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Abstract

This paper proposes a method to conduct local linear regression smoothing in

the presence of set-valued outcome data. The proposed estimator is shown to be

consistent, and its mean squared error and asymptotic distribution are derived.

A method to build error tubes around the estimator is provided, and a small

Monte Carlo exercise is conducted to confirm the good finite sample properties

of the estimator. The usefulness of the method is illustrated on a novel dataset

from a clinical trial to assess the effect of certain genes’ expressions on different

lung cancer treatments outcomes.

Keywords: Local regression smoothers; set valued outcome data; random sets;

support function

1. Introduction

Statistical analysis has traditionally contended with problems of data impre-

cision due to limits in the measuring instruments and to measurement error, as

well as with missing data, data coarsening and grouping. Geostatistical analysis

and mathematical morphology have contended with observational frameworks5

?We are grateful to the Editor, the Area Editor, and two anonymous referees for comments
that helped us substantially improve the paper. Molinari gratefully acknowledges support
from NSF grant SES1824375.

∗Corresponding author
Email address: fm72@cornell.edu (Francesca Molinari)

Preprint submitted to Elsevier January 9, 2020



where the outcome of interest is a two or three dimensional set-valued object,

e.g. a tumor or a grain. The common denominator of these challenging data-

frameworks is the presence of set-valued data. Within the social sciences in

particular, collection of data in the form of sets, especially intervals, has be-

come increasingly widespread. For example, the Health and Retirement Study10

is one of the first surveys where, in order to reduce item nonresponse, income

data is collected from respondents in the form of brackets, with degenerate

(singleton) intervals for individuals who opt to fully report their income (see,

e.g. [1]). To reduce response burden, the Occupational Employment Statistics

(OES) program at the Bureau of Labor Statistics collects wage data from em-15

ployers as intervals, and uses these data to construct estimates for wage and

salary workers in 22 major occupational groups and 801 detailed occupations.

Privacy concerns often motivate providing public use tax data as the number of

tax payers in each of a finite number of cells. In the medical field, due to ethical

and cost reasons, time-to-event measurements are not collected on a continuous20

scale, but at pre-specified time intervals.

The partial identification literature in econometrics (e.g., [2]) has addressed

the question of what can be learned about functionals of probability distribu-

tions, when some of the variables are only known to belong to (random) sets

and no assumptions are imposed on the distribution of the true variables within25

these sets. We take the identification results of this literature as our point of

departure. Our contribution is to provide statistical results on local linear re-

gression smoothing when the outcome data is set-valued and the regressors are

exactly measured. Our paper relaxes the textbook setting (e.g., [3]) of nonpara-

metric regression – where regressors and outcome data (xi,yi), i = 1, . . . , n,30

are precisely measured – by assuming that yi is only known to belong to an

observed set Yi. In other words, we deal with an independently and identically

distributed sample of observations for the pair (xi,Yi) composed of a random

vector xi in Rm and a random convex compact set Yi in Rd. Independence and

identical distribution for random sets and measurability of Y are notions made35

precise in Appendix D, while in Section 2 we explain that the distribution of
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Y can be characterized as a belief function. The true (however unobservable)

outcome associated with x is a random vector y that almost surely takes val-

ues in Y . Our goal is to provide a nonparametric regression estimator for the

expectation conditional on x of each random vector y ∈ Y . One can think of40

such expectation as the first-order moment of the belief function generated by

Y conditional on x.

For a given tuple (x,y) that almost surely belongs to {x} × Y , we denote

by m(x) = E[y|x = x] the regression function for the chosen (x,y). Each

choice of (x,y) ∈ {x} × Y a.s. gives rise to a function m and we denote

by M the family of all regression functions generated in this manner. We let

M(x) ≡ {m(x) : m ∈M} and we observe that

M(x) = E[Y |x = x] =
{

E[y|x = x] : y ∈ Y a.s.
}

is the conditional selection expectation of Y , see [4, Sec. 2.1.6] and Section 2.

For example, consider the empirically relevant case that d = 1 and Y =

[yL,yU] for two random variables yL,yU such that P(yL ≤ yU) = 1. Then

M(x) =
[
E[yL|x = x],E[yU|x = x]

]
. (1)

Our proposal is to estimate M(x) as a weighted sum of the sets Y1, . . . ,Yn,

with weights defined as in the local linear estimation literature.1 The develop-45

ment of our technical results directly builds on classic references such as [5] and

[6], and is closely related to [7] and [3].

For the case that d = 1, inspection of equation (1) might suggest to report an

estimator given by the interval between a local constant or local linear regression

of yL on x and one of yU on x. Alternatively, it might suggest to report a local50

constant or local linear regression of the interval midpoint, ỹ = (yL + yU)/2,

and of the interval width, w = yU − yL, on x. While both in finite sample

1We comment on the case of local constant (Nadaraya–Watson) estimator in Appendix C.
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and asymptotically these approaches are equivalent to what we propose for

the case of a local constant regression, for the case of local linear regression

equivalence breaks down in finite sample. The difference is important: we show55

in Remark 3.1 below that the alternative estimators just described may lead to a

finite sample bias understating the width of M(x) and are therefore unpalatable.

For example, such estimators might be empty or a singleton in finite sample even

though M(x) is an interval of strictly positive width in population. In contrast,

the estimator that we propose does not suffer from this problem, although it60

does have an asymptotic bias term similar to that of point identified local linear

regression estimators.

Our approach is the first contribution in the literature to local regression

smoothing when the set-valued outcome variable is in Rd with d > 1. We derive

the asymptotic properties of our estimator and extend results from [8] to obtain65

pointwise confidence bands that asymptotically cover the functional of interest

with probability 1− α. We report the results of Monte Carlo simulations with

interval-valued Y and with Y being a ball randomly placed on the plane that

support our theoretical findings.

We also demonstrate the usefulness of our approach with an empirical il-70

lustration that uses a novel dataset from a clinical trial on non-small-cell lung

cancer patients, to study the relationship between tumor time to progression

and specific gene expression measures.

Related literature.. Within the partial identification literature, there is a large

body of work analyzing regression with interval-valued data. [9] consider mod-75

els where one variable (either outcome or covariate) is observed as intervals and

all others are perfectly measured, and provide identification results for non-

parametric as well as parametric models in this setting. [8] introduce to the

partial identification literature the use of random set theory and provide results

on identification and inference on best linear prediction parameters (ordinary80

least squares) when the outcome variable is interval-valued and the regressors

are perfectly measured. [10] extend the familiar Sargan test for overidentifying
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restrictions to the setting studied by [8]. [11] extend [8]’s approach to cover

best linear approximation of any function f(x) that is known to lie within two

identified bounding functions. [12] proposes an estimator for weighted aver-85

age derivatives of conditional mean and conditional quantile functionals when

either the outcome variable or a regressor is interval-valued. [13] propose em-

pirical likelihood methods for random sets to conduct inference in the class of

problems analyzed by [8]. All these papers focus exclusively on the case that

the set-valued outcome data is in R.90

In contrast, our approach leverages the theory of random sets to propose

a set-valued local linear regression estimator for conditional set-valued expec-

tations with Y ⊂ Rd, d ≥ 1, and to establish its asymptotic properties. This

estimator is novel in the literature, and so are our results establishing its con-

sistency and asymptotic distribution.95

The method that we propose differs significantly from other approaches in

the statistical literature; see [14] for a discussion bridging this literature with

partial identification. In particular, our proposal is distinct from the large and

closely related literature that posits parametric models for set-valued data. In

these models tools from interval arithmetic are used to build analogs of the100

classic linear regression model for perfectly measured data, e.g. by assuming

that E[Yi|xi] = Axi + B, where A and B are intervals. See e.g. [15], [16],

[17], and [18] among others for a discussion of least squares analysis of this

and related models. [19] proposes nonparametric smoothing for this model, by

applying weighted least squares to the interval data and then using the resulting105

intercept as the estimator. [20] discuss various interpretations of set-valued data.

Compared to this literature, we leave the conditional set-valued expectation

completely unspecified, and nonparametrically estimate all regression functions

compatible with the interval-valued data.

Finally, our proposal is distinct from the literature on data coarsening, e.g.110

[21], [22] and [23]. In that literature, the key assumption of “coarsening at

random” requires that for any possible value A of the random set Y and a

random vector y that almost surely belongs to Y , the conditional probability
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P(Y = A|y = y0) does not depend on y0 ∈ A. This assumption restricts

directly the conditional distribution of the random set Y , whereas we leave this115

distribution completely unrestricted.

Structure of the paper.. In Section 2 we set up our notation and we briefly review

local linear regression with singleton data. Our method implicitly applies it to

each tuple (x,y) : (x,y) ∈ {x} × Y a.s. In Section 3 we propose our estimator

and in Section 4 derive its asymptotic properties. In Section 5 we describe a120

cross-validation method for bandwidth selection, and we extend the methods

proposed by [8] to test a hypothesis about the conditional expectation (eval-

uated at x0) and to build pointwise error bands with prespecified asymptotic

coverage. In Section 6 we report the results of Monte Carlo experiments and

in Section 7 the results of our empirical illustration. Section 8 concludes. All125

technical proofs are collected in Appendix A. Throughout we consider the case

that the regressors x are random variables (random design case). In keeping

with the tradition in the statistics literature (e.g., [3]), we also report in Ap-

pendix B the case of deterministic design (nonstochastic explanatory variables).

Appendix C briefly discusses the local constant regression case. Appendix D130

reports some basic facts in convex geometry and random set theory that we use

throughout the paper. We refer to [4] for a thorough account of random sets

theory. Appendix E provides additional simulation results.

2. Notation and preliminaries

We begin with listing our notation. We use boldface capital letters X,Y ,Z135

to denote random compact convex sets, normal font capital letters X,Y, Z and

A,B,C to denote deterministic compact convex sets, boldface lower case letters

x,y, z to denote random vectors or random variables, and normal font lowercase

letters x, y, z to denote deterministic vectors. For x ∈ R, we denote the positive

and negative parts of x respectively by x+ = max(0, x) and x− = −min(0, x).140

We let (Ω,F,P) denote a nonatomic probability space on which all random

vectors and random sets that we work with are defined, where Ω is the space of
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elementary events equipped with σ-algebra F and probability measure P. We

denote the Euclidean space by Rd, and equip it with the Euclidean norm (which

is denoted by ‖ · ‖). We denote by K(Rd) the collection of compact subsets of145

Rd and by KC(Rd) the family of non-empty compact convex sets, also called

convex bodies. We let Sd−1 = {x ∈ Rd : ‖x‖ = 1} denote the unit sphere in Rd.

We assume that Y is a random set in Rd taking almost surely compact and

convex values. In terms of measurability requirements, this amounts to

{ω : Y (ω) ∩K 6= ∅} ∈ F ∀K ∈ K(Rd). (2)

The probabilities P(Y ⊆ K), K ∈ K(Rd), called the containment functional of

Y , fully characterize the distribution of Y , [e.g., 4, Thm. 1.8.9]. As function of

K, these probabilities are special cases of the belief functions, see [24] and more150

recently [25] and [26]. While general belief functions do not necessarily satisfy

regularity conditions specific for the containment functional, the containment

functionals are exactly semicontinuous belief functions. Then Y describes the

possible regions where a true value lies, and hence represents the ambiguity

embedded in the observations, and coincides with the multivalued mapping Γ155

in [24].

To set the stage for local regression smoothing, we recall the standard con-

struction of the local polynomial estimators for singleton-valued outcomes, see

e.g. [6]. Suppose one is interested in estimating E(yi|xi = x0) based on obser-

vations (xi,yi), i = 1, . . . , n, where x0 is a given value on the support of x (e.g.,

a particular level of the gene expression measure in our empirical study). Then

one fits a p-th order local model

yi = θ0(x0) + θ1(x0)(xi − x0) + · · ·+ θp(x0)(xi − x0)p + εi,

using the regressor xi−x0 (rather than xi) so that the intercept equals E(yi|xi =

x0). In this expression, the coefficients θ are written as a function of x0 to em-

phasize that they change with the evaluation point (and this is what makes the
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model “local”); to simplify notation, such dependence is suppressed henceforth.

The local polynomial estimator of order p is then obtained by minimizing the

weighted least squares

n∑
i=1

(
yi − θ0 − θ1(xi − x0)− · · · − θp(xi − x0)p

)2
K
(xi − x0

hn

)
(3)

with respect to θ0, . . . , θp. The kernel function K(·) is a nonnegative integrable

function and the tuning parameter hn is the bandwidth. As it is typically done,

we assume that hn → 0 and nhn → ∞ as n → ∞. The following condition on

the kernel function is imposed throughout this paper.160

Assumption A (Kernel function). The kernel K(z), z ∈ R, is a nonnegative

function bounded above by Kmax <∞, with compact support [−cK , cK ] for some

cK ∈ (0,∞), and satisfying

∫
K(z) dz = 1,

∫
zK(z) dz = 0.

Denote VarK =
∫
z2K(z) dz.

The normalization conditions on K are standard, while the compact support

ensures that observations sufficiently far (compared to the order of the band-

width) from the current point do not influence the estimator at this point, see

also Appendix B.165

Solving explicitly the weighted least squares minimization problem in (3),

one obtains the minimizer θ̂, and the first entry of it, the intercept θ̂0, is used

to estimate m(x0). This estimator can be written as

m̂(x0) =

n∑
i=1

`i(x0)yi, (4)
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where

`i(x0) =
1

nhn
u>(0)B−1nx0

u
(xi − x0

hn

)
κin,

u(z) =
(
1, z, z2/2!, . . . , zp/p!

)>
,

Bnx0 =
1

nhn

n∑
i=1

u
(xi − x0

hn

)
u>
(xi − x0

hn

)
κin,

with κin = K
(
xi−x0

hn

)
. Note that `i(x0), i = 1, . . . , n, sum up to one, and write

sj =
1

n

n∑
i=1

κin(xi − x0)j , j = 0, 1, . . .

It is easy to see that s2s0−s21 ≥ 0, and that the right-hand side of (4) is linear

in the response variables, since the weights do not depend on the yi’s.

If p = 0 (local constant regression), m̂(x0) is the Nadaraya-Watson estimator

with `i(x0) = κin/(ns0). If p = 1 (local linear regression), then

`i(x0) =
κin
n

s2 − (xi − x0)s1
s2s0 − s21

. (5)

Our goal is to extend the local linear regression framework to set-valued

outcomes: we propose an analog to estimator (4) with p = 1 and `i(x0) as

given in (5), for the case that instead of knowing the exact value of y, it is only170

assumed that y almost surely belongs to a random set Y . In this case y is said

to be a (measurable) selection of Y . Distributions of all selections of Y can

be identified with the probability measures from the core of the belief function

generated by Y , that is, probability measures dominating the belief function.

The pair (x,y) is a selection of {x} × Y , a random closed set in I ×Rd with I175

the support of x. This framework can alternatively be described as associating

with each value of the explanatory variable x a belief function describing the

(conditional) distribution of Y .

Whereas in the standard case of singleton-valued outcomes one observes

singleton-valued data (xi,yi), i = 1, . . . , n, in our framework the observations180
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are set-valued, (xi,Yi), i = 1, . . . , n. As a result, our estimators are also set-

valued, and in order to assess their properties, we need to define square loss

for sets, so as to formalize consistency results and the notion of mean squared

error. To do so, and to provide a computationally tractable estimator, we

exploit the duality between convex sets and their support function (see, e.g.,185

Chapter 13 in [27], and (D.2) in Appendix D). The support function of Y in

direction v ∈ Sd−1 is given by s(Y , v) ≡ supy∈Y v>y, and can be used to define

the width function of Y in direction v ∈ Sd−1, w(Y , v) ≡ s(Y , v) + s(Y ,−v)

(see Appendix D). We assume that Y is integrably bounded, that is, ‖Y ‖ =

supy∈Y ‖y‖ is integrable (Assumption B in the next section provides sufficient190

conditions guaranteeing that this is the case), and since |s(Y , v)| ≤ ‖Y ‖ for all

v from the unit sphere, this implies that the support function is integrable. It

is possible to show that Es(Y , v) = s(EY , v) [see 4, Theorem 2.1.35], i.e. the

expected support function is the support function of a convex body EY , which

in turn is called the expectation of Y . This expectation equals the set of values195

Ey for all random vectors y such that y ∈ Y a.s.

Similarly, for given x it is possible to define the conditional expectation

E[Y |x = x] =
{

E[y|x = x] : y ∈ Y a.s.
}
,

and also in this case it holds that E[s(Y , v)|x = x] = s(E[Y |x = x], v) [see, e.g.,

4, Sec. 2.1.6]. The set E[Y |x = x] is the object of interest in this paper, and

one can think of it as the first-order moment of the belief function generated by

Y conditional on x.200

To simplify the exposition, henceforth we assume that x is a scalar random

variable and that I is an interval, I ⊂ R. Our results apply, subject only

to modification in notation and convergence rates (as in the point identified

case), with vector-valued x provided the real-valued bandwidth is replaced by

a matrix-valued one.205

The family of support functions of all non-empty compact convex subsets in

Rd is a subset of the family of continuous functions on the unit sphere Sd−1. In
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particular, the Hausdorff metric between compact convex sets equals the uniform

(L∞) distance between their support functions, see e.g. [28, Lemma 1.8.14].

For our purposes, it is convenient to endow the family of continuous functions on

the unit sphere with the L2-metric, so that the distance between two non-empty

compact convex sets A1 and A2 is given by

L(A1, A2) =

(∫
Sd−1

(s(A1, v)− s(A2, v))2 dv

) 1
2

. (6)

The integration is performed with respect to the uniform measure on Sd−1. If

d = 1, the integral turns into the sum of two terms for v = 1 and v = −1. The

distance to the empty set is assigned to be infinite.

In Section 3, we employ this distance to define the mean square error of

our estimator. This distance differs from the standard Hausdorff distance used210

in the related literature in partial identification and in the standard laws of

large numbers and central limit theorems for Minkowski averages of random

sets. However, under our assumptions the result of Theorem 3 in [29] yields

that these two metrics define the same topology, and so the consistency with

respect to the L2-distance implies consistency with respect to the L∞-distance.215

At the same time, use of the L2-distance is particularly well suited to analyze

properties of estimators based on least squares minimization.

3. Nonparametric smoothing for random sets

In the following we assume that (xi,Yi), i = 1, . . . , n, is a sample of i.i.d. re-

alizations of (x,Y ) as defined in Appendix D, where Y satisfies Assumption B220

introduced below. This i.i.d. assumption is consistent with many collection

processes of set-valued data, such as, e.g., the use of unfolding brackets in the

Health and Retirement Study, in the Occupational Employment Statistics sur-

vey of the Bureau of Labor Statistics, and in the empirical application that we

present in Section 7. We relate it to the typical i.i.d. assumption for singleton-225

valued data following our statement of Assumption B below.
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When the outcome data is set-valued, it is necessary to obtain an estimator

for the collection of conditional expectations E[y|x = x] for all (x,y) ∈ {x}×Y

a.s. This can be accomplished by repeating the procedure in the previous section

for all selections of {x} × Y . Computationally this is easily achieved by taking

the weighted Minkowski average of the Yi data (see Appendix D for a formal

definition of Minkowski sum):

M̂(x0) =

n∑
i=1

`i(x0)Yi. (7)

For p = 0 we obtain a local constant set-valued regression estimator; the choice

p = 1 yields a local linear set-valued regression estimator. Note that (7) is also

the Fréchet mean of the observed values Y1, . . . ,Yn in the metric given by (6),

see [30] and Sec. 2.2.5 in [4].230

The estimator in (7) yields a convex set, therefore we can characterize its

properties by working with its support function (see (D.2) in Appendix D and

Chapter 13 of [27]). To simplify notation, in what follows we omit the argument

x0 in `i(x0) and write shortly `i, unless the dependence on x0 is essential. By

representing the difference of its positive and negative parts as `i = `+i − `
−
i ,

and using that s(−A, v) = s(A,−v) for a convex compact set A and its centrally

symmetric set −A = {−x : x ∈ A}, we arrive at

s(M̂(x0), v) = s
( n∑
i=1

(
`+i − `

−
i

)
Yi, v

)
=

n∑
i=1

`+i s(Yi, v) +

n∑
i=1

`−i s(Yi,−v)

=
n∑
i=1

(`i + `−i )s(Yi, v) +

n∑
i=1

`−i s(Yi,−v) =

n∑
i=1

`is(Yi, v) +

n∑
i=1

`−i w(Yi, v).

A key feature of the above estimator is that it averages the support function

of the set Yi in direction +v when `i > 0, and in direction −v when `i < 0.

In doing so we guarantee that the estimator is always non-empty for any n, a

highly desirable feature in light of Assumption B.

Remark 3.1. When d = 1 and Y = [yL,yU] with P(yU ≥ yL) = 1, one might
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consider two estimators as alternatives to M̂(x0). One is given by

N̂(x0) =

[
n∑
i=1

`iyiL,

n∑
i=1

`iyiU

]
.

The other is obtained by regressing the midpoint (ỹ) and the width (w) of the

interval [yL,yU] on x and letting

Ô(x0) =

[
n∑
i=1

`iỹi −
n∑
i=1

`i
wi
2
,

n∑
i=1

`iỹi +

n∑
i=1

`i
wi
2

]
.

Standard arguments in [5] yield that N̂(x0) and Ô(x0) are consistent estimators

of

M(x0) = E[Y |x = x0] =
[
E[yL|x = x0],E[yU|x = x0]

]
with respect to the L2-distance. However, these estimators can have large finite

sample bias, and even be empty (with asymptotically vanishing probability), as

illustrated in the following example. Suppose that for i with `i > 0, yiL = yiU;

and for i with `i < 0, yiU > yiL.2 Then

n∑
i=1

`iyiL =

n∑
i=1

`+i yiL −
n∑
i=1

`−i yiL =

n∑
i=1

`+i yiU −
n∑
i=1

`−i yiL

>

n∑
i=1

`+i yiU −
n∑
i=1

`−i yiU =

n∑
i=1

`iyiU,

and N̂(x0) is empty. One can similarly show that Ô(x0) is empty. Similarly235

empty estimators may result even if yiU > yiL whenever `i > 0, depending on

the realizations of yiL and yiU, see Figure 1 for N̂(x0). Even if one censors

wi = 0 if `i < 0, the resulting estimator may still in finite sample significantly

understate the width of M(x0).

While the example in Remark 3.1 might appear stylized, it highlights a240

2While the example is provided for the case d = 1, similar constructions can be obtained
also when d ≥ 2.
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Figure 1: Possible emptiness of the estimator N̂(x0). Blue dashed line:
∑n

i=1 `iyiL; red solid
line:

∑n
i=1 `iyiU.

finite sample problem that can easily occur in practice with interval-valued

data, but does not affect the corresponding estimators in the singleton-valued

case. The reason is that in the singleton case, local regression smoothers are

weighted averages of the observed outcomes. That is also the case for our

estimator, M̂(x0), which averages the sets Yi and indeed is always non-empty.245

On the other hand, N̂(x0) and Ô(x0) average specific selections of Yi (e.g.,

the extreme points), without recognizing that the sign of the weight may affect

which selection is extreme in a given direction.

Throughout the paper we assume I = R and we impose the following re-

strictions on the observed and theoretical responses and on the density function250

of x.

Assumption B (Observed responses). (i) Let (xi,Yi), i = 1, . . . , n, be a

sample of i.i.d. realizations of (x,Y ), i = 1, . . . , n. Conditional on x1, . . . ,xn,

the observations Y1, . . . ,Yn, are non-empty random compact convex sets.

(ii) Yi ⊂ ξi +B a.s. for square integrable random vectors ξi, i = 1, . . . , n, and255

a deterministic compact set B that is the same for all i.

Define

εi(v) ≡ s(Yi, v)− s(M(xi), v), v ∈ Sd−1. (8)
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By Assumption B, εi(·), i = 1, . . . , n, are i.i.d. copies of a square integrable

random function ε(v), v ∈ Sd−1, such that E[εi(v)|xi] = 0 xi-a.s. for all v ∈

Sd−1. The square integrability follows from the inequality,

εi(v) ≤ s(B, v) + |ξ>i v|+|η>i v|,

where ηi is a square integrable selection of M(xi). This selection exists in view

of Assumption B(ii) and can be chosen as the point of M(xi) = E(Yi|xi) ⊂

E(ξi|xi) + B nearest to E(ξi|xi). Note that ε does not admit a geometric

interpretation as the support function of a random set.260

Denote by C(v, u) = E[ε(v)ε(u)] the covariance function of ε and let σ2
max

be the supremum of C(v, v) = E[ε(v)2] over all v from the unit sphere. Assump-

tion B(ii) guarantees that Yi is uniformly integrably bounded, and implies that

the diameters of all Yi’s are bounded by a deterministic constant. Hence, the

ambiguity range is limited to belong to a deterministic set, and σ2
max is finite.265

It is worth to compare our random sampling assumption with the standard

one for singleton-valued variables. In that context, one has yi = m(xi) + εi,

and (xi,yi) are assumed i.i.d., and as a consequence εi are i.i.d. In our context,

we assume that (xi,Yi) are i.i.d., and as a consequence εi(v) are i.i.d.

In dimension d = 1, we have s(Yi, 1) = yiU, s(Yi,−1) = −yiL, and Part (i)270

of Assumption B requires that yiL = E[yL|x] − εi(−1), yiU = E[yU|x] + εi(1)

with εi(1) + εi(−1) ≥ −(E[yU|x]−E[yL|x]) almost surely. The latter condition

replicates the requirement that P(yU ≥ yL) = 1.

Next, we require the conditional expectation of E[Y |x] to have a sufficiently

smooth support function, thereby allowing for standard expansions used in ob-275

taining the asymptotic properties of the local linear estimator.

Assumption C (Theoretical response function). The function M(x), x ∈ R,

is such that s(M(x), v) admits a second derivative s′′(M(x), v) in x, uniformly

bounded for all v ∈ Sd−1.

In dimension d = 1, Assumption C means the second order differentiability280
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of the end-points of the interval-valued function M(x). Finally, we assume that

the common density f of the independent design points satisfies the following

condition, which is similar to that imposed in Condition 1(ii) of [5] with sin-

gleton responses. This is a standard condition in nonparametric regression; it

guarantees that the design points are not too concentrated in some areas.285

Assumption D (Density). The density f is strictly positive at x0 and belongs

to the family H(1, γ) of Lipschitz functions with constant γ > 0, that is,

|f(x′)− f(x′′)| ≤ γ|x′ − x′′|

for all x′, x′′ ∈ R.

We measure the quality of M̂(x0) as set-valued estimator of M(x0) by the

quadratic loss function defined in (6),

L(M̂(x0),M(x0))2 =

∫
Sd−1

(s(M̂(x0), v)− s(M(x0), v))2 dv.

The mean squared error (MSE) of the estimator is then the expectation of

L(M̂(x0),M(x0))2. A classic bias-variance decomposition yields

MSE(x0) =

∫
Sd−1

b2x0
(v) dv +

∫
Sd−1

σ2
x0

(v) dv,

where b2x0
(v) and σ2

x0
(v) are squared bias and variance, given by

b2x0
(v) = E

(
E[s(M̂(x0), v)|x1, . . . ,xn]− s(M(x0), v)

)2
,

σ2
x0

(v) = E
(
s(M̂(x0), v)− s(E[M̂(x0)|x1, . . . ,xn], v)

)2
.

Because E[Yi|xi] = M(xi), we have

E[s(M̂(x0), v)|x1, . . . ,xn] =

n∑
i=1

`is(M(xi), v) +

n∑
i=1

`−i w(M(xi), v).
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Rearranging the terms, we arrive at

b2x0
(v) = E

( n∑
i=1

`i(s(M(xi), v)− s(M(x0), v)) +

n∑
i=1

`−i w(M(xi), v)
)2

(9)

and

σ2
x0

(v) = E
( n∑
i=1

`i(s(Yi, v)− s(M(xi), v)) +

n∑
i=1

`−i (w(Yi, v)− w(M(xi), v))
)2
.

By Assumption B, the variance can be expressed as

σ2
x0

(v) = E
( n∑
i=1

`iεi(v) +

n∑
i=1

`−i (εi(v) + εi(−v))
)2
. (10)

Differently from the classical case with singleton responses yi, the negative

parts of the weights in (9) play an essential role with set-valued responses. This

is because while the difference between s(M(xi), v) and s(M(x0), v) is small

when xi is close to x0, the width w(M(xi), v) does not vanish as xi becomes290

closer to x0. Thus, the bias increases by a constant and may not tend to zero if

some weights are negative and not close to zero. Much of our asymptotic analysis

is concerned with establishing the asymptotic behavior of these negative weights.

The methodology that we propose for local linear regression smoothing can

be applied also in the case of local polynomial regression models with p ≥ 2. In295

this case, however, extra care is required to show that the negative weights are

asymptotically negligible.

4. Asymptotic properties of the set-valued estimators

In the local linear regression setting, negative weights may appear in (9) and

hence affect the bias in the case of set-valued data. Following [5], in order to

avoid zero in the denominator of the local linear estimator, we redefine `i by

letting

`i =
κin
n

s2 − (xi − x0)s1
s2s0 − s21 + n−4

. (11)
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We use O and O to denote the deterministic order of magnitude uniformly

in f ∈ H(1, γ). For a sequence {zn, n ≥ 1} of random variables determined

through the design points and the observations, write zn = Or(an) if

sup
f∈H(1,γ)

E|zn|r = O(arn).

The notation Or(an) is defined similarly. We then haveOr(an)Or(bn) = Or/2(anbn),

and

zn = Ezn +Or(E|zn −Ezn|r)1/r.

To determine the contribution to the bias resulting from the negative weights,

we first derive the expected sum of the squared weights `2i . Proofs of the fol-300

lowing results are given in Appendix A.

Proposition 4.1. Let hn → 0 and nhn → ∞ as n → ∞. Under Assumptions

A and D,

E

n∑
i=1

`2i =
1

nhnf(x0)

∫
K2(z) dz + O

( 1

nhn

)
. (12)

Next, we obtain the second moment of the sum of the negative weights.

Proposition 4.2. Let hn → 0 and nhn →∞ as n→∞. Under Assumptions A

and D, for sufficiently large r,

E

( n∑
i=1

`−i

)2

=
1

hn
O
((

1/
√
nhn

)r)
.

With this result in hand, we can derive the mean squared error of our esti-

mator. As the mean squared error converges to zero as n increases to infinity,

this result yields consistency of our estimator as well as its rate of convergence.305

Theorem 4.3. Under Assumptions A, B, C, and D, if hn = cn−β with 0 <

β < 1 and a constant c > 0, the mean squared error of the local linear estimator

(7) is

MSE(x0) =
h4n(VarK)2

4

∫
Sd−1

s′′(M(x0), v)2 dv +

∫
Sd−1 C(v, v) dv

nhnf(x0)

∫
K2(z) dz + O

(
h4n +

1

nhn

)
.
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We conclude this section by deriving a limit theorem for the support function

of the estimators as processes on the unit sphere. In turn, this limit theorem

can be used to build error tubes for the estimator as explained in Section 5.

Let ζ(v), v ∈ Sd−1, be a centered Gaussian process on the unit sphere with the

covariance

E[ζ(v)ζ(u))] =
C(v, u)

f(x0)

∫
K(z)2 dz. (13)

Theorem 4.4. Assume that hn = cn−β with 0 < β < 1, and fix x0 ∈ I. Under

Assumptions A, B, C, and D, the stochastic process

√
nhn

(
s(M̂(x0), v)− s(M(x0), v)− h2n

1

2
s′′(M(x0), v) VarK

)

constructed using the local linear estimator in (7) converges in distribution in the

space of continuous functions on Sd−1 with the uniform metric to the Gaussian

process ζ.

5. Cross-validation and error tubes

Cross-validation. In the classical setting, where the observation pairs (xi,yi)

are real-valued, one typically chooses the bandwidth hn to minimize the leave-

one-out cross-validation score, defined as

CV =
1

n

n∑
i=1

(yi − m̂(−i)(xi))
2,

where m̂(−i)(x) =
∑n
j=1 yj`j,(−i)(x) and

`j,(−i)(x) =

0 if j = i,

`j(x)∑
k 6=i `k(x)

if j 6= i.

This procedure assigns weight zero to xi and renormalizes the other weights to310

sum to one.

Following the same idea, we define the cross-validation score for the set-
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valued responses Yi as

CV =
1

n

n∑
i=1

∫
Sd−1

(s(Yi, v)− s(M̂(−i)(xi), v))2 dv, (14)

where M̂(−i)(x) =
∑n
j=1 Yj`j,(−i)(x). If one is interested in a specific projection

in direction v, the above expression simplifies by removing the integral.

If Yi = [yiL,yiU] ⊂ R, (14) turns into

CV =
1

n

n∑
i=1

(
yiL − M̂(−iL)(xi))

2 + (yiU − M̂(−iU)(xi))
2
)
, (15)

where M̂(−iL)(xi) and M̂(−iU)(xi) denote the lower and upper bounds of M̂(−i)(xi).

We denote by hn,CV the bandwidth that minimizes (15) (or (14), depending on315

the application).

Error tubes. The optimal bandwidth which minimizes the MSE in Theo-

rem 4.3 is hn,mse = Cn−1/5, with some constant C that does not depend on

n. However, such a choice of bandwidth implies nh5n 6→ 0 and the leading bias

term in Theorem 4.4 does not vanish, as in the classical case for singleton-valued320

outcomes. Similarly to that case, one can use undersmoothing as an approach

to bias reduction. In Section 6 we illustrate the impact of undersmoothing on

the error tubes that we describe next.

Rather than undersmooth, we propose to report statistical uncertainty in

our estimates in the form of pointwise error tubes – an analog of error bands

for singleton-valued data. Specifically, for each value x0 considered we propose

to report the set

Ĉ(x0) = M̂(x0) +
cα√
nhn

B, (16)

where B = {b : ‖b‖ ≤ 1} is the unit ball. In (16) cα is chosen so that

P

(
max

v: ‖v‖=1
{ζ(v)}+ > cα

)
= α, (17)

where ζ is the centered Gaussian process with covariance kernel (13), see Theo-
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rem 4.4. The critical value cα can be obtained by simulation, or can be estimated

using the bootstrap. Validity of the bootstrap can be formally established as in

Proposition 2.1 of [8] [see also 31, Theorem 4.13]. It follows from Theorem 4.4

that

lim
n→∞

P
(

max
v: ‖v‖=1

{s(M̂(x0), v)− s(M(x0), v)

− h2n
1

2
s′′(M(x0), v) VarK −s(Ĉ(x0), v)}+ = 0

)
≥ 1− α.

(18)

If one is interested in a specific projection in direction v, a valid error band for

s(M(x0), v) is obtained by replacing (16) with

[
s(M̂(x0), v)− cα,v√

nhn
, s(M̂(x0), v) +

cα,v√
nhn

]
. (19)

where cα,v is obtained as in (17) replacing the maximization over v with ‖v‖ = 1

by a fixed direction v.325

Existing methods of bias correction (other than undersmoothing, the effect

of which we are already investigating in our Monte Carlo exercise) could be

extended to the case of set-valued outcomes. However, we do not report such

findings here,3 because any form of bias reduction may result in an empty

estimator, which we regard as an undesirable feature as discussed in Remark 3.1.330

6. Monte Carlo Simulations

We perform a simulation study for the case that d = 1 and for the case that

d = 2. In the first case, we use the following data generating process (DGP1):

yL = 0.90 + 1.27x+ 5.18x2 − εL

yU = 0.90 + 1.27x+ 10.18x2 + εU ,

3Although these are available from the authors upon request.
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Table 1: Coverage probability at 95% nominal level using cross-validation for DGP1.

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,CV with h = 1/3hn,CV

200

-0.4 0.8315 0.8245 0.9055 0.9695
0 0.8855 0.8550 0.8565 0.9515

0.2 0.9330 0.9270 0.9865 0.9980
0.4 0.9270 0.9040 0.9255 0.9875

500

-0.4 0.8580 0.8485 0.9300 0.9790
0 0.9245 0.9095 0.9710 0.9920

0.2 0.9240 0.9200 0.9710 0.9950
0.4 0.9340 0.9145 0.9180 0.9760

1000

-0.4 0.8910 0.8760 0.9430 0.9845
0 0.9035 0.8935 0.9360 0.9830

0.2 0.9230 0.9210 0.9570 0.9890
0.4 0.9225 0.9125 0.9125 0.9760

2000

-0.4 0.88200 0.8710 0.9450 0.9835
0 0.9020 0.8915 0.9390 0.9870

0.2 0.9320 0.9125 0.9525 0.9900
0.4 0.9335 0.9170 0.9635 0.9915

with x drawn from a Beta distribution with support shifted to be [−1, 1] and

with shape parameters (2, 4), and εL and εU drawn independently from a Uni-

form distribution on [0, 1]. We let the sample size n = 200, 500, 1000, 2000. For

values of x0 = 0, 0.2, 0.4, 0.6 we evaluate the coverage probability of the error335

tubes in equation (16).

We compare different implementations of the error tubes, and in Table 1

we report: (i) coverage probability of the true set M(x0) by the error tube

(meaning that the true set is a subset of the tube) in (16) computed using the

cross-validation bandwidth (column 3); (ii) coverage probability as in (18), with340

the error tube in (16) computed using the cross-validation bandwidth (column

4); (iii) same exercise as in (i) but using undersmoothed bandwidths (columns

5 and 6). The results are based on 200 Monte Carlo replications.

In these simulations, the asymptotic bias does not affect the ability of the er-

ror tube in (16) to cover the true set M(x0) compared to E[M̂(x0)], see columns345

(3) and (4) of the table. If we undersmooth the bandwidth, the confidence in-

terval enlarges substantially and coverage of the true set becomes conservative.
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In Appendix E we report the results of two additional simulation studies that

vary the expressions for E(yL|x) and E(yU|x), as well as the distribution of εL

(to be Beta(2,2) instead of Uniform(0,1)). Qualitatively the results are similar350

to what we report here.

We also perform a simulation study for the case that d = 2 with the following

data generating process (DGP2):

Y =

0.90 + 1.27x+ 10.18x2

0.60− 1.00x− 5.18x2

+Bξ,

where Bξ is a ball of radius 1 centered at the random vector ξ, and ξ is uniformly

distributed on the unit ball in R2. As in the previous simulation, x is drawn

from a Beta distribution with support shifted to be [−1, 1] and with shape

parameters (2, 4). We let the sample size n = 200, 500, 1000, 2000. For values355

of x0 = 0, 0.2, 0.4, 0.6 we evaluate the coverage probability of the error bands

in equation (19) for v = (1, 0), v = (1, 1)/
√

2, and v = (0, 1). To conserve

space, we report the results for v = (1, 0) in Table 2 here, and for v = (1, 1)/
√

2

and v = (0, 1), respectively, in Tables E.6 and E.7 in Appendix E. Overall the

results are qualitatively similar to those reported for DGP1: once the bandwidth360

is undersmoothed and sample size is sufficiently large, coverage becomes valid.

7. Empirical Application

We demonstrate the usefulness of our approach with an empirical illustration

that studies the association between cancer treatment outcomes and certain gene

expression measures.365

A key outcome of interest in cancer treatment research is the progression-free

survival (PFS), which is defined as the time measured in months from baseline

until tumor progression or death (whichever occurs first). Tumor progression is

defined as an increase in the diameter of the tumor lesions of 20% compared with

the smallest diameters of all previous tumor assessments or the appearance of370
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Table 2: Coverage probability at 95% nominal level using cross-validation for DGP2 with
v = (1, 0).

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,CV with h = 1/3hn,CV

200

-0.4 0.8290 0.8395 0.8960 0.9725
0 0.8515 0.8760 0.8525 0.9530

0.2 0.9290 0.9360 0.9840 0.9985
0.4 0.9085 0.9290 0.9220 0.9835

500

-0.4 0.8580 0.8665 0.9345 0.9805
0 0.9195 0.9275 0.9745 0.9960

0.2 0.9260 0.9325 0.9730 0.9945
0.4 0.9210 0.9270 0.8965 0.9675

1000

-0.4 0.8830 0.8910 0.9315 0.9820
0 0.9055 0.9125 0.9330 0.9785

0.2 0.9210 0.9255 0.9425 0.9875
0.4 0.9325 0.9345 0.9120 0.9725

2000

-0.4 0.8805 0.8835 0.9495 0.9875
0 0.8900 0.8985 0.9355 0.9860

0.2 0.9220 0.9300 0.9490 0.9915
0.4 0.9270 0.9360 0.9595 0.9900

new lesions, as measured by CT-scans or MRIs (this is called RECIST criterion

in the medical literature, see [32]). However, due to ethical and cost constraints,

CT-scans and MRIs cannot be performed daily, but rather scheduled every 3 to

6 months. Hence, the PFS of patients can only be measured by intervals (with

the true PFS falling between the last assessment without tumor progression375

and the assessment with progression), and no information is available on the

distribution of true PFS within the interval. In contrast, the PFS of patients

who died without tumor progression is measured exactly.

The question that we focus on in this paper is part of a subproject of the

Swiss Cancer Research Group (SAKK) 19/09 for anti-cancer treatment regi-380

mens described in [33]. This subproject is concerned with finding, out of a total

of 202 investigated genes, those whose baseline expression affects patient’s PFS

differently in two treatment arms described below. Genes expression is evalu-

ated by isolating RNA from baseline tumor tissue sections and processing it for

gene expression analysis using the Nanostring nCounter R© System (Nanostring385
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Technologies), including 6 housekeeping genes.4 The gene expression measure

that we report and use for our analysis is the log2 of the output of Nanostring.

It is worth mentioning that classical statistical methods of survival analysis,

such as Cox regression or the accelerated failure time model, can also be ap-

plied to this data (and we do so below). These models are typically implemented390

with a parametric or semi-parametric specification of the hazard rate to con-

struct the likelihood function. For example, the Cox proportional hazard model

[34] assumes a hazard rate that is constant over time, and the resulting survival

data follow a Markovian process; the accelerated failure time model posits an

acceleration factor that is constant over time. The probability of censoring can395

then be calculated based on the functional form assumption. For example, the

PFS variable in our example is usually treated as an interval censored data,

for which one can construct the likelihood function and obtain point identified

estimates of the model’s parameters, and then back out the implied conditional

expectation of the treatment outcome given gene expression. In contrast, our400

method provides a consistent estimator of the set of admissible values for the

conditional expectation of treatment outcome given gene expression, as well as

1−α pointwise confidence bands for it as in (16), without making any assump-

tion on how PFS is distributed over the measured intervals that it is known to

belong to, nor how it is related to the genes, as these assumptions may fail to405

hold in a given application.5

We use a novel dataset that follows 132 patients who were accrued between

November 2010 and July 2014 to the SAKK 19/09 clinical trial for anti-cancer

treatment regimens described in [33]. These patients are affected by advanced

non-squamous non-small cell lung cancer and present an epidermal growth factor410

receptor (EGFR) of the wild type. Excluding 3 patients with protocol violations,

77 patients were treated with the drug Bevacizumab plus chemotherapy (C1)

and 52 were treated with chemotherapy alone (C2). The question of interest

4See https://www.nanostring.com for a description of this method.
5[35] point out that individual heterogeneity and hazard rate cannot be jointly non-

parametrically point identified.
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Table 3: Descriptive statistics for interval-valued PFS and genes PTGS2 and CDC25A; y de-
notes the progression-free survival (time from baseline until tumor progression or death), yL is
last assessment without tumor progression, and yU is the assessment with tumor progression.

variable mean stdErr max min N

yL 7.62 9.08 52.40 0 95

yU 9.25 9.65 55.16 0.23 95

CDC25A 7.23 2.76 14.22 0 95

PTGS2 8.66 1.90 13.37 2.86 95

of the SAKK 19/09 subproject that we revisit in this section is whether the

gene expression of PTGS2 (COX2) at baseline affects differently patient’s PFS415

in the two treatment arms. The gene PTGS2 (COX2) is frequently expressed

in lung cancer patients and the drug Bevacizumab directly interacts with the

COX2 pathway. One speculates that in patients with a high expression of

COX2 the tumor cells are predominately dependent on this signaling pathway

for proliferation and the use of Bevacizumab has a more pronounced effect.420

Vice-versa, if COX2 is only expressed at a low level, this could reflect a tumor

that is not dependent on this inflammatory pathway and therefore the use of

Bevacizumab is not beneficial. Another gene of interest (whose effect on cancer

treatment efficacy has not been previously analyzed) is CDC25A, which is a

key regulator of the cells cycles. One speculates that overexpression of gene425

CDC25A is associated with a poorer prognosis with regard to its biological role.

In our analysis, y = PFS, yL is the time of the last assessment without

tumor progression, and yU is the time of the assessment with tumor progres-

sion. Table 3 reports descriptive statistics for these data. The sample used

for the analysis is constituted by 99 patients, from which four were excluded

because they were still alive at the last follow up (and therefore for these pa-

tients yiU =∞). Of the sample used for our analysis, 58 patients were treated
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following protocol C1, and 37 following protocol C2. Because durations are

non-negative by definition while local linear regression smoothers may yield neg-

ative predictions, we work with the natural logarithm of our data, adjusted as

follows

ỹk = ln(yk + 0.033), k = L,U

where we add 0.033 because for some individuals yL = 0. The choice of 0.033 is

motivated by the unit of measure for y, which is months: following the conven-

tion in the medical literature, we add one day (approximately 0.033 months).

The results of the analysis are reported in the top panels of Figure 2 for the430

gene PTGS2 (COX2), with panel A reporting the results using the Accelerated

Failure Time (AFT) model, and Panel B reporting our set-valued local linear

regression estimator. The bottom panels of Figure 2 report the results for the

gene CDC25A, with panel C reporting the results using the AFT model, and

Panel D reporting our set-valued local linear regression estimator.435

We first comment on the comparison between the standard AFT model and

our set-valued estimator in terms of the shape of the predicted conditional PFS.

For the PTGS2 (COX2) gene, the patterns are similar, although we uncover a

more markedly nonlinear relation (especially for treatment C1). For the gene

CDC25A, the pattern uncovered by the AFT method and out method are similar440

for treatment C2, but for treatment C1 we uncover a remarkably more nonlinear

relationship.

The results of the AFT analysis suggest that the use of Bevacizumab in

cancer treatment is quite beneficial for patients with moderate to relatively high

(6-10) expression of gene PTGS2 (COX2), although the benefit seems to taper445

off at extremely high levels of the gene. Similarly, at medium to high levels (6-12)

of expression of gene CDC25A the use of Bevacizumab seems beneficial, while

at low levels of the gene the two treatment arm’s effects are not significantly

different. Our results, however, suggest that these findings might result from

the functional form assumptions: for the gene PTGS2 (COX2) we find that450
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for patients with moderate to relatively high (6-10) levels of the gene the set-

valued estimates are consistent with a beneficial effect of Bevacizumab, but

the confidence bands overlap, suggesting that the difference is not statistically

significant. For the gene CDC25A we find that for CDC25A levels between 9

and 10, Bevacizumab is (statisticall significantly) beneficial, but not at other455

levels of gene expression.

We note, however, that the results of this analysis are retrospective. To

confirm the medical findings, a prospective randomized clinical trial needs to

be carried out. We also highlight a drawback of our method: it is not able

to handle survival data censored on the right, where the observations become460

half-lines unbounded on the right. In our example such observations have been

eliminated.

8. Conclusions

This paper has introduced local linear regression smoothing for set-valued

data. We have established consistency of the set-valued estimator, derived its465

mean squared error, and its (pointwise) asymptotic distribution. We have ex-

tended the cross-validation method for bandwidth selection to the case of set-

valued local linear regression, and examined the finite sample properties of our

estimator in a Monte Carlo exercise. We have illustrated the usefulness of our

method in an empirical illustration studying the effect of gene expression on470

cancer therapy outcomes.
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Figure 2: Results of the analysis for the genes PTGS2 and CDC25A (log2 of the Nanostring
output)

Appendix A. Proofs of Main Results

Proof of Proposition 4.1. Our proof builds on [5, Eqs. (6.4), (6.6) and (6.13)].

Since the kernel is assumed to have a compact support, we have
∫
z2rK(z)dz <

∞ for all r ≥ 0. For any integer r ≥ 1,

sj = Esj + hj+1
n Or

(
1/
√
nhn

)
, j = 0, 1, 2, (A.1)
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as n→∞, hn → 0 and nhn →∞. The expectations of sj can be calculated as

follows:

Es0 = hn

∫
K(z)f(zhn + x0) dz = hn

∫
K(z)(f(x0) +O(hn)) dz = hn[f(x0) +O(hn)],

Es1 = h2n

∫
zK(z)f(zhn + x0) dz = h2n

∫
zK(z)(f(x0) +O(hn)) dz = h2nO(hn),

Es2 = h3n

∫
z2K(z)f(zhn + x0) dz = h3n

∫
z2K(z)(f(x0) +O(hn)) dz = h3n(f(x0) VarK +O(hn)).

In view of (A.1), for an integer r ≥ 1,

sj = hj+1
n

(
f(x0)

∫
zjK(z) dz +Or(hn +

1√
nhn

)

)
, j = 0, 1, 2. (A.2)

Thus,

s0 = hnf(x0)(1 + Or(1)), (A.3)

s1 = h2nOr(1), (A.4)

s2 = h3nf(x0) VarK(1 + Or(1)). (A.5)

It is easy to see that
n∑
i=1

`i =
s2s0 − s21

s2s0 − s21 + n−4
.

Moreover, for a sufficiently large r,

h4n
s2s0 − s21 + n−4

=
1

f(x0)2 VarK
+ Or(1), (A.6)

cf. [5, Eq. (6.6)]. In view of (A.3), (A.4), and (A.5),

s2s0 − s21 = h4nf(x0)2 VarK(1 + Or(1)). (A.7)
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By (11),

n∑
i=1

`2i =

∑n
i=1 κ

2
in(s2 − (xi − x0)s1)2

n2(s2s0 − s21 + n−4)2
=

s22s
∗
0

n(s2s0 − s21 + n−4)2
+

(−2s2s1s
∗
1 + s21s

∗
2)

n(s2s0 − s21 + n−4)2
,

(A.8)

where

s∗j =
1

n

n∑
i=1

κ2
in(xi − x0)j = hj+1

n

(
f(x0)

∫
zjK2(z) dz + Or(1)

)
, j = 0, 1, 2.

Furthermore, (A.2) implies that

s22s
∗
0 = h7nf

3(x0)(VarK)2
∫
K2(z) dz + h7nOr/2(1).

Combining this with (A.6) and letting r = 4, we obtain

E

(
s22s
∗
0

n(s2s0 − s21 + n−4)2

)
=
h7nf

3(x0)(VarK)2
∫
K2(z) dz

nh8nf
4(x0)(VarK)2

+
h7n
nh8n

O(1)

=

∫
K2(z) dz

nhnf(x0)
+ O

(
1

nhn

)
.

Since
∫
zK(z) dz = 0,

−2s2s1s
∗
1 = h7n(f(x0) VarK +O8(1))O8(1)(f(x0)

∫
zjK2(z) dz+O4(1)) = h7nO2(1).

Analogously, s21s
∗
2 = h7nO2(1). Both these terms are as small as the minor term

of s22s
∗
0. Therefore, (A.8) is dominated by its first term, whence (12) holds.

Proof of Proposition 4.2. By definition, `i < 0 if and only if s2−(xi−x0)s1 < 0.

31



Hence,

E

( n∑
i=1

`−i

)2

= E

( n∑
i=1

−`i1{s2 − (xi − x0)s1 < 0}
)2

≤ nE

( n∑
i=1

`2i1{s2 − (xi − x0)s1 < 0}
)

≤ nE

( n∑
i=1

`2i1{s2 < cKhn|s1|}
)

= nE

(
1{s2 < cKhn|s1|}

n∑
i=1

`2i

)

≤ n
√

P(s2 < cKhn|s1|)

(
E

( n∑
i=1

`2i

)2
)1/2

, (A.9)

where the second inequality relies on Assumption A and the last one follows

from the Chebyshev inequality. Using (A.2), we have, for an integer r ≥ 1,

s1 = h2n

(
O(hn) +Or

(
1/
√
nhn

))
,

s2 = h3n

(
f(x0) VarK +O(hn) +Or

(
1/
√
nhn

))
.

Hence,

P(s2 < cKhn|s1|) (A.10)

≤ P
(
f(x0) VarK +O(hn) +Or

(
1/
√
nhn

)
< |O(hn)|+

∣∣∣Or(1/√nhn)∣∣∣ )
= P

(
f(x0) VarK < |O(hn)|+

∣∣∣Or(1/√nhn)∣∣∣ ). (A.11)

For sufficiently large n, there exist a ξ with 0 < ξ < f(x0) VarK so that

|O(hn)| ≤ ξ for all sufficiently large n. Building on (A.11), the Markov in-

equality and the definition of Or(an) yield that

P(s2 < cKhn|s1|) ≤ P
(
f(x0) VarK < ξ +

∣∣∣Or(1/√nhn)∣∣∣ )
= P

( ∣∣∣Or(1/√nhn)∣∣∣ > f(x0) VarK −ξ
)

≤
supf∈H(1,γ) E

∣∣Or(1/√nhn)∣∣r
(f(x0) VarK −ξ)r

=
cr
(
1/
√
nhn

)r
(f(x0) VarK −ξ)r
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for a positive constant cr. Therefore,

P(s2 < cKhn|s1|) = O
((

1/
√
nhn

)r)
. (A.12)

From the proof of Proposition 4.1 with r = 8, squaring and taking expectation,

E
( n∑
i=1

`2i

)2
=

1

n2h2n

(∫
K2(z)dz

)2

(1 + O(1)). (A.13)

Substituting (A.12) and (A.13) into (A.9),

E
( n∑
i=1

`−i

)2
≤ 1

hn

∫
K2(z)dz

√
1 + O(1)O

((
1/
√
nhn

)r)
,

which converges to 0 by choosing a sufficiently large r.475

Proof of Theorem 4.3. The squared bias can be written as

b2x0
(v) = E[(b1 + b2)2],

for b1 =
∑n
i=1 `i(s(M(xi), v)−s(M(x0), v)) and b2 =

∑n
i=1 `

−
i w(M(xi), v). We

have

1

n

n∑
i=1

κin(s2 − (xi − x0)s1)(s(M(xi), v)− s(M(x0), v))

=
1

n

n∑
i=1

κin(s2 − (xi − x0)s1)(s(M(xi), v)− s(M(x0), v) + s′(M(x0), v)(xi − x0))

= h6nf(x0) VarK an + O4(h6n),

where

an = h−3n E

(
s(M(x), v)− s(M(x0), v)− s′(M(x0), v)(x− x0)K

(x− x0
hn

))
.
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By (A.6), and using the definition of Or, we have

Eb21 = E

( 1
n

∑n
i=1 κin(s2 − (xi − x0)s1)(mv(xi)−mv(x0))

s2s0 − s21 + n−4

)2

=

(
Un
f(x0)

)2

h4n + O(h4n),

where, taking a Taylor expansion,

Un = h−2n

(
1

2
s′′(M(x0), v) VarK f(x0)h2n + O(h2n)

)
.

Therefore,

Eb21 =
1

4
s′′(M(x0), v)2(VarK)2h4n + O(h4n), (A.14)

cf. the proof of [5, Theorem 3].

By Proposition 4.2,

Eb22 ≤ w2
maxE

( n∑
i=1

`−i

)2
=

1

hn
O
((

1/
√
nhn

)r)
, (A.15)

where wmax is a finite deterministic bound on the width of M(x) in any direction

v ∈ Sd−1 resulting from Assumption B. By the Cauchy-Schwarz inequality,

(A.15) and (A.14),

E(b1b2) ≤
√

Eb21Eb
2
2 =

1

2

(
s′′(M(x0), v)2(VarK)2h4n + O(h4n)

)1/2
h−1/2n O

((
1/
√
nhn

)r/2)
,

which, for sufficiently large r and given that hn = cn−β , is of a smaller order

than h4n. Thus,

∫
Sd−1

b2x0
(v) dv =

1

4

∫
Sd−1

s′′(M(x0), v)2 dv(VarK)2h4n + O

(
h4n +

1

nhn

)
.

(A.16)

Now we bound the variance of the estimator splitting (10) into the sum of

three terms. By Proposition 4.1, the first term is

E
( n∑
i=1

`iεi(v)
)2

= E

n∑
i=1

`2iC(v, v) =
1

nhnf(x0)
C(v, v)

∫
K2(z) dz+O

(
1

nhn

)
.
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The second term is

E
∑

1≤i<j≤n

`i`
−
j εi(v)(εj(v) + εj(−v)) = 0.

Finally, consider

E
( n∑
i=1

`−i (εi(v) + εi(−v))
)2

= (C(v, v) + 2C(v,−v) + C(−v,−v))E

n∑
i=1

(`−i )2

≤ 4σ2
maxE

n∑
i=1

(`−i )2 ≤ 4σ2
maxE

( n∑
i=1

`−i

)2
= 4σ2

max h
−1
n O

((
1/
√
nhn

)r)
.

For a large r, (nhn)(−r/2) is of smaller order than (nhn)−1. Hence,

∫
Sd−1

σ2
x0

(v) dv =
1

nhnf(x0)

∫
Sd−1

C(v, v) dv

∫
K2(z) dz + O

(
1

nhn

)
,

and the result follows by adding (A.16) to it.

Proof of Theorem 4.4. It suffices to establish the convergence of one-dimensional

distributions; the weak convergence of finite dimensional distributions follows

from the Cramér–Wold device, and the functional convergence is established by480

bounding the Lipschitz constants of the processes as in [4, Theorem 3.2.1].

First, decompose

s(M̂ , v)− s(M(x0), v) =

n∑
i=1

`is(Yi, v) +

n∑
i=1

`−i w(Yi, v)− s(M(x0), v)

=

n∑
i=1

`is(M(xi), v) +

n∑
i=1

`iεi(v) +

n∑
i=1

`−i w(Yi, v)− s(M(x0), v).

(A.17)

By Proposition 4.2, noticing that the L2-convergence implies the convergence
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in probability, and choosing r large enough, we have that

n∑
i=1

`−i w(Yi, v) ≤ wmax

n∑
i=1

`−i = Op
(
1/
√
nhn

)
.

Using a Taylor expansion,

s(M(xi), v) = s(M(x0), v) + (xi − x0)s′(M(x0), v) +
1

2
(xi − x0)2s′′(M(x0), v) +R(x0,xi, v),

where the remainder termR(x0,xi, v) is of a smaller order than 1
2 (xi−x0)2s′′(M(x0), v).

Since the local linear estimator satisfies
∑n
i=1 `i(xi − x0) = 0, we have

n∑
i=1

`is(M(xi), v) +

n∑
i=1

`iεi(v)− s(M(x0), v)

=

n∑
i=1

`i(s(M(xi), v)− s(M(x0), v))− n−4

s2s0 − s21 + n−4
s(M(x0), v) +

n∑
i=1

`iεi(v)

=

n∑
i=1

`i

(
1

2
(xi − x0)2s′′(M(x0), v) +R(x0,xi, v) + εi(v)

)
− n−4

s2s0 − s21 + n−4
s(M(x0), v).

Since for a sequence of {Zn, n ≥ 1} of square integrable random variables

Zn = EZn +Op(
√

VarZn),

(A.2) yields that

sj = hj+1
n f(x0)

∫
zjK(z) dz (1 + Op(1)), j = 0, 1, 2, 3. (A.18)

By (A.7) and since nhn →∞, we have

s2s0 − s21 + n−4 = h4n VarK f
2(x0) (1 + Op(1)). (A.19)

Therefore,

n−4

s2s0 − s21 + n−4
s(M(x0), v) = Op

(
n−4h−4n

)
= Op

(
n−3h−3n

)
.
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Combining (A.18) and (A.19), we have

n∑
i=1

`i

(
1

2
(xi − x0)2s′′(M(x0), v) +R(x0,xi, v) + εi(v)

)

=

(
1

2
(s22 − s3s1)s′′(M(x0), v) +

1

n

n∑
i=1

κin(s2 − (xi − x0)s1)εi(v)

)
(s2s0 − s21 + n−4)−1

=
1

2
VarK s

′′(M(x0), v)h2n(1 + Op(1)) +
1

nhnf(x0)

n∑
i=1

κinεi(v)(1 + Op(1)).

(A.20)

By the central limit theorem,

1√
nhn

n∑
i=1

κinεi (A.21)

converges in distribution to the centered normal random variable with variance

equal to that of ζ(v). The combination of (A.17), (A.19), (A.20) and (A.21)

yields the result.

Appendix B. Deterministic design points485

When the design points xi = xi, i = 1, . . . , n, are deterministic6, (9) turns

into

b2x0
(v) =

(
n∑
i=1

`i(s(M(xi), v)− s(M(x0), v)) +

n∑
i=1

`−i w(M(xi), v)

)2

.

Since K(·) has compact support in [−cK , cK ], we have `i = 0 if |xi − x0| >

cKhn. It is easy to see that all weights are nonnegative if and only if

∑
κin

(
xi − x0
hn

)2

≥
∣∣∣∣∑κin

xi − x0
hn

∣∣∣∣ .
This assumption means that the sample rescaled around each point to lie in

6Because with deterministic design xi = xi, i = 1, . . . , n, sj , j = 0, 1, 2 and κin, i = 1, . . . , n
are also deterministic and we write sj = sj and κin = κin.
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the range [−1, 1] has the variance that dominates the absolute value of the

expectation. For this, the rescaled points should be sufficiently balanced on the

left and on the right of x0. The assumption can be alternatively expressed as

s2
h3n
≥ cK

∣∣∣∣ s1h2n
∣∣∣∣ .

It holds when s1/h
2
n → 0 as n→∞.

By a direct computation, it is possible to show that, in the regular design

case, the weights are nonnegative for all n.

Proposition Appendix B.1. Consider the local linear setting with uni-

form kernel supported on [−cK , cK ] and equally spaced (regular) design points

x1, . . . , xn on a bounded interval I. If 1/n ≤ cKhn ≤ 1, then `i(x0) ≥ 0 for all

i, n and each

x0 ∈ In = {x ∈ I : [x− cKhn, x+ cKhn] ⊂ I}.

In case of deterministic design points in a bounded interval I, the following

assumptions are often imposed; they appear as (LP1)-(LP2) in [3].490

Assumption E (Design points). The design points x1, . . . , xn are such that:

(i) There exists λ0 > 0 such that all eigenvalues of Bnx0 are greater than or

equal to λ0 for all sufficiently large n and all x0 ∈ I.

(ii) There exists a0 > 0 such that, for any interval J ⊂ I and all n > 1,

1

n

n∑
i=1

1xi∈J ≤ a0 max(Leb(J)/Leb(I), 1/n),

where Leb(·) denotes the Lebesgue measure.

We impose the following assumption on the response function.495

Assumption F (Theoretical response function). The function M(x), x ∈ I, is

defined on a bounded closed interval I ⊂ R, and there exists γ > 0 such that,
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for all v ∈ Sd−1, the derivative of s(M(x), v) with respect to x is Lipschitz with

constant γ.

The following result is similar to [3, Prop. 1.13] in the singleton-valued data500

framework.

Proposition Appendix B.2. If x0 ∈ In, `i ≥ 0 for all i, and Assump-

tions A, B, E and F are satisfied, then

|bx0
(v)| ≤ c2KC∗γh2n, σ2

x0
(v) ≤ σ2

maxC
2
∗

nhn

for sufficiently large n and hn ≥ 1/(2n).

Proposition Appendix B.2 implies

MSE(x0) ≤ c4KC2
∗γ

2h4n +
σ2
maxC

2
∗

nhn
.

Therefore, the upper bound is minimized for the bandwidth given by

h∗n =

(
σ2
max

4c4Kγ
2

) 1
5

n−
1
5 ,

and the following result holds.

Theorem Appendix B.3. If the bandwidth is chosen to be hn = αn−
1
5 for

α > 0 and Assumptions A, B, E hold, then

lim sup
n→∞

sup
x0∈In

E[n
2
5L(M̂(x),M(x))] ≤ C1 <∞,

uniformly over all response functions satisfying Assumption F, where L is the

loss function given by (6), C1 is a constant depending only on γ, a0, λ0, σ2
max,505

Kmax and α.

Appendix C. Local constant regression

In the local constant case, the weights `i = κin/(ns0) are always nonneg-

ative. Then the estimator M̂(x0) can be constructed as the convex set whose
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support functions is obtained by calculating the Nadaraya–Watson estimator for510

the sample s(Yi, v), i = 1, . . . , n, in each particular direction v. In other words,

M̂(x0) is the sum of the observed sets Yi multiplied by nonnegative coefficients

`i. Therefore, the bias and variance of the set-valued local constant estimator

can be obtained similarly to the singleton-valued data case. For this, it suffices

to assume that the function s(M(x), v) is Lipschitz in x with the same constant515

for all v, which is equivalent to requiring that M(x), x ∈ I, is Lipschitz in the

Hausdorff metric.

Appendix D. Basic definitions from random set theory

A random compact set Y is a map from (Ω,F,P) to K(Rd) such that

{ω : Y (ω) ∩K 6= ∅} ∈ F, (D.1)

for each compact set K ⊂ Rd.

Random sets Y1, . . . ,Yn are said to be independent and identically dis-

tributed if

P(Y1 ∩K1 6= ∅, . . . ,Yn ∩Kn 6= ∅) =

n∏
i=1

P(Yi ∩Ki 6= ∅),

for all K1, . . . ,Kn ∈ K(Rd) and P(Yi ∩ K 6= ∅) = P(Yj ∩ K 6= ∅) for all520

i 6= j ∈ {1, . . . , n} and K ∈ K(Rd).

We define the Minkowski sum of two compact sets A1 and A2 in Rd elemen-

twise as

A+B = {x+ y : x ∈ A, y ∈ B}.

We let cA = {cx : x ∈ A} denote the scaling of A by c ∈ R. Given a compact

convex set (a convex body) A ⊂ Rd, the support function of A is

s(A, v) = sup
a∈A

v>a, v ∈ Rd,

where v>a denotes the scalar product. If A is convex, its support function
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uniquely identifies A, because

A =
⋂

v∈Sd−1

{a ∈ Rd : v>a ≤ s(A, v)}. (D.2)

Because s(tA, v) = ts(A, v) for t ≥ 0, the support function is often restricted to

v ∈ Sd−1. Note that

s(A1 +A2, v) = s(A1, v) + s(A2, v).

The width function of A is defined by

w(A, v) = s(A, v) + s(A,−v) = w(A,−v), v ∈ Sd−1,

and it is easy to see that the width function is nonnegative. If d = 1, then A is a

closed interval in R, and the unit sphere Sd−1 = {−1, 1} consists of two points.

In this case, the width function is the length of the interval.

A random convex compact set Y is a map from (Ω,F,P) to KC(Rd) satisfying525

equation (D.1). Its measurability is equivalent to the fact that s(Y , v) is a

random variable for each v ∈ Rd.
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Appendix E. Additional simulation results

Table E.4: Coverage probability at 95% nominal level using cross-validation for a modified
DGP1 with yL = 0.90 + 1.27x + 10.18x2 − εL, yU = 0.90 + 1.27x + 10.18x2 + εU , and
εL, εU ∼i.i.d. Uniform[0, 1].

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,CV with h = 1/3hn,CV

200

-0.4 0.8630 0.8540 0.9165 0.9690
0 0.8965 0.8865 0.8790 0.9520

0.2 0.9465 0.9405 0.9825 0.9980
0.4 0.9330 0.9215 0.9200 0.9745

500

-0.4 0.8705 0.8595 0.9290 0.9755
0 0.9460 0.9410 0.9760 0.9935

0.2 0.9315 0.9280 0.9655 0.9910
0.4 0.9415 0.9320 0.9260 0.9800

1000

-0.4 0.9070 0.9040 0.9525 0.9855
0 0.8990 0.8985 0.9175 0.9695

0.2 0.9205 0.9160 0.9425 0.9760
0.4 0.8965 0.8940 0.9090 0.9570

2000

-0.4 0.8970 0.8925 0.9440 0.9820
0 0.9305 0.9290 0.9585 0.9865

0.2 0.9230 0.9215 0.9425 0.9815
0.4 0.8925 0.8935 0.9040 0.9600
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Table E.5: Coverage probability at 95% nominal level using cross-validation for a modified
DGP1 with yL = 0.90 + 1.27x− εL, yU = 0.90 + 1.27x+ 10.18x2 + εU , εL ∼ Beta(2, 2) and
εU ∼ Uniform(0, 1).

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,CV with h = 1/3hn,CV

200

-0.4 0.6510 0.8945 0.9515 0.9865
0 0.6610 0.9125 0.9050 0.9770

0.2 0.7495 0.9600 0.9920 0.9995
0.4 0.7210 0.9565 0.9680 0.9960

500

-0.4 0.6255 0.8945 0.9575 0.9875
0 0.7200 0.9445 0.9870 0.9995

0.2 0.7355 0.9605 0.9825 0.9985
0.4 0.7155 0.9575 0.9525 0.9880

1000

-0.4 0.6345 0.9175 0.9660 0.9955
0 0.6485 0.9330 0.9625 0.9895

0.2 0.6960 0.9580 0.9715 0.9945
0.4 0.7025 0.9535 0.9545 0.9870

2000

-0.4 0.6195 0.9255 0.9710 0.9935
0 0.6290 0.9360 0.9610 0.9905

0.2 0.6605 0.9500 0.9750 0.9935
0.4 0.6755 0.9600 0.9785 0.9955

Table E.6: Coverage probability at 95% nominal level using cross-validation for DGP2 with
v = (1, 1)/

√
2.

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,CV with h = 1/3hn,CV

200

-0.4 0.8225 0.9475 0.9490 0.9870
0 0.8150 0.9370 0.9400 0.9820

0.2 0.7825 0.9170 0.9330 0.9835
0.4 0.7310 0.9020 0.9265 0.9815

500

-0.4 0.8445 0.9495 0.9635 0.9890
0 0.7655 0.9195 0.9525 0.9895

0.2 0.7385 0.9150 0.9410 0.9830
0.4 0.6820 0.8745 0.9475 0.9890

1000

-0.4 0.8230 0.9500 0.9595 0.9895
0 0.7945 0.9350 0.9455 0.9825

0.2 0.7270 0.9185 0.9580 0.9900
0.4 0.6830 0.8645 0.9290 0.9825

2000

-0.4 0.7965 0.9440 0.9480 0.9900
0 0.7925 0.9430 0.9390 0.9860

0.2 0.7485 0.9370 0.9390 0.9845
0.4 0.7370 0.9250 0.9515 0.9890
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Table E.7: Coverage probability at 95% nominal level using cross-validation for DGP2 with
v = (0, 1).

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,CV with h = 1/3hn,CV

200

-0.4 0.8395 0.9450 0.9485 0.9875
0 0.8085 0.9160 0.9230 0.9765

0.2 0.7815 0.9090 0.9445 0.9840
0.4 0.7405 0.8945 0.9310 0.9820

500

-0.4 0.8020 0.9395 0.9530 0.9875
0 0.7995 0.9330 0.9545 0.9905

0.2 0.7550 0.9210 0.9380 0.9805
0.4 0.7215 0.9025 0.9495 0.9875

1000

-0.4 0.8175 0.9485 0.9560 0.9905
0 0.7900 0.9405 0.9420 0.9870

0.2 0.7290 0.9345 0.9535 0.9865
0.4 0.7070 0.8830 0.9415 0.9895

2000

-0.4 0.7945 0.9440 0.9475 0.9895
0 0.7935 0.9430 0.9395 0.9860

0.2 0.7495 0.9375 0.9400 0.9845
0.4 0.7355 0.9245 0.9515 0.9890
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