[σPn,j+R1
(θn)− σ̂n,j+R1

(θn) + oPn(1)]

σ̂Mn,j(θn)
, (E.212)

where the second equality follows from the definition of σ̂Mn,j(θn), and the third equality follows from (E.211) and

σPn,j+R1
bounded away from 0 due to (4.3). Note that

µ̂n,j(θn)[σPn,j(θn)− σ̂n,j(θn)]

σ̂Mn,j(θn)
= µ̂n,j(θn)

σ̂n,j(θn)

σ̂Mn,j(θn)

(σPn,j(θn)

σ̂n,j(θn)
− 1
)

= oPn(1), (E.213)
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where the second equality follows from the first conclusion of the lemma. Similarly,

(1− µ̂n,j(θn))[σPn,j+R1(θn)− σ̂n,j+R1(θn) + oPn(1)]

σ̂Mn,j(θn)

= (1− µ̂n,j(θn))
σ̂n,j+R1(θn)

σ̂Mn,j(θn)

(σPn,j+R1(θn)

σ̂n,j+R1
(θn)

− 1 + oPn(1)
)

= oPn(1). (E.214)

By (E.212)-(E.214), it follows that σPn,j(θn)/σ̂Mn,j(θn)− 1 = oPn(1). Therefore, the second conclusion holds for all

subcases.

E.2 Lemmas Used to Prove Theorem B.1

Let {Xb
i }ni=1 denote a bootstrap sample drawn randomly from the empirical distribution. Define

Gbn,j(θ) ≡
1√
n

n∑
i=1

(
mj(X

b
i , θ)− m̄n(θ)

)
/σP,j(θ)

=
1√
n

n∑
i=1

(Mn,i − 1)mj(Xi, θ)/σP,j(θ), (E.215)

where {Mn,i}ni=1 denotes the multinomial weights on the original sample, and we let P ∗n denote the conditional

distribution of {Mn,i}ni=1 given the sample path {Xi}∞i=1 (see Appendix E.3 for details on the construction of the

bootstrapped empirical process).

Lemma E.11: (i) Let MP ≡ {f : X → R : f(·) = σP,j(θ)
−1mj(·, θ), θ ∈ Θ, j = 1, · · · , J} and let F be its

envelope. Suppose that (i) there exist constants K, v > 0 that do not depend on P such that

sup
Q
N(ε‖F‖L2

Q
,MP , L

2
Q) ≤ Kε−v, 0 < ε < 1, (E.216)

where the supremum is taken over all discrete distributions; (ii) There exists a positive constant γ > 0 such that

‖(θ1, θ̃1)− (θ2, θ̃2)‖ ≤ δ ⇒ sup
P∈P
‖QP (θ1, θ̃1)−QP (θ2, θ̃2)‖ ≤Mδγ . (E.217)

Let δn be a positive sequence tending to 0 and let εn be a positive sequence such that εn/|δγn ln δn| → ∞ as n→∞.

Then,

sup
P∈P

P

(
sup

‖θ−θ′‖≤δn
‖Gn(θ)−Gn(θ′))‖ > εn

)
= o(1). (E.218)

Further,

lim
n→∞

P ∗n

(
sup

‖θ−θ′‖≤δn
‖Gbn(θ)−Gbn(θ′))‖ > εn|{Xi}∞i=1

)
= 0. (E.219)

for almost all sample paths {Xi}∞i=1 uniformly in P ∈ P.

Proof. For the first conclusion of the lemma, it suffices to show that there is a sequence {εn} such that, uniformly
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in P :

P

(
sup

‖θ−θ′‖≤δn
max

j=1,··· ,J
|Gn,j(θ)−Gn,j(θ′)| > εn

)
= o(1). (E.220)

For this purpose, we mostly mimic the argument required to show the stochastic equicontinuity of empirical processes

(see e.g. van der Vaart and Wellner, 2000, Ch.2.5). Before doing so, note that, arguing as in the proof of Lemma

D.1 (Part 1) in Bugni, Canay, and Shi (2015), one has

‖θ − θ′‖ ≤ δn ⇒ %P (θ, θ′) ≤ δ̃n, (E.221)

where δ̃n = O(δγn) by assumption. Define

MP,δ̃n
= {σP,j(θ)−1mj(·, θ)− σP,j(θ′)−1mj(·, θ′)|θ, θ′ ∈ Θ, %P (θ, θ̃) < δ̃n, j = 1, · · · , J}. (E.222)

Define Zn(δ̃n) ≡ supf∈Mδ̃n
|
√
n(Pn − P )f |. Then, by (E.221), one has

P

(
sup

‖θ−θ′‖≤δn
max

j=1,··· ,J
|Gn,j(θ)−Gn,j(θ′))| > εn) ≤ P (Zn(δ̃n) > εn

)
. (E.223)

From here, we deal with the supremum of empirical processes though symmetrization and an application of a

maximal inequality. By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma) in van der Vaart and

Wellner (2000), one has

P (Zn(δ̃n) > εn) ≤ 2

εn
EP×PW

[
sup

f∈MP,δ̃n

∣∣∣∣∣ 1√
n

n∑
i=1

Wif(Xi)

∣∣∣∣∣
]
, (E.224)

where {Wi}ni=1 are i.i.d. Rademacher random variables independent of {Xi}∞i=1 whose law is denoted by PW . Now,

fix the sample path {Xi}ni=1, and let P̂n be the empirical distribution. By Hoeffding’s inequality, the stochastic

process f 7→ {n−1/2
∑n
i=1Wif(Xi)} is sub-Gaussian for the L2

P̂n
seminorm ‖f‖L2

P̂n

= (n−1
∑n
i=1 f(Xi)

2)1/2. By the

maximal inequality (Corollary 2.2.8) and arguing as in the proof of Theorem 2.5.2 in in van der Vaart and Wellner

(2000), one then has

EPW

[
sup

f∈Mδ̃n

∣∣∣∣∣ 1√
n

n∑
i=1

Wif(Xi)

∣∣∣∣∣
]
≤ K

∫ δ̃n

0

√
lnN(ε,MP,δ̃n

, L2
P̂n

)dε

≤ K
∫ δ̃n/‖F‖L2

Q

0

sup
Q

√
lnN(ε‖F‖L2

Q
,MP , L2

Q)dε

≤ K ′
∫ δ̃n/‖F‖L2

Q

0

√
−v ln εdε, (E.225)

for some K ′ > 0, where the last inequality follows from (E.216). Note that
√
− ln ε ≤ − ln ε for ε ≤ δ̃n/‖F‖L2

Q
with

n sufficiently large. Hence,

EPW

[
sup

f∈Mδ̃n

∣∣∣∣∣ 1√
n

n∑
i=1

Wif(Xi)

∣∣∣∣∣
]
≤ K ′v1/2

∫ δ̃n/‖F‖L2
Q

0

(− ln ε)dε = K ′v1/2(δ̃n − δ̃n ln(δ̃n)). (E.226)

By (E.224) and taking expectations with respect to P in (E.226), it follows that

P (Zn(δ̃n) > εn) ≤ 2K ′v1/2(δ̃n − δ̃n ln(δ̃n))/εn = O(δγn/εn) +O(|δγn ln(δn)|/εn) = o(1), (E.227)
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where the last equality follows from the rate condition on εn. By (E.223) and (E.227), conclude that the first claim

of the lemma holds.

For the second claim, define Z∗n(δ̃n) ≡ supf∈Mδ̃n
|
√
n(P̂ ∗n − P̂n)f |, where P̂ ∗n is the empirical distribution of

{Xb
i }ni=1. Then, by (E.221), one has

P ∗n

(
sup

‖θ−θ′‖≤δn
max

j=1,··· ,J
|Gbn,j(θ)−Gbn,j(θ

′)| > εn

∣∣∣{Xi}∞i=1

)
≤ P ∗n

(
Z∗n(δ̃n) > εn

∣∣{Xi}∞i=1

)
. (E.228)

By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma) in van der Vaart and Wellner (2000), one has

P ∗n
(
Z∗n(δ̃n) > εn

∣∣{Xi}∞i=1

)
≤ 2

εn
EP∗n×PW

[
sup

f∈MP,δ̃n

∣∣∣ 1√
n

n∑
i=1

Wif(Xb
i )
∣∣∣∣∣∣∣∣{Xi}∞i=1

]
(E.229)

=
2

εn
EP∗n

[
EPW

[
sup

f∈MP,δ̃n

∣∣∣ 1√
n

n∑
i=1

Wif(Xb
i )
∣∣∣∣∣∣∣∣{Xb

i }, {Xi}∞i=1

] ∣∣∣∣∣{Xi}∞i=1

]
, (E.230)

where {Wi}ni=1 are i.i.d. Rademacher random variables independent of {Xi}∞i=1 and {Mn,i}ni=1. Argue as in (E.224)-

(E.227). Then, it follows that

P ∗n(Z∗n(δ̃n) > εn|{Xi}∞i=1) = O(δγn/εn) +O(−δγn ln(δn)/εn) = o(1),

for almost all sample paths. Hence, the second claim of the lemma follows.

Lemma E.12: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Let SP ≡ {f : X → R : f(·) = σP,j(θ)
−2m2

j (·, θ), θ ∈
Θ, j = 1, · · · , J} and let F be its envelope. (i) If SP is Donsker and pre-Gaussian uniformly in P ∈ P, then

sup
θ∈Θ
|ηn,j(θ)|∗ = OP(1/

√
n); (E.231)

(ii) If |σP,j(θ)−1mj(x, θ) − σP,j(θ′)−1mj(x, θ
′)| ≤ M̄(x)‖θ − θ′‖ with EP [M̄(X)2] < M for all θ, θ′ ∈ Θ, x ∈ X ,

j = 1, · · · , J , and P ∈ P, then, for any η > 0, there exists a constant C > 0 such that

lim sup
n→∞

sup
P∈P

P
(

max
j=1,··· ,J

sup
‖θ−θ′‖<δ

|ηn,j(θ)− ηn,j(θ′)| > Cδ
)
< η. (E.232)

Proof. We show the claim by first showing that, for any δ > 0, there exist M > 0 and N ∈ N such that

inf
P∈P

P∞
(

sup
θ∈Θ

∣∣∣ σ̂n,j(θ)
σP,j(θ)

− 1
∣∣∣ ≤M/

√
n
)
≥ 1− δ, ∀n ≥ N. (E.233)

By Assumptions 4.1 (iv), 4.5 and Theorem 2.8.2 in van der Vaart and Wellner (2000), MP is a Donsker class

uniformly in P ∈ P. By hypothesis, SP is a Donsker class uniformly in P ∈ P.

Therefore, by the continuous mapping theorem, for any ε > 0,∣∣∣P(√n sup
θ∈Θ

∣∣∣n−1
∑n
i=1mj(Xi, θ)

2

σ2
P,j(θ)

− EP [mj(X, θ)
2]

σ2
P,j(θ)

∣∣∣ ≤ C1

)
− Pr(sup

θ∈Θ
|HP,j(θ)| ≤ C1)

∣∣∣ ≤ ε (E.234)∣∣∣P(√n sup
θ∈Θ

∣∣∣m̄n,j(θ)− EP [mj(X, θ)]

σP,j(θ)

∣∣∣ ≤ C2

)
− Pr(sup

θ∈Θ
|GP,j(θ)| ≤ C2)

∣∣∣ ≤ ε. (E.235)

for n sufficiently large uniformly in P ∈ P, where HP,j and GP,j are tight Gaussian processes, and C1 and C2

are the continuity points of the distributions of supθ∈Θ |HP,j(θ)| and supθ∈Θ |GP,j(θ)| respectively. As in the proof

of Lemma E.10 (i), bounding each term of the right hand side of (E.197) by C1/
√
n and C2/

√
n implies that
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supθ∈Θ

∣∣∣ σ̂2
n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ C/√n for some constant C > 0. Now choose C1 > 0 and C2 > 0 so that

Pr(sup
θ∈Θ
|HP,j(θ)| ≤ C1) > 1− δ/3, and Pr(sup

θ∈Θ
|GP,j(θ)| ≤ C2) > 1− δ/3, (E.236)

and set ε > 0 sufficiently small so that 1− 2δ/3− 2ε ≥ 1− δ. The existence of such continuity points C1, C2 > 0 is

due to Theorem 11.1 in Davydov, Lifshitz, and Smorodina (1995) applied to supθ∈Θ |HP,j(θ)| and supθ∈Θ |GP,j(θ)|
respectively. Then, for sufficiently large n,

1− δ ≤ P
(√

n sup
θ∈Θ

∣∣∣n−1
∑n
i=1mj(Xi, θ)

2

σ2
P,j(θ)

− EP [mj(X, θ)
2]

σ2
P,j(θ)

∣∣∣ ≤ C1,

√
n sup
θ∈Θ

∣∣∣m̄n,j(θ)− EP [mj(X, θ)]

σP,j(θ)

∣∣∣ ≤ C2

)
≤ P

(
sup
θ∈Θ

∣∣∣ σ̂2
n,j(θ)

σ2
P,j(θ)

− 1
∣∣∣ ≤ C/√n), (E.237)

uniformly in P ∈ P.
Next, note that, for x > 0 and 0 < η < 1, |x2−1| ≤ η implies |x−1| ≤ 1− (1−η)1/2 ≤ η, and hence by (E.237),

for sufficiently large n,

1− δ ≤ P
(

sup
θ∈Θ

∣∣∣ σ̂n,j(θ)
σP,j(θ)

− 1
∣∣∣ ≤ C/√n), (E.238)

uniformly in P ∈ P. Finally, note again that |σ̂n,j(θ)/σP,j(θ)− 1| ≤ ε implies σ̂n,j(θ) > 0, and by the local Lipshitz

continuity of x 7→ 1/x on a neighborhood around 1, there is a constant C ′ such that

P
(

sup
θ∈Θ
|ηn,j(θ)| ≤ C ′/

√
n
)
≥ 1− δ, (E.239)

uniformly in P ∈ P for all n sufficiently large. This establishes the first claim of the lemma.

(ii) First, consider

σ̂2
n,j(θ)

σ2
P,j(θ)

= n−1
n∑
i=1

(
m(Xi, θ)

σP,j(θ)

)2

−

(
n−1

n∑
i=1

m(Xi, θ)

σP,j(θ)

)2

. (E.240)

We claim that this function is Lipschitz with probability approaching 1. To see this, note that, for any θ, θ′ ∈ Θ,∣∣∣∣∣n−1
n∑
i=1

(
m(Xi, θ)

σP,j(θ)

)2

− n−1
n∑
i=1

(
m(Xi, θ

′)

σP,j(θ′)

)2∣∣∣∣∣
=

∣∣∣∣∣n−1
n∑
i=1

(
m(Xi, θ)

σP,j(θ)
+
m(Xi, θ

′)

σP,j(θ′)

)(
m(Xi, θ)

σP,j(θ)
− m(Xi, θ

′)

σP,j(θ′)

)∣∣∣∣∣
≤ n−1

n∑
i=1

2 sup
θ∈Θ

∣∣∣m(Xi, θ)

σP,j(θ)

∣∣∣M̄(Xi)‖θ − θ′‖. (E.241)

Define Bn ≡ n−1
∑n
i=1 2 supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣M̄(Xi). By Markov and Cauchy-Schwarz inequalities,

P (Bn > C) ≤ E[Bn]

C
≤

2EP

[
supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣2]1/2

EP

[
M̄(Xi)

2
]1/2

C
≤ 2M

C
, (E.242)
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where the third inequality is due to Assumptions 4.1 (iv) and the assumption on M̄ . Hence, for any η > 0, one may

find C > 0 such that supP∈P P (Bn > C) < η for all n.

Similarly, for any θ, θ′ ∈ Θ,∣∣∣∣∣
(
n−1

n∑
i=1

m(Xi, θ)

σP,j(θ)

)2

−

(
n−1

n∑
i=1

m(Xi, θ
′)

σP,j(θ′)

)2∣∣∣∣∣
=

∣∣∣∣∣n−1
n∑
i=1

m(Xi, θ)

σP,j(θ)
+ n−1

n∑
i=1

m(Xi, θ
′)

σP,j(θ′)

∣∣∣∣∣
∣∣∣∣∣n−1

n∑
i=1

m(Xi, θ)

σP,j(θ)
− n−1

n∑
i=1

m(Xi, θ
′)

σP,j(θ′)

∣∣∣∣∣
≤ n−1

n∑
i=1

2 sup
θ∈Θ

∣∣∣∣∣m(Xi, θ)

σP,j(θ)

∣∣∣∣∣n−1
n∑
i=1

M̄(Xi)‖θ − θ′‖. (E.243)

Define B̃n ≡ n−1
∑n
i=1 2 supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣n−1
∑n
i=1 M̄(Xi). By Markov, Cauchy-Schwarz, and Jensen’s inequalities,

P (B̃n > C) ≤ E[B̃n]

C
≤

2EP

[(
n−1

∑
supθ∈Θ

∣∣∣m(Xi,θ)
σP,j(θ)

∣∣∣)2]1/2
EP

[(
n−1

∑
M̄(Xi)

)2]1/2
C

≤
2EP

[
supθ∈Θ

∣∣m(Xi,θ)
σP,j(θ)

∣∣2]1/2EP [M̄(Xi)
2]1/2

C
≤ 2M

C
, (E.244)

where the last inequality is due to Assumptions 4.1 (iv) and the assumption on M̄ . Hence, for any η > 0, one may

find C > 0 such that supP∈P P (B̃n > C) < η for all n.

Finally, let g(y) ≡ y−1/2 − 1 and note that |g(y)− g(y′)| ≤ 1
2 supȳ∈(1−ε,1+ε) |ȳ|−3/2|y − y′| on (1− ε, 1 + ε). As

shown in (E.238), σ̂2
n,j(θ)/σ

2
P,j(θ) converges to 1 in probability, and g is locally Lipschitz on a neighborhood of 1.

Combining this with (E.240)-(E.244) yields the desired result.

Lemma E.13: Suppose Assumption 4.1 holds. Suppose further that |σP,j(θ)−1mj(x, θ)− σP,j(θ′)−1mj(x, θ
′)| ≤

M̄(x)‖θ − θ′‖ with EP [M̄(X)2] < M for all θ, θ′ ∈ Θ, x ∈ X , j = 1, · · · , J , and P ∈ P.

Then,

sup
P∈P
‖QP (θ1, θ̃1)−QP (θ2, θ̃2)‖ ≤M‖(θ1, θ̃1)− (θ2, θ̃2)‖, (E.245)

for some M > 0 and for all θ1, θ̃1, θ2, θ̃2 ∈ Θ.

Proof. Recall that

[QP (θ1, θ̃1)]j,k = EP

[mj(Xi, θ1)

σP,j(θ1)

mk(Xi, θ̃1)

σP,k(θ̃1)

]
− EP

[mj(Xi, θ1)

σP,j(θ1)

]
EP

[mk(Xi, θ̃1)

σP,k(θ̃1)

]
. (E.246)
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For any θ1, θ̃1, θ2, θ̃2 ∈ Θ,∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

mk(Xi, θ̃1)

σP,k(θ̃1)

]
− EP

[mj(Xi, θ2)

σP,j(θ2)

mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣
≤
∣∣∣EP [(mj(Xi, θ1)

σP,j(θ1)
− mj(Xi, θ2)

σP,j(θ2)

)mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣+
∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

(mk(Xi, θ̃1)

σP,k(θ̃1)
− mk(Xi, θ̃2)

σP,k(θ̃2)

)]∣∣∣
≤ EP

[
sup
θ∈Θ

∣∣∣mk(Xi, θ)

σP,k(θ)

∣∣∣M̄(Xi)
]
‖θ1 − θ2‖+ EP

[
sup
θ∈Θ

∣∣∣mj(Xi, θ)

σP,j(θ)

∣∣∣M̄(Xi)
]
‖θ̃1 − θ̃2‖

≤M(‖θ1 − θ2‖+ ‖θ̃1 − θ̃2‖), (E.247)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption 4.1 (iv), and the assumption on M̄ .

Similarly, for any θ1, θ̃1, θ2, θ̃2 ∈ Θ,∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

]
EP

[mk(Xi, θ̃1)

σP,k(θ̃1)

]
− EP

[mj(Xi, θ2)

σP,j(θ2)

]
EP

[mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣
≤
∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)
− mj(Xi, θ2)

σP,j(θ2)

]∣∣∣∣∣∣EP [mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣+
∣∣∣EP [mj(Xi, θ1)

σP,j(θ1)

]∣∣∣∣∣∣EP [mk(Xi, θ̃1)

σP,k(θ̃1)
− mk(Xi, θ̃2)

σP,k(θ̃2)

]∣∣∣
≤ EP

[
sup
θ∈Θ

∣∣∣mk(Xi, θ)

σP,k(θ)

∣∣∣]EP [M̄(Xi)]‖θ1 − θ2‖+ EP

[
sup
θ∈Θ

∣∣∣mj(Xi, θ)

σP,j(θ)

∣∣∣]EP [M̄(Xi)]‖θ̃1 − θ̃2‖

≤M(‖θ1 − θ2‖+ ‖θ̃1 − θ̃2‖), (E.248)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption 4.1 (iv), and the assumption on M̄ .

The conclusion of the lemma then follows from (E.246)-(E.248).

E.3 Almost Sure Representation Lemma and Related Results

In this appendix, we provide details on the almost sure representation used in Lemmas E.3, E.4, E.6, and E.9. We

start with stating a uniform version of the bootstrap consistency in van der Vaart and Wellner (2000). For this, we

define the original sample X∞ = (X1, X2, · · · ) and a n-dimensional multinomial vector Mn on a common probability

space (X∞,A∞, P∞)× (Z, C, Q). We then view X∞ as the coordinate projection on the first ∞ coordinates of the

probability space above. Similarly, we view Mn as the coordinate projection on Z. Here, Mn follows a multinomial

distribution with parameter (n; 1/n, · · · , 1/n) and is independent of X∞. We then let EM [·|X∞ = x∞] denote

the conditional expectation of Mn given X∞ = x∞. Throughout, we let `∞(Θ,RJ) denote uniformly bounded

RJ -valued functions on Θ. We simply write `∞(Θ) when J = 1.

Using the multinomial weight, we rewrite the empirical bootstrap process as

Gbn,j(·) = gj(X
∞,Mn) ≡ 1√

n

n∑
i=1

(Mn,i − 1)mj(Xi, ·)/σ̂n,j(·), j = 1, · · · , J, (E.249)

where gj : X∞ × Z → `∞(Θ) is a function that maps the sample path and the multinomial weight (X∞,Mn) to

the empirical bootstrap process Gbn,j . We then let g : X∞ × Z → `∞(Θ,RJ) be defined by g = (g1, · · · , gJ)′. For

any function f : `∞(Θ,RJ)→ R, the conditional expectation of f(Gbn) given the sample path X∞ is

EM [f(Gbn)|X∞ = x∞] =

∫
f ◦ g(x∞,mn)dQ(mn), (E.250)

where, with a slight abuse of notation, we use Q for the induced law of Mn.
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Let F be the function space {f(·) = (m1(·, θ)/σP,1(θ), · · · ,mJ(·, θ)/σP,J(θ)), θ ∈ Θ, P ∈ P}. For each j, define

a bootstrapped empirical process standardized by σP,j as follows:

Gbn,j(θ) ≡
1√
n

n∑
i=1

(
mj(X

b
i , θ)− m̄n(θ)

)
/σP,j(θ)

=
1√
n

n∑
i=1

(Mn,i − 1)mj(Xi, θ)/σP,j(θ). (E.251)

The following result was shown in the proof of Lemma D.2.8 in Bugni, Canay, and Shi (2015), which is a uniform

version of (a part of) Theorem 3.6.2 in van der Vaart and Wellner (2000). For the definition of a uniform version

of Donskerness and pre-Gaussianity, we refer to van der Vaart and Wellner (2000) pages 168-169. Below, we let

P ∗ denote the outer probability of P and let T ∗ denote the minimal measurable majorant of any (not necessarily

measurable) random element T .

Lemma E.14: Let F be a class of measurable functions with finite envelope function. Suppose F is such that

(i) F is Donsker and pre-Gaussian uniformly in P ∈ P; and (ii) supP∈P P
∗‖f − Pf‖2F <∞. Then,

sup
h∈BL1

|EM [h(Gbn)|X∞]− E[h(GP )]| as∗→ 0, (E.252)

uniformly in P ∈ P.

The result above gives uniform consistency of the standardized bootstrap process Gbn. We now extend this to

the studentized bootstrap process Gbn.

Lemma E.15: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Then,

sup
h∈BL1

|EM [h(Gbn)|X∞]− E[h(GP )]| as∗→ 0, (E.253)

uniformly in P ∈ P.

Proof. By Assumptions 4.1 (iv) and 4.5, Assumptions A.1-A.4 in Bugni, Canay, and Shi (2015) hold, which in turn

implies that, by their Lemma D.1.2, F is Donsker and pre-Gaussian uniformly in P ∈ P. Further, by Assumption

4.1 (iv) again, supP∈P P
∗‖f − Pf‖F <∞. Hence, by Lemma E.14,

inf
P∈P

P∞
(

sup
h∈BL1

|EM [h(Gbn)|X∞]− E[h(GP )]|∗ → 0
)

= 1. (E.254)

For later use, we define the following set of sample paths, which has probability 1 uniformly in P ∈ P.

A ≡
{
x∞ ∈ X∞ : sup

h∈BL1

|EM [h(Gbn)|X∞ = x∞]− E[h(GP )]|∗ → 0
}
. (E.255)

Note that Gbn,j and Gbn,j are related to each other by the following relationship:

Gbn,j(θ)−Gbn,j(θ) = Gbn,j(θ)

(
σP,j(θ)

σ̂n,j(θ)
− 1

)
= Gbn,j(θ)ηn,j(θ), θ ∈ Θ. (E.256)

By Assumptions 4.1, 4.2, and 4.5, Lemma E.10 applies. Hence,

inf
P∈P

P∞
(

sup
θ∈Θ
|ηn,j(θ)|∗ → 0

)
= 1. (E.257)
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Define the following set of sample paths:

B ≡
{
x∞ ∈ X∞ : sup

θ∈Θ
|ηn,j(θ)|∗ → 0,∀j = 1, · · · , J

}
. (E.258)

For any x∞ ∈ A ∩B, it then follows that

sup
h∈BL1

∣∣EM [h(Gbn)|X∞ = x∞]− E[h(GP )]
∣∣∗ → 0, (E.259)

due to (E.254) and (E.256), h being Lipschitz, Gbn,j being bounded (given x∞), and supθ∈Θ |ηn,j(θ)|∗ → 0 for all

j. Finally, note that infP∈P P
∞(A ∩ B) = 1 due to (E.254), (E.257), and De Morgan’s law. This establishes the

conclusion of the lemma.

The following lemma shows that, for almost all sample path x∞, one can find an almost sure representation of

the bootstrapped empirical process that is convergent.

Lemma E.16: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Then, for each x∞ ∈ X∞, there exists a sequence

{G̃n,x∞ ∈ `(Θ,RJ), n ≥ 1} and a random element G̃P,x∞ ∈ `(Θ,RJ) defined on some probability space (Ω̃, Ã, P̃)

such that ∫
h ◦ g(x∞,mn)dQ(mn) =

∫
h(G̃n,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1 (E.260)∫

h(GP (ω))dP (ω) =

∫
h(G̃P,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1, (E.261)

for all x∞ ∈ C for some set C ⊂ X∞ such that infP∈P P
∞(C) = 1 and

inf
P∈P

P∞
({
x∞ ∈ X∞ : G̃n,x∞

P̃−as∗→ G̃P,x∞
})

= 1. (E.262)

Proof. Define the following set of sample paths:

C ≡
{
x∞ ∈ X∞ : sup

h∈BL1

|EM [h(Gbn,j)|X∞ = x∞]− E[h(GP )]|∗ → 0
}
. (E.263)

By Lemma E.15, infP∈P P
∞(C) = 1.

For each fixed sample path x∞ ∈ C, consider the bootstrap empirical process g(x∞,Mn) in (E.249). This is a

random element in `∞(Θ,RJ) with a law governed by Q. For each x∞ ∈ C, by Lemma E.15,

sup
h∈BL1

∣∣∣∣∫ h ◦ g(x∞,mn)dQ(mn)− E[h(GP )]

∣∣∣∣∗ → 0. (E.264)

Hence, by Theorem 1.10.4 in van der Vaart and Wellner (2000), for each x∞ ∈ C, one may find an almost sure

representation G̃n,x∞ of g(x∞,Mn) on some probability space (Ω̃, Ã, P̃) such that∫
h ◦ g(x∞,mn)dQ(mn) =

∫
h(G̃n,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1. (E.265)

In particular, the proof of Theorem 1.10.4 in van der Vaart and Wellner (2000) (see also Addendum 1.10.5) allows

us to take G̃n,x∞ to be defined for each ω̃ ∈ Ω̃ as

G̃n,x∞(ω̃) = g(x∞,Mn(φn(ω̃))), (E.266)

for some perfect map φn : Ω̃ → Z (see the construction of φα in the middle of page 61 in VW). One may define

G̃n,x∞ arbitrarily for any x∞ /∈ C. The almost sure representation G̃P,x∞ of GP,j is defined similarly.
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By Theorem 1.10.4 in van der Vaart and Wellner (2000), Eq. (E.259), and infP∈P P (C) = 1, it follows that

inf
P∈P

P∞
({
x∞ ∈ X∞ : G̃n,x∞

P̃−as∗→ G̃P,x∞
})

= 1. (E.267)

This establishes the claim of the lemma.

Lemma E.17: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Let Wn ≡ (Gbn, Yn) be a sequence inW ≡ `(Θ,RJ)×
RdY such that Yn = g̃(X∞,Mn) for some map g̃ : X∞ ×Z → RdY and

inf
P∈P

P∞
(

sup
h∈BL1

|EM [h(Wn)|X∞ = x∞]− E[h(W )]|∗ → 0
)

= 1, (E.268)

where W = (G, Y ) is a Borel measurable random element in W.

Then, for each x∞ ∈ X∞, there exists a sequence {W ∗n,x∞ ∈ W, n ≥ 1} and a random element W ∗x∞ ∈ W
defined on some probability space (Ω̃, Ã, P̃) such that

EM [h(Wn)|X∞ = x∞] =

∫
h(W ∗n,x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1 (E.269)

E[h(W )] =

∫
h(W ∗x∞(ω̃))dP̃∗(ω̃), ∀h ∈ BL1, (E.270)

for all x∞ ∈ C for some set C ⊂ X∞ such that infP∈P P
∞(C) = 1, and

inf
P∈P

P∞
({
x∞ ∈ X∞ : W ∗n,x∞

P̃−as∗→ W̃ ∗x∞
})

= 1. (E.271)

Proof. Let C ≡ {x∞ : suph∈BL1
|EM [h(Wn)|X∞ = x∞] − E[h(W )]|∗ → 0}. The rest of the proof is the same as

the one for Lemma E.16 and is therefore omitted.

Remark E.1: When called by the Lemmas in Appendix E, Lemma E.17 is applied, for example, with Yn =

(vec(D̂n(θ′n)), ξ̂n(θ′n)) and Y = (vec(D), π1).

Appendix F Further Comparison of Calibrated Projection and BCS-

Profiling

We next show that finite sample power can be higher with calibrated projection than with BCS-profiling, and

that, due to the slow rate at which κn diverges, this effect can be large in samples of considerable size. Thus, the

approaches are not nested in terms of power in empirically relevant examples. We then provide an example where

all of calibrated projection, BCS-profiling and the method of Pakes, Porter, Ho, and Ishii (2011) fail in a specific

instance where Assumption 4.3 is not satisfied.

F.1 Finite Sample Comparison in a Specific Example

We next analyze a stylized example of one-sided testing when the support set in direction p is a singleton identified

as the intersection of d moment inequalities with regular geometry. In this example, calibrated projection has more

power (less false coverage) than BCS-profiling, and the numerical difference can be large. The example resembles

empirically important cases, namely polyhedral identified sets with large interior, e.g. linear regression with interval

outcome data; recall that by Theorem 4.3, the two-sided testing problem reduces to two one-sided ones in these
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cases. At the same time, we emphasize that other examples will go the other way, especially as the present example

utilizes the simplifications from Theorem 4.3 and therefore has no ρ-box.

Let θ be partially identified by moment conditions

EP (zj′θ −Xj) ≤ 0, j = 1, . . . , d.

Note that to simplify the analysis, we assume exactly d conditions. Assume that {z1, . . . , zd} are linearly independent

and also that p is in their positive span, so that ΘI is bounded in direction p but not −p. The confidence intervals

will be accordingly one-sided. Since gradients are known, all simplifications from Theorem 4.3 apply. We borrow

from algebra in the proof of Theorem 4.4 to observe that, with the simplifications in place, CIn and CIprofn invert

tests that use the same test statistic but different bootstrap approximations to its distribution as follows:

TDRn = max
j

{
Gbn,j

}

TPRn (sn) = min
p′λ=0

max
j

Gbn,j +

√
n

κn

zj′θ̂∗p,sn − X̄j

σ̂n,j︸ ︷︷ ︸
>0

+
zj′λ

σ̂n,j


T bn = min

p′λ=0
max
j

Gbn,j +

√
n

κn

zj′θ̂∗p − X̄j

σ̂n,j︸ ︷︷ ︸
=0

+
zj′λ

σ̂n,j

 ≤ min{TDRn , TPRn (sn)},

where (as in Theorem 4.3) sn is the value of p′θ being tested and θ̂p,sn minimizes the sample criterion subject

to p′θ = sn. The last inequality is strict unless the problem defining T bn is solved by λ = 0. The assessments of

intercept terms in TPRn (sn) and T bn use that by construction of the example, all sample constraints bind at θ̂∗p and

are violated at θ̂∗p,sn (else, the test statistic would be 0 and the critical value not computed). Equality thus requires

knife-edge realizations of Gbn,j , so its probability vanishes as Gbn,j approaches multivariate normality and is in fact

0 for typical empirical samples. We conclude that the calibrated projection CIn is deterministically a weak (and

essentially always a strict) subset of the BCS-profiling CIprofn in this example.

We next provide a numerical comparison in a further stripped-down version of the example. Thus, consider

one-sided testing with moment conditions

−θ1 + θ2 − EP (X1) ≤ 0

θ1 + θ2 − EP (X2) ≤ 0

where the data are (X1, X2) ∼ N((EP (X1), EP (X2)), I2) and EP (X1) = EP (X2) = 0. All of these facts other than

EP (X1) = EP (X2) = 0, but including the gradients and variance matrix, are known. This enables closed form

arguments. Also, for a researcher knowing this, the natural bootstrap implementation is a parametric bootstrap:(
Xb

1, X
b
2

)
∼ N((X̄1, X̄2), I2)

=⇒
√
n(X̄b

1 − X̄1, X̄
b
2 − X̄1) = (Z1, Z2) ∼ N(0, I2)

which we will use, i.e. (Z1, Z2) will take the role of (Gbn,1,Gbn,2). Numerical computations refer to α = 5%.

Let p = (0, 1). We construct one-sided confidence intervals for s(p,ΘI(P )). All intervals contain (−∞, s(p, Θ̂I)],
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and simple algebra shows s(p, Θ̂I) = X̄1+X̄2

2 . Also noting that in this example s(p,ΘI(P )) = 0 and, for sn > s(p, Θ̂I),

H(p, Θ̂I) =

{(
−X̄1 + X̄2

2
,
X̄1 + X̄2

2

)}
Θ̂I(sn) ≡

{
θ ∈ Θ : p′θ = sn, Qn(θ) ≤ inf

θ∈Θ:p′θ=sn
Qn(θ)

}
=

{(
−X̄1 + X̄2

2
, sn

)}
Tn(sn) =

√
nmax

{
sn −

X̄1 + X̄2

2
, 0

}
,

where Qn(θ) = maxj=1,...,J1(
√
nm̄n,j(θ)/σ̂n,j(θ))+, we compute

TDRn = min
θ∈Θ̂I(sn)

max
{√

n
(
X̄b

1 − X̄1

)
,
√
n
(
X̄b

2 − X̄2

)
, 0
}

= max
{√

n
(
X̄b

1 − X̄1

)
,
√
n
(
X̄b

2 − X̄2

)
, 0
}
∼ max{Z1, Z2, 0}

TPRn (sn) = min
θ1∈R

max
{√

n
(
X̄b

1 − X̄1

)
+ κ−1

n

√
n
(
−θ1 + sn − X̄1

)
,
√
n
(
X̄b

2 − X̄2

)
+ κ−1

n

√
n
(
θ1 + sn − X̄2

)
, 0
}
.

Unless its value is 0, the minimization problem defining TPRn (sn) is solved by setting two terms equal:

θ1 =

√
n
(
X̄b

1 − µ̂1

)
−
√
n
(
X̄b

2 − X̄2

)
+ κ−1

n

√
n
(
X̄2 − X̄1

)
2κ−1

n
√
n

,

leading to

TPRn (sn) = max

{√
n
(
X̄b

1 − X̄1

)
+
√
n
(
X̄b

2 − X̄2

)
2

+ κ−1
n

√
n

(
sn −

X̄1 + X̄2

2

)
, 0

}

= max

{
Z1 + Z2

2
+ κ−1

n

√
n

(
sn −

X̄1 + X̄2

2

)
, 0

}
= max

{
Z1 + Z2

2
+ κ−1

n Tn(sn), 0

}
.

Finally, very similar reasoning to the above gives

T bn = min
λ∈R

max

{√
n
(
X̄b

1 − X̄1

)
+ κ−1

n

√
nmin

(
X̄1 − X̄2

2
+
X̄1 + X̄2

2
− X̄1, 0

)
− λ,

√
n
(
X̄b

2 − X̄2

)
+ κ−1

n

√
nmin

(
−X̄1 + X̄2

2
+
X̄1 + X̄2

2
− X̄2, 0

)
+ λ, 0

}
= min

λ∈R
max

{√
n
(
X̄b

1 − X̄1

)
− λ,

√
n
(
X̄b

2 − X̄2

)
+ λ, 0

}
= max

{√
n
(
X̄b

1 − X̄1

)
+
√
n
(
X̄b

2 − X̄2

)
2

, 0

}

= max

{
Z1 + Z2

2
, 0

}
.

Thus calibrated projection yields a critical value of ĉn = Φ−1(1 − α)/
√

2 ≈ 1.16, whereas simple projection

uses ĉprojn = Φ−1(
√

1− α) ≈ 1.95; both are independent of sn as well as n. BCS-profiling uses a critical value

ĉprofn (sn) that increases in the test statistic (hence, conditional on the data, in sn) because the statistic itself enters

TPRn . To facilitate a comparison, one can compute the fixed point at which Tn(sn) = ĉprofn (sn). BCS-profiling is

equivalent to comparing Tn(sn) to that fixed point at all sn, and we will therefore equate it with use of this critical

value, labeled c̃profn below. This critical value converges to ĉn at a rate of κ−1
n , illustrating asymptotic equivalence

of inference methods off the null in this case. However, for the popular choice of κn =
√

log n, convergence is so

slow that it should not be taken to describe behavior at realistic sample sizes. Table F.1 displays the numerical
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Table F.1: Finite sample noncoverage rates in a specific example.

Type of cv n Value Power at γn−1/2, γ = ...
0 1 2 3 4

ĉprojn any 1.95 .003 .089 .523 .930 .998

c̃profn 103 1.63 .011 .188 .701 .974 1.000

c̃profn 105 1.52 .016 .231 .751 .982 1.000

c̃profn 107 1.47 .019 .254 .774 .985 1.000

c̃profn 109 1.43 .022 .271 .790 .987 1.000

c̃profn 1011 1.40 .024 .284 .800 .988 1.000

c̃profn 1013 1.38 .025 .292 .807 .989 1.000

c̃profn 1015 1.37 .026 .299 .813 .989 1.000

c̃profn 1017 1.36 .027 .307 .819 .990 1.000

c̃profn 1019 1.35 .028 .313 .823 .990 1.000

c̃profn 1050 1.28 .036 .348 .847 .993 1.000

c̃profn 10100 1.24 .039 .366 .858 .994 1.000

ĉn any 1.16 .050 .409 .882 .995 1.000

value of c̃profn and the implied noncoverage probability (or power) at γ/
√
n for γ ∈ {0, 1, 2, 3, 4}; note that γ = 0

corresponds to the true support function. By construction, c̃profn interpolates between ĉprojn and ĉn in this example,

but convergence to ĉn requires extreme sample sizes. For example, on the boundary edge of the true projection

CIprof.95 has finite sample coverage of .975, which is effectively halfway between projection and calibrated projection,

for n = 1013.

F.2 Example of Methods Failure When Assumption 4.3 Fails

Consider one-sided testing with two inequality constraints in R2. The constraints are

θ1 + θ2 ≤ EP (X1)

θ1 − θ2 ≤ EP (X2).

The projection of ΘI(P ) in direction p = (1, 0) is (−∞, (EP (X1) + EP (X2))/2], the support set is H(p,ΘI) =

{((EP (X1)+EP (X2))/2, (EP (X1)−EP (X2))/2)}, and the support function takes value θ∗1 = (EP (X1)+EP (X2))/2.

The random variables (X1, X2)′ have a mixture distribution as follows:

[
X1

X2

]
∼

 N

(
0,

[
1 −1

−1 1

])
with probability 1− 1/n,

δ(1,1) (degenerate) otherwise,
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hence EP (X1) = EP (X2) = θ∗1 = 1/n. Note in particular the implication that

X1 +X2

2
=

{
0 with probability 1− 1/n,

1 otherwise.

The natural estimator of θ∗1 is θ̂∗1 = (X̄1 + X̄2)/2. It is distributed as Z/n, where Z is Binomial with parameters

(1/n, n). For large n, the distribution of Z is well approximated as Poisson with parameter 1. In particular,

with probability approximately e−1 ≈ 37%, every sample realization of (X1 + X2)/2 equals zero. In this case,

the following happens: (i) The projection of the sample analog of the identified set is (−∞, 0], so that a strictly

positive critical value or level would be needed to cover the true projection. (ii) Because the empirical distribution

of (X1 +X2)/2 is degenerate at zero, the distribution of (X̄b
1 +X̄b

2)/2 is as well. Hence, all of Pakes, Porter, Ho, and

Ishii (2011), Bugni, Canay, and Shi (2017), and calibrated projection (each with either parametric or nonparametric

bootstrap) compute critical values or relaxation levels of 0.

This bounds from above the true coverage of all of these methods at e−1 ≈ 63%. Note that (m < n)-subsampling

will encounter the same problem. Next we provide some discussion of the example.

Violation of Assumptions. The example violates our Assumption 4.3 because Cov(X1, X2)→ 1. It also violates

Assumption 2 in Bugni, Canay, and Shi (2017): Their Assumption A2-(b) should apply, but the profiled test statistic

on the true null concentrates at 1/n. The example satisfies the assumptions explicitly stated in Pakes, Porter, Ho,

and Ishii (2011), illustrating an oversight in their Theorem 2. (We here refer to the inference part of their 2011

working paper. We identified corresponding oversights in the proof of their Proposition 6.)

The example satisfies the assumptions of Andrews and Soares (2010) and Andrews and Guggenberger (2009),

and both methods work here. The reason is that both focus on the distribution of the criterion function at a fixed

θ and are not affected by the irregularity of θ̂∗1 .

Relation to Mammen (1992). In this example, all of Bugni, Canay, and Shi (2017), Pakes, Porter, Ho, and Ishii

(2011), and our calibrated projection method reduce to one-sided nonparametric percentile bootstrap confidence

intervals for (EP (X1) + EP (X2))/2 estimated by (X̄1 + X̄2)/2. By Mammen (1992, Theorem 1), asymptotic

normality of an appropriately standardized estimator, i.e.

∃{an} : an
(
(X̄1 + X̄2)− (EP (X1) + EP (X2))

) d→ N(0, 1),

is necessary and sufficient for this interval to be valid. This fails (the true limit is recentered Poisson at rate an = n),

so that validity of any of the aforementioned methods would contradict the Theorem.

Appendix G Comparison with Projection of AS

In this Appendix we establish that for each n ∈ N, CIn is a subset of a confidence interval obtained by projecting an

AS confidence set and denoted CIprojn .8 Moreover, we derive simple conditions under which our confidence interval is

a proper subset of the projection of AS’s confidence set. Below we let ĉprojn denote the critical value obtained applying

AS with criterion functionQn(θ) = max {maxj=1,...,J1
(
√
nm̄n,j(θ)/σ̂n,j(θ))+,maxj=J1+1,··· ,J1+J2 |

√
nm̄n,j(θ)/σ̂n,j(θ)|}

and with the same choice as for ĉn of GMS function ϕ and tuning parameter κn.

8Of course, AS designed their confidence set to uniformly cover each vector in ΘI with prespecified asymptotic probability,
a different inferential problem than the one considered here.

[67]



Theorem G.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < α < 1/2. Then for each n ∈ N

CIn ⊆ [−s(−p, Cn(ĉprojn )), s(p, Cn(ĉprojn ))], (G.1)

where for given function c, Cn(c) is defined in (1.1)

Proof. For given θ, the event

max
j=1,...,J

{
Gbn,j(θ) + ϕj(ξ̂n,j(θ))

}
≤ c (G.2)

implies the event

max
λ∈Λbn(θ,ρ,c)

p′λ ≥ 0 ≥ min
λ∈Λbn(θ,ρ,c)

p′λ, (G.3)

with Λbn defined in (3.1). This is so because if maxj=1,...,J

{
Gbn,j(θ) + ϕj(ξ̂n,j(θ))

}
≤ c, λ = 0 is feasible in both

optimization problems in (G.3), hence the event in (G.3) is implied. In turn this yields that for each n ∈ N and

θ ∈ Θ,

cprojn (θ) ≥ ĉn(θ), (G.4)

and therefore the result follows.

The result in Theorem G.1 is due to the following fact. Recall that AS’s confidence region calibrates its critical

value so that, at each θ, the following event occurs with probability at least 1− α:

max
j=1,...,J

{
Gbn,j(θ) + ϕj(ξ̂n,j(θ))

}
≤ c. (G.5)

A natural question is, then, whether there are conditions under which CIn is strictly shorter than the projection

of AS’s confidence region. Heuristically, this is the case with probability approaching 1 when ĉn(θ) is strictly less

than ĉprojn (θ) at each θ that is relevant for projection. For this, restrict ϕ(·) to satisfy ϕj(x) ≤ 0 for all x, fix θ and

consider the pointwise limit of (G.5):

GP,j(θ) + ζP,j(θ) ≤ c, j = 1, · · · , J, (G.6)

where {GP,j(θ), j = 1, · · · , J} follows a multivariate normal distribution, and ζP,j(θ) ≡ (−∞)1(
√
nγ1,P,j(θ) < 0) is

the pointwise limit of ϕj(ξ̂n,j(θ)) (with the convention that (−∞)0 = 0). Under mild regularity conditions, ĉprojn (θ)

then converges in probability to a critical value c = cproj(θ) such that (G.6) holds with probability 1−α. Similarly,

the limiting event that corresponds to our problem (3.4) is

Λ(θ, ρ, c) ∩ {p′λ = 0} 6= ∅, (G.7)

where the limiting feasibility set Λ(θ, ρ, c) is given by

Λ(θ, ρ, c) = {λ ∈ ρBdn,ρ : GP,j(θ) +DP,j(θ)λ+ ζP,j(θ) ≤ c, j = 1, · · · , J}. (G.8)

Note that if the gradient DP,j(θ) is a scalar multiple of p, i.e. DP,j(θ)/‖DP,j(θ)‖ ∈ {p,−p}, for all j such that

ζP,j(θ) = 0, the two problems are equivalent because (G.6) implies (G.7) (by arguing that λ = 0 is in Λ(θ, ρ, c)),

and for the converse implication, whenever (G.7) holds, there is λ such that GP,j(θ) + DP,j(θ)λ + ζP,j(θ) ≤ c and

p′λ = 0. Since DP,j(θ)λ = 0 for all j such that ζP,j(θ) = 0, one has GP,j(θ) + ζP,j(θ) ≤ c for all j.9 In this special

9The gradients of the non-binding moment inequalities do not matter here because GP,j(θ) + ζP,j(θ) ≤ c holds due to
ζP,j(θ) = −∞ for such constraints.
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case, the limits of the two critical values coincide asymptotically, but any other case is characterized by projection

conservatism. Lemma G.1 below formalizes this insight. Specifically, for fixed θ, the limit of ĉn(θ) is strictly less

than the limit of ĉprojn (θ) if and only if there is a constraint that binds or is violated at θ and has a gradient that

is not a scalar multiple of p.10

The parameter values that are relevant for the lengths of the confidence intervals are the ones whose projections

are in a neighborhood of the projection of the identified set. Therefore, a leading case in which our confidence

interval is strictly shorter than the projection of AS asymptotically is that in which at any θ (in that neighborhood

of the projection of the identified set) at least one local-to-binding or violated constraint has a gradient that is not

parallel to p. We illustrate this case with an example based on Manski and Tamer (2002).

Example G.1 (Linear regression with an interval valued outcome): Consider a linear regression model:

E[Y |Z] = Z ′θ, (G.9)

where Y is an unobserved outcome variable, which takes values in the interval [YL, YU ] with probability one, and

YL, YU are observed. The vector Z collects regressors taking values in a finite set SZ ≡ {z1, · · · , zK},K ∈ N. We

then obtain the following conditional moment inequalities:

EP [YL|Z = zj ] ≤ z′jθ ≤ EP [YU |Z = zj ], j = 1, · · · ,K, (G.10)

which can be converted into unconditional moment inequalities with J1 = 2K and

mj(X, θ) =

YL1{Z = zj}/g(zj)− z′jθ, j = 1, · · · ,K

z′j−Kθ − YU1{Z = zj−K}/g(zj−K) j = K + 1, · · · , 2K,
(G.11)

where g denotes the marginal distribution of Z, which is assumed known for simplicity. Consider making inference

for the value of the regression function evaluated at a counterfactual value z̃ /∈ SZ . Then, the projection of interest

is z̃′θ. Note that the identified set is a polyhedron whose gradients are given by DP,j(θ) = −zj/σP,j , j = 1, · · · ,K
and DP,j(θ) = zj−K/σj−K , j = K + 1, · · · , 2K. This and z̃ /∈ SZ imply that for any θ not in the interior of the

identified set, there exists a binding or violated constraint whose gradient is not a scalar multiple of p. Hence, for

all such θ, our critical value is strictly smaller than cprojn (θ) asymptotically. In this case, our confidence interval

becomes strictly shorter than that of AS asymptotically. We also note that the same argument applies even if the

marginal distribution of Z is unknown. In such a setting, one needs to work with a sample constraint of the form

n−1
∑n
i=1 YL,i1{Zi = zj}/n−1

∑n
i=1 1{Zi = zj} − zjθ (and similarly for the upper bound). This change only alters

the (co)variance of the Gaussian process in our limiting approximation but does not affect any other term.

We now provide a numerical illustration for a further simplified example. Assume that p = (d−1/2, ..., d−1/2) ∈
Rd and that there are d binding moment inequalities whose gradients are known and correspond to rows of the

identity matrix. Assume furthermore that G is known to be exactly d-dimensional multivariate standard Normal.

(Thus, ΘI is the negative quadrant. Its unboundedness from below is strictly for simplicity.) Also, by Theorem 4.3,

one can set ρ = +∞ in this example.

Under these simplifying assumptions (which can, of course, be thought of as asymptotic approximations), it is

10The condition that all binding moment inequalities have gradient collinear with p is not as exotic as one might think. An
important case where it obtains is the “smooth maximum,” i.e. the support set is a point of differentiability of the boundary
of ΘI .
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Table G.1: Conservatism from projection in a one-sided testing problem as a function of d

d 1 2 3 4 5 6 7 8 9 10 100 ∞
ĉn 1.64 1.16 0.95 0.82 0.74 0.67 0.62 0.58 0.55 0.52 0.16 0

ĉprojn 1.64 1.95 2.12 2.23 2.32 2.39 2.44 2.49 2.53 2.57 3.28 ∞
1− α∗ .95 .77 .57 .40 .27 .18 .11 .07 .04 .03 10−25 0

easy to calculate in closed form that

ĉn = d−1/2Φ−1(1− α),

ĉprojn = Φ−1
(

(1− α)1/d
)
.

Furthermore, for any α < 1/2, one can compute α∗ s.t. applying ĉn with target coverage (1 − α) yields the same

confidence interval as using ĉprojn with target coverage (1−α∗).11 Some numerical values are provided in Table G.1

(with α = 0.05).

To cover p′θ in R10 with probability 95%, it suffices to project an AS-confidence region of size 3%. The example

is designed to make a point; our Monte Carlo analyses in Section 5 showcase less extreme cases. However, the core

defining feature of the example – namely, the identified set has a thick interior, and the support set is the intersection

of d moment inequalities – frequently occurs in practice, and all such examples will qualitatively resemble this one

as d grows large.

G.1 Necessary and Sufficient Condition for ĉn(θ) < ĉprojn (θ)

The following lemma establishes the effect of ρ on ĉn(θ). In doing so it establishes a necessary and sufficient

condition for ĉn(θ) < ĉprojn (θ), because the latter can be seen as the former calibrated with ρ set equal to zero. The

lemma requires ϕj(x) ≤ 0 for all x.12

Lemma G.1: Fix θ ∈ Θ, P ∈ P and a value ρ ∈ R+. Suppose Assumptions 4.1, 4.2, 4.3, 4.4 and 4.5 hold and

also that ϕj(x) ≤ 0 for all x and j. Let 0 < δ < ρ. For n ≥ N , let ĉn(θ) be calibrated using ρ in place of ρ, which

necessarily yields a larger value for ĉn(θ). With a modification of notation, explicitly highlight ĉn(θ)’s dependence

on ρ through the notation ĉn(θ, ρ). Then

|ĉn(θ, ρ)− ĉn(θ, ρ− δ)| p→ 0 (G.12)

if and only if DP,j(θ)/‖DP,j(θ)‖ ∈ {p,−p} for all j ∈ J ∗(θ) ≡ {j : EP [mj(Xi, θ)] ≥ 0}.

Remark G.1: For θ such that J ∗(θ) = ∅, we have ĉn(θ, ρ)
p→ 0 but also ĉprojn (θ)

p→ 0. This is consistent with

Lemma G.1 because the condition on gradients vacuously holds in this case.

11Equivalently, (1−α∗) is the probability that Cn(ĉprojn ) contains {0}, the true support set in direction p which furthermore,
in this example, minimizes coverage within ΘI(P ). The closed-form expression is 1− α∗ = Φ(d−1/2Φ−1(1− α))d. AS prove
validity of their method only for α < 1/2, but this is not important for the point made here.

12To keep the treatment general, we have not imposed this restriction throughout the paper. However, we only recommend
functions ϕj with this feature anyway: for any ϕj that can take strictly positive values, substituting min{ϕj(x), 0} attains
the same asymptotic size but generates CIs that are weakly shorter for all and strictly shorter for some sample realizations.
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Proof. Recall that θ and P are fixed, i.e. we assume a pointwise perspective. Then

ĉn(θ, ρ)
p→ inf{c ≥ 0 : P ({λ ∈ ρBdn,ρ : GP,j(θ) +DP,j(θ)λ ≤ c, j ∈ J ∗(θ)} ∩ {p′λ = 0} 6= ∅) ≥ 1− α}. (G.13)

Here, we used convergence of Gbj(θ) to GP,j(θ) and of D̂j(θ) to DP,j(θ), boundedness of gradients, and the fact that

ϕj(κ
−1
n

√
nm̄j(Xi, θ)/σP,j(θ))

p→

0 if j ∈ J ∗(θ)

−∞ otherwise,
(G.14)

where the first of those cases uses nonpositivity of ϕj . It therefore suffices to show that the right hand side of G.13

strictly decreases in ρ if and only if the conditions of the Lemma hold.

To simplify notation, henceforth omit dependence of GP,j(θ), DP (θ), and J ∗(θ) on P and θ. Define the J

vector e to have elements ej = c−Gj , j = 1, . . . , J . Suppose for simplicity that J ∗ contains the first J∗ inequality

constraints. Let e[1:J∗] denote the subvector of e that only contains elements corresponding to j ∈ J ∗, define

D[1:J∗,:] correspondingly, and write

K =


D[1:J∗,:]

Id

−Id
p′

−p′

 , g =


e[1:J∗]

ρ · 1d
ρ · 1d

0

0

 , τ =


0 · 1J∗

1d

1d

0

0

 .

where Id denotes the d×d identity matrix. By Farkas’ Lemma (Rockafellar, 1970, Theorem 22.1), the linear system

Kλ ≤ g has a solution if and only if for all µ ∈ RJ
∗+2d+2

+ ,

µ′K = 0⇒ µ′g ≥ 0. (G.15)

To further simplify expressions, fix p = [1 0 . . . 0]. Let M = {µ ∈ RJ
∗+2d+2

+ : µ′K = 0}.

Step 1. This step shows that

P ({λ ∈ ρBdn,ρ : GP,j +DP,jλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅)

> P ({λ ∈ (ρ− δ)ρBdn,ρ : GP,j +DP,jλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) (G.16)

if and only if the condition on gradients holds. This is done by showing that

P ({µ′g ≥ 0 ∀µ ∈M} ∩ {µ′g − δτ < 0 ∃µ ∈M}) > 0. (G.17)

under that same condition. The event {µ′g ≥ 0 ∀µ ∈M} obtains if and only if

min
µ∈RJ∗+2d+2

+

{µ′g : µ′K = 0} ≥ 0 (G.18)

and analogously for µ′ (g − δτ) ≥ 0. The values of these programs are not affected by adding a constraint as follows:

min
µ∈RJ∗+2d+2

+

{
µ′g : µ′K = 0, µ ∈ arg min

µ̃∈RJ∗+2d+2
+

(µ̃′g : µ̃[1:J∗] = µ[1:J∗], µ̃′K = 0)

}
, (G.19)

That is, we can restrict attention to a concentrated out subset of vectors µ, where the last (2d+ 2) components of

any µ minimize the objective function among all vectors that agree with µ in the first J∗ components. The inner
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minimization problem in equation (G.19) can be written as

min
µ̃[J∗+1:J∗+2d+2]∈R2d+2

+

ρ

J∗+2d∑
j=J∗+1

µ̃j s.t.


µ̃J∗+1 − µ̃J∗+d+1 + µ̃J∗+2d+1 − µ̃J∗+2d+2

µ̃J∗+2 − µ̃J∗+d+2

...

µ̃J∗+d − µ̃J∗+2d

 = −µ[1:J∗]′D[1:J∗,:]. (G.20)

Thus, the solution of the problem is uniquely pinned down as

µ[J∗+1:J∗+2d+2] =



0

−
[
D[1:J∗,2:d]′µ[1:J∗] ∧ 0 · 1d−1

]
0

D[1:J∗,2:d]′µ[1:J∗] ∨ 0 · 1d−1

−
[
D[1:J∗,1]′µ[1:J∗] ∧ 0

]
D[1:J∗,1]′µ[1:J∗] ∨ 0


, (G.21)

where D[1:J∗,2:d]′µ[1:J∗] ∨ 0 · 1d−1 indicates a component-wise comparison. Now we consider the following case

distinction:

Case (i). If Dj/‖Dj‖ ∈ {p,−p} for all j ∈ J ∗, then µ[1:J∗]′D = (µ[1:J∗]′D[1:J∗,1], 0, ..., 0)′ and therefore all

but the last two entries of µ[J∗+1:J∗+2d+2] equal zero. One can, therefore, restrict attention to vectors µ with

µ[J∗+1:J∗+2d] = 0. But for these vectors, µ′τ = 0 and so the programs we compare necessarily have the same value.

The probability in equation (G.17) is therefore zero.

Case (ii). Suppose that at least one row of D, say its first row (though it can be one direction of an equality

constraint), is not collinear with p, so that ‖D[1,2:d]‖ 6= 0.

Let

$ =



1

0 · 1J∗−1

0

−
[
(D[1,2:d]′) ∧ 0 · 1d−1

]
0

(D[1,2:d]′) ∨ 0 · 1d−1

−
[
(D[1,1]) ∧ 0

]
(D[1,1]) ∨ 0


(G.22)

and note that $[J∗+1:J∗+2d] 6= 0, hence $′τ > 0.

As in the proof of Lemma E.6, the set M can be expressed as positive span of a finite, nonstochastic set of

affinely independent vectors νt ∈ RJ
∗+2d+2

+ that are determined only up to multiplication by a positive scalar.

All of these vectors have the “concentrated out structure” in equation (G.21). But then $ must be one of them

because it is the unique concentrated out vector with $[1:J∗] = (1, 0, ..., 0)′, and (1, 0, ..., 0)′ cannot be spanned by

nonnegative J∗-vectors other than positive multiples of itself.

We now establish positive probability of the event

νt′g ≥ 0, all νt

νt′ (g − δτ) < 0, some νt
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by observing that if we define

ιk =



−ρ ·
∑d
i=2

∣∣D[1,i]
∣∣

k · 1J∗−1

ρ · 1d
ρ · 1d

0

0


, (G.23)

then we have

0 = $′ιk = min
t
νt′ιk.

Any other spanning vector νt will not have $[2:J∗] = 0 and so for any such vector, νt′ιk strictly increases in k. As

there are finitely many spanning vectors, all of them have strictly positive inner product with ιk if k is chosen large

enough.

A realization of g = ιk would, therefore, yield

νt′g ≥ 0 ∀νt ∈M, and $t′ (g − δτ) < −ε, (G.24)

for some ε > 0. Let

Γk = {ι : ι = ιk + ε/2b, ‖b‖ ≤ 1 and $′b > 0}. (G.25)

Then

νt′ι ≥ 0 ∀νt ∈M, and $t′ (ι− δτ) < −ε/2, ∀ι ∈ Γk. (G.26)

The probability in equation (G.17) is therefore strictly positive.

Step 2. Next, we argue that

P ({λ ∈ ρBdn,ρ : Gj +Djλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) (G.27)

strictly continuously increases in c. The rigorous argument is very similar to the use of Farkas’ Lemma in step 1

and in Lemma E.6. We leave it at an intuition: As c increases, the set of vectors g fulfilling the right hand side of

(G.15) strictly increases, hence the set of realizations of Gj that render the program feasible strictly increases, and

Gj has full support.

Step 3. Steps 1 and 2 imply that

inf
c≥0
{P ({λ ∈ ρBdn,ρ : Gj +Djλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) ≥ 1− α}

> inf
c≥0
{P ({λ ∈ (ρ− δ)ρBdn,ρ : Gj +Djλ ≤ c, j ∈ J ∗} ∩ {p′λ = 0} 6= ∅) ≥ 1− α} (G.28)

and hence the result.
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