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Abstract

This paper proposes a method to conduct local linear regression smoothing in the
presence of set-valued outcome data. The proposed estimator is shown to be consistent,
and its mean squared error and asymptotic distribution are derived. A method to
build error tubes around the estimator is provided, and a small Monte Carlo exercise is
conducted to confirm the good finite sample properties of the estimator. The usefulness
of the method is illustrated on a novel dataset from a clinical trial to assess the effect
of certain genes’ expressions on different lung cancer treatments outcomes.

Keywords: Local regression smoothers; set valued outcome data; random sets; sup-
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1 Introduction

Statistical analysis has traditionally contended with problems of data imprecision due to

limits in the measuring instruments and to measurement error, as well as with missing data,

data coarsening and grouping. Geostatistical analysis and mathematical morphology have

contended with observational frameworks where the outcome of interest is a two or three

dimensional set-valued object, e.g. a tumor or a grain. The common denominator of these
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challenging data-frameworks is the presence of set-valued data. Within the social sciences in

particular, collection of data in the form of sets, especially intervals, has become increasingly

widespread. For example, the Health and Retirement Study is one of the first surveys where,

in order to reduce item nonresponse, income data is collected from respondents in the form

of brackets, with degenerate (singleton) intervals for individuals who opt to fully report their

income (see, e.g. Juster and Suzman (1995)). To reduce response burden, the Occupational

Employment Statistics (OES) program at the Bureau of Labor Statistics collects wage data

from employers as intervals, and uses these data to construct estimates for wage and salary

workers in 22 major occupational groups and 801 detailed occupations. Privacy concerns

often motivate providing public use tax data as the number of tax payers in each of a

finite number of cells. In the medical field, due to ethical and cost reasons, time-to-event

measurements are not collected on a continuous scale, but at pre-specified time intervals.

The partial identification literature in econometrics (e.g., Manski (2003)) has addressed

the question of what can be learned about functionals of probability distributions of interest,

when some of the variables are only known to belong to (random) sets and no assumptions are

imposed on the distribution of the true variables within these sets. We take the identification

results of this literature as our point of departure. Our contribution is to provide statistical

results on local linear regression smoothing when the outcome data is set-valued and the

regressors are exactly measured. Specifically, the paper relaxes the textbook setting (e.g.,

Tsybakov (2009)) of nonparametric regression – where regressors and outcome data (xi,yi),

i = 1, . . . , n, are precisely measured – by assuming that yi is only known to belong to an

observed set Yi. In other words, we deal with an independently and identically distributed

sample of observations for the pair (x,Y ) composed of a random vector x in Rm and a

random convex compact set Y in Rd. Here Y is assumed to be measurable in a sense made

precise in Section 2. The true (however unobservable) outcome associated with x is a random

vector y that almost surely takes values in Y .
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Our goal is to provide a nonparametric regression estimator for the expectation condi-

tional on x of each random vector y ∈ Y . For a given tuple (x,y) that almost surely

belongs to {x}×Y , we denote by m(x) = E[y|x = x] the regression function for the chosen

(x,y). Each choice of (x,y) ∈ {x} × Y a.s. gives rise to a function m and we denote

by M the family of all regression functions generated in this manner. Additionally, we let

M(x) = {m(x) : m ∈M} and we observe that

M(x) = E[Y |x = x] =
{

E[y|x = x] : y ∈ Y a.s.
}

is the conditional selection expectation of Y , see Molchanov (2017, Sec. 2.1.6) and Section 2

below. For example, consider the empirically relevant case that d = 1 and Y = [yL,yU] for

two random variables yL,yU such that P(yL ≤ yU) = 1. Then

M(x) =
[
E[yL|x = x],E[yU|x = x]

]
. (1)

Our proposal is to estimate M(x) as a weighted sum of the sets Y1, . . . ,Yn, with weights

defined as in the local linear estimation literature.1 The development of our technical results

directly builds on classic references such as Fan (1993) and Fan and Gijbels (1996), and is

closely related to Fan and Gijbels (1992) and Tsybakov (2009).

For the case that d = 1, inspection of equation (1) might suggest to report an estimator

given by the interval between a local constant or local linear regression of yL on x and one of

yU on x. Alternatively, it might suggest to report a local constant or local linear regression of

the interval midpoint, ỹ = (yL+yU)/2, and of the interval width, w = yU−yL, on x. While

both in finite sample and asymptotically these approaches are equivalent to what we propose

for the case of a local constant regression, for the case of local linear regression equivalence

breaks down in finite sample. The difference is important: we show in Remark 3.1 below

1We comment on the case of local constant (Nadaraya–Watson) estimator in Appendix C.
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that the alternative estimators just described may lead to a finite sample bias understating

the width of M(x) and are therefore unpalatable. For example, such estimators might be

empty or a singleton in finite sample even though M(x) is an interval of strictly positive

width in population. In contrast, the estimator that we propose does not suffer from this

problem, although it does have an asymptotic bias term similar to that of point identified

local linear regression estimators.

Our approach is the first contribution in the literature to local regression smoothing when

the set-valued outcome variable is in Rd with d > 1. We derive the asymptotic properties of

our estimator and extend results from Beresteanu and Molinari (2008) to obtain pointwise

confidence bands that asymptotically cover the functional of interest with probability 1−α.

We report the results of Monte Carlo simulations with interval-valued Y that support our

theoretical findings.

We also demonstrate the usefulness of our approach with an empirical illustration that

uses a novel dataset from a clinical trial on non-small-cell lung cancer patients, to study the

relationship between tumor time to progression and specific gene expression measures.

Related literature. Within the partial identification literature, there is a large body of

work analyzing regression with interval-valued data. Manski and Tamer (2002) consider

models where one variable (either outcome or covariate) is observed as intervals and all oth-

ers are perfectly measured, and provide identification results for nonparametric as well as

parametric models in this setting. Beresteanu and Molinari (2008) introduce to the partial

identification literature the use of random set theory and provide results on identification

and inference on best linear prediction parameters (ordinary least squares) when the out-

come variable is interval-valued and the regressors are perfectly measured. Bontemps et al.

(2012) extend the familiar Sargan test for overidentifying restrictions to the setting studied

by Beresteanu and Molinari (2008). Chandrasekhar et al. (2012) extend Beresteanu and
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Molinari (2008)’s approach to cover best linear approximation of any function f(x) that is

known to lie within two identified bounding functions. Kaido (2017) proposes an estimator

for weighted average derivatives of conditional mean and conditional quantile functionals

when either the outcome variable or a regressor is interval-valued. Adusumilli and Otsu

(2017) propose empirical likelihood methods for random sets to conduct inference in the

class of problems analyzed by Beresteanu and Molinari (2008). All these papers focus ex-

clusively on the case that the set valued outcome data is in R.

In contrast, our approach leverages the theory of random sets to propose a set-valued

local linear regression estimator for conditional set-valued expectations with Y ⊂ Rd, d ≥ 1,

and to establish its asymptotic properties. This estimator is novel in the literature, and so

are our results establishing its consistency and asymptotic distribution.

The method that we propose differs significantly from other approaches in the statistical

literature; see Schollmeyer and Augustin (2015) for a discussion bridging this literature with

partial identification. In particular, our proposal is distinct from the large and closely related

literature that posits parametric models for set-valued data. In these models tools from

interval arithmetic are used to build analogs of the classic linear regression model for perfectly

measured data, e.g. by assuming that E[Yi|xi] = Axi+B, where A and B are intervals. See

e.g. Diamond (1990), Gil et al. (2001), González-Rodŕıguez et al. (2007), and Sinova et al.

(2012) among others for a discussion of least squares analysis of this and related models.

Maatouk (2003) proposes nonparametric smoothing for this model, by applying weighted

least squares to the interval data and then using the resulting intercept as the estimator.

Couso and Dubois (2014) discuss various interpretations of set-valued data. Compared to

this literature, we leave the conditional set-valued expectation completely unspecified, and

nonparametrically estimate all regression functions compatible with the interval-valued data.

Finally, our proposal is distinct from the literature on data coarsening, e.g. Heitjan and

Rubin (1991), Heitjan (1994) and Gill et al. (1997). In that literature, the key assumption
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of “coarsening at random” requires that for any possible value A of the random set Y and

a random vector y that almost surely belongs to Y , the conditional probability P(Y =

A|y = y0) does not depend on y0 ∈ A. This assumption restricts directly the conditional

distribution of the random set Y , whereas we leave this distribution completely unrestricted.

Structure of the paper. In Section 2 we set up our notation and we briefly review

local linear regression with singleton data. Our method implicitly applies it to each tuple

(x,y) : (x,y) ∈ {x}×Y a.s. In Section 3 we propose our estimator and in Section 4 derive

its asymptotic properties. In Section 5 we describe a cross-validation method for bandwidth

selection, and we extend the methods proposed by Beresteanu and Molinari (2008) to test

a hypothesis about the conditional expectation (evaluated at x0) and to build pointwise

error bands with prespecified asymptotic coverage. In Section 6 we report the results of

Monte Carlo experiments and in Section 7 the results of our empirical illustration. Section 8

concludes. All technical proofs are collected in Appendix A. Throughout we consider the

case that the regressors x are random variables (random design case). In keeping with the

tradition in the statistics literature (e.g., Tsybakov (2009)), we also report in Appendix B

the case of deterministic design (nonstochastic explanatory variables). Appendix C briefly

discusses the local constant regression case. Appendix D reports some basic facts in convex

geometry and random set theory that we use throughout the paper. We refer to Molchanov

(2017) for a thorough account of random sets theory.

2 Notation and preliminaries

We begin with listing our notation. We use boldface capital letters X,Y ,Z to denote

random compact convex sets, normal font capital letters X, Y, Z and A,B,C to denote

deterministic compact convex sets, boldface lower case letters x,y, z to denote random
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vectors or random variables, and normal font lowercase letters x, y, z to denote deterministic

vectors. For x ∈ R, we denote the positive and negative parts of x respectively by x+ =

max(0, x) and x− = −min(0, x). We let (Ω,F,P) denote a nonatomic probability space on

which all random vectors and random sets that we work with are defined, where Ω is the

space of elementary events equipped with σ-algebra F and probability measure P. We denote

the Euclidean space by Rd, and equip it with the Euclidean norm (which is denoted by ‖ ·‖).

We denote by K(Rd) the collection of compact subsets of Rd and by KC(Rd) the family of

non-empty compact convex sets, also called convex bodies. We let Sd−1 = {x ∈ Rd : ‖x‖ = 1}

denote the unit sphere in Rd.

We assume that Y is a random convex compact set in Rd. We denote by s(Y , v) =

supy∈Y v
>y and w(Y , v) = s(A, v) + s(A,−v), respectively, its support function and width

function in direction v (see Appendix D). Assume that Y is integrably bounded, that is,

‖Y ‖ = supy∈Y ‖y‖ is integrable. Since |s(Y , v)| ≤ ‖Y ‖ for all v from the unit sphere, the

support function is integrable and Es(Y , v) = s(EY , v), i.e. the expected support function

is the support function of a convex body EY , which in turn is called the expectation of Y .

This expectation equals the set of values Ey for all random vectors y such that y ∈ Y a.s.;

in this case y is said to be a (measurable) selection of Y .

Similarly, for given x it is possible to define the conditional expectation

E[Y |x = x] =
{

E[y|x = x] : y ∈ Y a.s.
}
.

Also in this case it holds that E[s(Y , v)|x = x] = s(E[Y |x = x], v).

To simplify the exposition, henceforth we assume that x is a scalar random variable taking

values in an interval I ⊂ R. Our results apply, subject only to modification in notation and

convergence rates (as in the point identified case), with vector-valued x provided the real-

valued bandwidth is replaced by a matrix-valued one.
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In our analysis, the true but unobservable outcome associated with x ∈ I is a random

vector y that almost surely takes values in Y , so that y is a measurable selection of Y . The

pair (x,y) is a selection of {x} × Y , a random closed set in I × Rd.

We first focus on a specific selection (x,y) ∈ {x} × Y a.s.. Such selection is associated

with a function m(x) = E[y|x = x], and the estimator for this function can be obtained

from the classical approach. In particular, the local polynomial estimator of order p based

on observations (xi,yi), i = 1, . . . , n, is obtained by minimizing the weighted least squares

n∑
i=1

(
yi − θ0 − θ1(xi − x0)− · · · − θp(xi − x0)p

)2
K
(xi − x0

hn

)
(2)

with respect to θ0, . . . , θp. The kernel function K(·) is a nonnegative integrable function

and the tuning parameter hn is the bandwidth. As it is typically done, we assume that

hn → 0 and nhn →∞ as n→∞. The following condition on the kernel function is imposed

throughout this paper.

Assumption A (Kernel function). The kernel K(z), z ∈ R, is a nonnegative function

bounded above by Kmax < ∞, with compact support [−cK , cK ] for some cK ∈ (0,∞), and

satisfying ∫
K(z) dz = 1,

∫
zK(z) dz = 0.

Denote VarK =
∫
z2K(z) dz.

Solving explicitly the weighted least squares minimization problem of (2), one obtains

the minimizer θ̂, and the first entry of it, the intercept θ̂0, is used to estimate m(x0). This

estimator can be written as

m̂(x0) =
n∑
i=1

`i(x0)yi, (3)
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where

`i(x0) =
1

nhn
u>(0)B−1nx0u

(xi − x0
hn

)
κin,

u(z) =
(
1, z, z2/2!, . . . , zp/p!

)>
,

Bnx0 =
1

nhn

n∑
i=1

u
(xi − x0

hn

)
u>
(xi − x0

hn

)
κin,

with κin = K
(
xi−x0
hn

)
. Note that `i(x0), i = 1, . . . , n, sum up to one, and write

sj =
1

n

n∑
i=1

κin(xi − x0)j, j = 0, 1, . . .

It is easy to see that s2s0 − s21 ≥ 0.

If p = 0 (local constant regression), m̂(x0) is the Nadaraya-Watson estimator with

`i(x0) = κin/(ns0). If p = 1 (local linear regression), then

`i(x0) =
κin
n

s2 − (xi − x0)s1
s2s0 − s21

.

Our goal is to extend the local linear regression framework to set-valued outcomes. In

other words, we aim to propose an analog of estimator (3) when p = 1 and Y is set-valued.

In order to do so, we need to define square loss for sets, so as to formalize consistency results

and the notion of mean squared error. The family of support functions of all non-empty

compact convex subsets in Rd is a subset of the family of continuous functions on the unit

sphere Sd−1. In particular, the Hausdorff metric between compact convex sets equals the

uniform (L∞) distance between their support functions. For our purposes, it is convenient

to endow the family of continuous functions on the unit sphere with the L2-metric, so that
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the distance between two non-empty compact convex sets A1 and A2 is given by

L(A1, A2) =

(∫
Sd−1

(s(A1, v)− s(A2, v))2 dv

) 1
2

. (4)

The integration is performed with respect to the uniform measure on Sd−1. If d = 1, the

intergral turns into the sum of two terms for v = 1 and v = −1. The distance to the empty

set is assigned to be infinite.

We employ this distance to define the mean square error of our estimator. This distance

differs from the standard Hausdorff distance used in the related literature in partial identifi-

cation and in the standard laws of large numbers and central limit theorems for Minkowski

averages of random sets. However, under our assumptions the result of Theorem 3 in Vitale

(1985) yields that these two metrics define the same topology, and so the consistency with

respect to the L2-distance implies consistency with respect to the L∞-distance. At the same

time, use of the L2-distance is particularly well suited to analyze properties of estimators

based on least squares minimization.

3 Nonparametric smoothing for random sets

In the following we assume that (xi,Yi), i = 1, . . . , n, is a sample of i.i.d. realizations of

(x,Y ) as defined in Appendix D, where Y satisfies Assumption B introduced below. When

the outcome data is set-valued, it is necessary to obtain an estimator for the collection of

conditional expectations E[y|x = x] for all (x,y) ∈ {x}×Y a.s. This can be accomplished

by repeating the procedure in the previous section for all selections of {x} × Y . We show

that computationally this is easily achieved by taking the following Minkowski average (see

Appendix D) of the Yi data:

M̂ (x0) =
n∑
i=1

`i(x0)Yi. (5)
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For p = 0 we obtain a local constant set-valued regression estimator; the choice p = 1

yields a local linear set-valued regression estimator. Note that (5) is also the Fréchet mean

of the observed values Y1, . . . ,Yn in the metric given by (4), see Le and Kume (2000) and

Molchanov (2017, Sec. 2.2.5).

The estimator in (5) yields a convex set, therefore we can characterize its properties by

working with its support function (see (37) in Appendix D and Chapter 13 of Rockafellar

(1970)). To simplify notation, in what follows we omit the argument x0 in `i(x0) and write

shortly `i, unless the dependence on x0 is essential. By representing the difference of its

positive and negative parts as `i = `+i − `−i and using that s(−A, v) = s(A,−v) for a convex

compact set A and its centrally symmetric set −A = {−x : x ∈ A}, we arrive at

s(M̂ (x0), v) = s
( n∑
i=1

(
`+i − `−i

)
Yi, v

)
=

n∑
i=1

`+i s(Yi, v) +
n∑
i=1

`−i s(Yi,−v)

=
n∑
i=1

(`i + `−i )s(Yi, v) +
n∑
i=1

`−i s(Yi,−v) =
n∑
i=1

`is(Yi, v) +
n∑
i=1

`−i w(Yi, v).

A key feature of the above estimator is that it averages the support function of the set Yi in

direction +v when `i > 0, and in direction −v when `i < 0. In doing so we guarantee that the

estimator is always non-empty for any n, a highly desirable feature in light of Assumption B.

Remark 3.1. When d = 1 and Y = [yL,yU] with P(yU ≥ yL) = 1, one might consider two

estimators, alternative to M̂(x0). One is given by

N̂ (x0) =

[
n∑
i=1

`iyiL,
n∑
i=1

`iyiU

]
.

The other is obtained by regressing the midpoint (ỹ) and the width (w) of the interval

[yL,yU] on x and letting

Ô(x0) =

[
n∑
i=1

`iỹi −
n∑
i=1

`i
wi

2
,

n∑
i=1

`iỹi +
n∑
i=1

`i
wi

2

]
.
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Figure 1: Possible emptiness of the estimator N̂ (x0). Blue dashed line:
∑n

i=1 `iyiL; red solid
line:

∑n
i=1 `iyiU.

Standard arguments in Fan (1993) yield that N̂ (x0) and Ô(x0) are consistent estimators of

M(x0) = E[Y |x = x0] =
[
E[yL|x = x0],E[yU|x = x0]

]

with respect to the L2-distance. However, these estimators can have large finite sample bias,

and even be empty (with asymptotically vanishing probability), as illustrated in the following

example. Suppose that for i with `i > 0, yiL = yiU; and for i with `i < 0, yiU > yiL.2 Then

n∑
i=1

`iyiL =
n∑
i=1

`+i yiL −
n∑
i=1

`−i yiL =
n∑
i=1

`+i yiU −
n∑
i=1

`−i yiL

>

n∑
i=1

`+i yiU −
n∑
i=1

`−i yiU =
n∑
i=1

`iyiU,

and N̂ (x0) is empty. One can similarly show that Ô(x0) is empty. Similarly empty estimators

may result even if yiU > yiL whenever `i > 0, depending on the realizations of yiL and yiU,

see Figure 1 for N̂ (x0). Even if one censors wi = 0 if `i < 0, the resulting estimator may

still in finite sample significantly understate the width of M(x0).

Throughout the paper we assume I = R and we impose the following restrictions on the

2While the example is provided for the case d = 1, similar constructions can be obtained also when d ≥ 2.
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observed and theoretical responses and on the density function of x.

Assumption B (Observed responses). Conditionally on x1, . . . ,xn, the observations Y1, . . . ,Yn,

are non-empty random compact convex sets such that

(i) s(Yi, v) = s(M(xi), v) + εi(v), v ∈ Sd−1, where εi(·), i = 1, . . . , n, are i.i.d. copies of a

square integrable random function ε(v), v ∈ Sd−1, such that E[εi(v)|xi] = 0 xi-a.s. for

all v ∈ Sd−1. Assume that

σ2
max = max

v∈Sd−1
E[ε(v)2] <∞

and denote the covariance function of ε by C(v, u) = E[ε(v)ε(u)].

(ii) Yi ⊂ ξi + B a.s. for integrable random vectors ξi, i = 1, . . . , n, and a deterministic

compact set B that is the same for all i.

In dimension d = 1, we have s(Yi, 1) = yiU, s(Yi,−1) = −yiL, and Part (i) of Assump-

tion B requires that yiL = E[yL|x]−εi(−1), yiU = E[yU|x]+εi(1) with that εi(1)+εi(−1) ≥

−(E[yU|x] − E[yL|x]) almost surely. The latter condition replicates the requirement that

P(yU ≥ yL) = 1. Note that ε does not admit a geometric interpretation as the support func-

tion of a random set. Part (ii) of Assumption B guarantees that Yi is uniformly integrably

bounded, and implies that the diameters of all Yi’s are bounded by a deterministic constant.

Next, we require the conditional expectation of E[Y |x] to have a sufficiently smooth

support function, thereby allowing for standard expansions used in obtaining the asymptotic

properties of the local linear estimator.

Assumption C (Theoretical response function). The function M(x), x ∈ R, is such that

s(M(x), v) admits a second derivative s′′(M(x), v) in x, uniformly bounded for all v ∈ Sd−1.

Finally, we assume that the common density f of the independent design points satisfies
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the following condition, which is similar to that imposed in Condition 1(ii) of Fan (1993)

with singleton responses.

Assumption D (Density). The density f is strictly positive at x0 and belongs to the family

H(1, γ) of Lipschitz functions with constant γ > 0, that is,

|f(x′)− f(x′′)| ≤ γ|x′ − x′′|

for all x′, x′′ ∈ R.

We measure the quality of M̂ (x0) as set-valued estimator of M(x0) by the quadratic loss

function defined in (4),

L(M̂(x0),M(x0))
2 =

∫
Sd−1

(s(M̂ (x0), v)− s(M(x0), v))2 dv.

The mean squared error (MSE) of the estimator is then the expectation of L(M̂ (x0),M(x0))
2.

A classic bias-variance decomposition yields

MSE(x0) =

∫
Sd−1

b2x0(v) dv +

∫
Sd−1

σ2
x0

(v) dv,

where b2x0(v) and σ2
x0

(v) are squared bias and variance, given by

b2x0(v) = E
(
E[s(M̂ (x0), v)|x1, . . . ,xn]− s(M(x0), v)

)2
,

σ2
x0

(v) = E
(
s(M̂ (x0), v)− s(E[M̂ (x0)|x1, . . . ,xn], v)

)2
.

Because E[Yi|xi] = M(xi), we have

E[s(M̂(x0), v)|x1, . . . ,xn] =
n∑
i=1

`is(M(xi), v) +
n∑
i=1

`−i w(M(xi), v).
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Rearranging the terms, we arrive at

b2x0(v) = E
( n∑
i=1

`i(s(M(xi), v)− s(M(x0), v)) +
n∑
i=1

`−i w(M(xi), v)
)2

(6)

and

σ2
x0

(v) = E
( n∑
i=1

`i(s(Yi, v)− s(M(xi), v)) +
n∑
i=1

`−i (w(Yi, v)− w(M(xi), v))
)2
.

By Assumption B, the variance can be expressed as

σ2
x0

(v) = E
( n∑
i=1

`iεi(v) +
n∑
i=1

`−i (εi(v) + εi(−v))
)2
. (7)

Differently from the classical case with singleton responses yi, the negative parts of the

weights in (6) play an essential role with set-valued responses. This is because while the

difference between s(M(xi), v) and s(M(x0), v) is small when xi is close to x0, the width

w(M(xi), v) does not vanish as xi becomes closer to x0. Thus, the bias increases by a

constant and may not tend to zero if some weights are negative and not close to zero. Much

of our asymptotic analysis is concerned with establishing the asymptotic behavior of these

negative weights.

The methodology that we propose for local linear regression smoothing can be applied

also in the case of local polynomial regression models with p ≥ 2. In this cases, however,

extra care is required to show that the negative weights are asymptotically negligible.

4 Asymptotic properties of the set-valued estimators

In the local linear regression setting, negative weights may appear in (6) and hence affect

the bias in the case of set-valued data. Following Fan (1993), in order to avoid zero in the
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denominator of the local linear estimator, we redefine `i by letting

`i =
κin
n

s2 − (xi − x0)s1
s2s0 − s21 + n−4

. (8)

We use O and O to denote the deterministic order of magnitude uniformly in f ∈ H(1, γ).

For a sequence {zn, n ≥ 1} of random variables determined through the design points and

the observations, write zn = Or(an) if

sup
f∈H(1,γ)

E|zn|r = O(arn).

The notation Or(an) is defined similarly. We then have Or(an)Or(bn) = Or/2(anbn), and

zn = Ezn +Or(E|zn − Ezn|r)1/r.

To determine the contribution to the bias resulting from the negative weights, we first

derive the expected sum of the squared weights `2i .

Proposition 4.1. Let hn → 0 and nhn →∞ as n→∞. Under Assumptions A and D,

E
n∑
i=1

`2i =
1

nhnf(x0)

∫
K2(z) dz + O

( 1

nhn

)
. (9)

Proof. See Appendix A.

Next, we obtain the second moment of the sum of the negative weights.

Proposition 4.2. Let hn → 0 and nhn →∞ as n→∞. Under Assumptions A and D, for

sufficiently large r,

E

( n∑
i=1

`−i

)2

=
1

hn
O
((

1/
√
nhn

)r)
.

Proof. See Appendix A.
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With this result in hand, we can derive the mean squared error of our estimator. As the

mean squared error converges to zero as n increases to infinity, this result yields consistency

of our estimator as well as its rate of convergence.

Theorem 4.3. Under Assumptions A, B, C, and D, if hn = cn−β with 0 < β < 1 and a

constant c > 0, the mean squared error of the local linear estimator (5) is

MSE(x0) =
h4n(VarK)2

4

∫
Sd−1

s′′(M(x0), v)2 dv +

∫
Sd−1 C(v, v) dv

nhnf(x0)

∫
K2(z) dz + O

(
h4n +

1

nhn

)
.

Proof. See Appendix A.

We conclude this section by deriving a limit theorem for the support function of the

estimators as processes on the unit sphere. In turn, this limit theorem can be used to build

error tubes for the estimator as explained in Section 5. Let ζ(v), v ∈ Sd−1, be a centered

Gaussian process on the unit sphere with the covariance

E[ζ(v)ζ(u))] =
C(v, u)

f(x0)

∫
K(z)2 dz. (10)

Theorem 4.4. Assume that hn = cn−β with 0 < β < 1, and fix x0 ∈ I. Under Assump-

tions A, B, C, and D, the stochastic process

√
nhn

(
s(M̂ (x0), v)− s(M(x0), v)− h2n

1

2
s′′(M(x0), v) VarK

)

constructed using local the linear estimator in (5) converges in distribution in the space of

continuous functions on Sd−1 with the uniform metric to the Gaussian process ζ.

Proof. See Appendix A.
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5 Cross-validation and error tubes

Cross-validation. In the classical setting, where the observation pairs (xi,yi) are real-

valued, one typically chooses the bandwidth hn to minimize the leave-one-out cross-validation

score, defined as

CV =
1

n

n∑
i=1

(yi − m̂(−i)(xi))
2,

where m̂(−i)(x) =
∑n

j=1 yj`j,(−i)(x) and

`j,(−i)(x) =


0 if j = i,

`j(x)∑
k 6=i `k(x)

if j 6= i.

This procedure assigns weight zero to xi and renormalizes the other weights to sum to one.

Following the same idea, we define the cross-validation score for the set-valued responses

Yi as

CV =
1

n

n∑
i=1

∫
Sd−1

(s(Yi, v)− s(M̂(−i)(xi), v))2 dv, (11)

where M̂(−i)(x) =
∑n

j=1 Yj`j,(−i)(x).

If Yi = [yiL,yiU] ⊂ R, (11) turns into

CV =
1

n

n∑
i=1

(
yiL − M̂(−iL)(xi))

2 + (yiU − M̂(−iU)(xi))
2
)
, (12)

where M̂(−iL)(xi) and M̂(−iU)(xi) denote the lower and upper bounds of M̂(−i)(xi). We

denote by hn,CV the bandwidth that minimizes (12) (or (11), depending on the application).

Error tubes. The optimal bandwidth which minimizes the MSE in Theorem 4.3 is hn,mse =

Cn−1/5, with some constant C that does not depend on n. However, such a choice of

bandwidth implies nh5n 6→ 0 and the leading bias term in Theorem 4.4 does not vanish,

as in the classical case for singleton-valued outcomes. Similarly to that case, one can use
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undersmoothing as an approach to bias reduction. In Section 6 we illustrate the impact of

undersmoothing on the error tubes that we describe next.

Rather than undersmooth, we propose to report statistical uncertainty in our estimates

in the form of pointwise error tubes – an analog of error bands for singleton-valued data.

Specifically, for each value x0 considered we propose to report the set

Ĉ(x0) = M̂ (x0) +
cα√
nhn

B, (13)

where B = {b : ‖b‖ ≤ 1} is the unit ball. In (13) cα is chosen so that

P

(
max
v: ‖v‖=1

{ζ(v)}+ > cα

)
= α,

where ζ is the centered Gaussian process with covariance kernel (10), see Theorem 4.4. The

critical value cα can be obtained by simulation, or can be estimated using the bootstrap.

Validity of the bootstrap can be formally established as in Proposition 2.1 of Beresteanu

and Molinari (2008) (see also Molchanov and Molinari, 2018, Theorem 4.13). It follows from

Theorem 4.4 that

lim
n→∞

P
(

max
v: ‖v‖=1

{s(M̂(x0), v)− s(M(x0), v)

− h2n
1

2
s′′(M(x0), v) VarK −s(Ĉ(x0), v)}+ = 0

)
≥ 1− α. (14)

Existing methods of bias correction (other than undersmoothing, the effect of which we are

already investigating in our Monte Carlo exercise) could be extended to the case of set-valued

outcomes. However, we do not report such findings here,3 because any form of bias reduction

may result in an empty estimator, which we regard as an undesirable feature as discussed in

Remark 3.1.

3Although these are available from the authors upon request.
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Table 1: Coverage probability at 95% nominal level using cross-validation.

sample x0 Coverage of Coverage of Coverage of M(x0) Coverage of M(x0)

size M(x0) E(M̂(x0)) with h = 1/2hn,CV with h = 1/3hn,CV

200

-0.4 0.8630 0.8540 0.9165 0.9690
0 0.8965 0.8865 0.8790 0.9520

0.2 0.9465 0.9405 0.9825 0.9980
0.4 0.9330 0.9215 0.9200 0.9745

500

-0.4 0.8705 0.8595 0.9290 0.9755
0 0.9460 0.9410 0.9760 0.9935

0.2 0.9315 0.9280 0.9655 0.9910
0.4 0.9415 0.9320 0.9260 0.9800

1000

-0.4 0.9070 0.9040 0.9525 0.9855
0 0.8990 0.8985 0.9175 0.9695

0.2 0.9205 0.9160 0.9425 0.9760
0.4 0.8965 0.8940 0.9090 0.9570

2000

-0.4 0.8970 0.8925 0.9440 0.9820
0 0.9305 0.9290 0.9585 0.9865

0.2 0.9230 0.9215 0.9425 0.9815
0.4 0.8925 0.8935 0.9040 0.9600

6 Monte Carlo Simulations

We perform a simulation study with the following data generating process:

yL = 0.90 + 1.27x+ 10.18x2 − εL

yU = 0.90 + 1.27x+ 10.18x2 + εU ,

with x drawn from a Beta distribution with support shifted to be [−1, 1] and with shape

parameters (2, 4), and εL and εU drawn independently from a Uniform distribution on [0, 1].

We let the sample size n = 200, 500, 1000, 2000. For values of x0 = 0, 0.2, 0.4, 0.6 we evaluate

the coverage probability of the error tubes in equation (13).

We compare different implementations of the error tubes, and in Table 1 we report: (i)
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coverage probability of the true set M(x0) by the error tube (meaning that the true set

is a subset of the tube) in (13) computed using the cross-validation bandwidth (column

3); (ii) coverage probability as in (14), with the error tube in (13) computed using the

cross-validation bandwidth (column 4); (iii) same exercise as in (i) but using undersmoothed

bandwidths (columns 5 and 6). The results are based on 200 Monte Carlo replications.

In these simulations, the asymptotic bias does not affect the ability of the error tube

in (13) to cover the true set M(x0) compared to E[M̂(x0)], see columns (3) and (4) of the

table. If we undersmooth the bandwidth, the confidence interval enlarges substantially and

coverage of the true set becomes conservative.

7 Empirical Application

We demonstrate the usefulness of our approach with an empirical illustration that studies

the association between cancer treatment outcomes and certain gene expression measures.

A key outcome of interest in cancer treatment research is the progression-free survival

(PFS), which is defined as the time measured in months from baseline until tumor progression

or death (whichever occurs first). Tumor progression is defined as an increase in the diameter

of the tumor lesions of 20% compared with the smallest diameters of all previous tumor

assessments or the appearance of new lesions, as measured by CT-scans or MRIs (this is

called RECIST criterion in the medical literature, see Eisenhauer et al. (2009)). However,

due to ethical and cost constraints, CT-scans and MRIs cannot be performed daily, but

rather scheduled every 3 to 6 months. Hence, the PFS of patients can only be measured by

intervals (with the true PFS falling between the last assessment without tumor progression

and the assessment with progression), and no information is available on the distribution

of true PFS within the interval. In contrast, the PFS of patients who died without tumor

progression is measured exactly.
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The question that we focus on in this paper is part of a subproject of the Swiss Cancer

Research Group (SAKK) 19/09 for anti-cancer treatment regimens described in Gautschi

et al. (2017). This subproject is concerned with finding, out of a total of 202 investigated

genes, those whose baseline expression affects patient’s PFS differently in two treatment arms

described below. Genes expression is evaluated by isolating RNA from baseline tumor tissue

sections and processing it for gene expression analysis using the Nanostring nCounter R© Sys-

tem (Nanostring Technologies), including 6 housekeeping genes.4 The gene expression mea-

sure that we report and use for our analysis is the log2 of the output of Nanostring.

Our method provides a consistent estimator of the set of admissible values for the con-

ditional expectation of treatment outcome given gene expression, as well as 1− α pointwise

confidence bands for it as in (13), without making any assumption on how PFS is distributed

over the measured intervals that it is known to belong to, nor how it is related to the genes.

We use a novel dataset that follows 132 patients who were accrued between November

2010 and July 2014 to the SAKK 19/09 clinical trial for anti-cancer treatment regimens

described in Gautschi et al. (2017). These patients are affected by advanced non-squamous

non-small cell lung cancer and present an epidermal growth factor receptor (EGFR) of the

wild type. Excluding 3 patients with protocol violations, 77 patients were treated with the

drug Bevacizumab plus chemotherapy (C1) and 52 were treated with chemotherapy alone

(C2). The question of interest of the SAKK 19/09 subproject that we revisit in this section

is whether the gene expression of PTGS2 (COX2) at baseline affects differently patient’s

PFS in the two treatment arms. The gene PTGS2 (COX2) is frequently expressed in lung

cancer patients and the drug Bevacizumab directly interacts with the COX2 pathway. One

speculates that in patients with a high expression of COX2 the tumor cells are predominately

dependent on this signaling pathway for proliferation and the use of Bevacizumab has a

more pronounced effect. Vice-versa, if COX2 is only expressed at a low level, this could

4See https://www.nanostring.com for a description of this method.
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reflect a tumor that is not dependent on this inflammatory pathway and therefore the use of

Bevacizumab is not beneficial. Another gene of interest (whose effect on cancer treatment

efficacy has not been previously analyzed) is CDC25A, which is a key regulator of the cells

cycles. One speculates that overexpression of gene CDC25A is associated with a poorer

prognosis with regard to its biological role.

Table 2: Descriptive statistics for interval-valued PFS and genes PTGS2 and CDC25A; y
denotes the progression-free survival (time from baseline until tumor progression or death),
yL is last assessment without tumor progression, and yU is the assessment with tumor
progression.

variable mean stdErr max min N

yL 7.62 9.08 52.40 0 95

yU 9.25 9.65 55.16 0.23 95

CDC25A 7.23 2.76 14.22 0 95

PTGS2 8.66 1.90 13.37 2.86 95

Table 2 reports descriptive statistics for these data. The sample used for the analysis is

constituted by 99 patients, from which four were excluded because they were still alive at

the last follow up (and therefore for these patients yiU = ∞). Of the sample used for our

analysis, 58 patients were treated following protocol C1, and 37 following protocol C2.

The results of the analysis are reported in Figure 2 for the gene PTGS2 (COX2) and in

Figure 3 for the gene CDC25A. The results suggest that the use of Bevacizumab in cancer

treatment is quite beneficial for patients with moderate to relatively high expression of gene

PTGS2 (COX2), although the benefit seems to taper off at extremely high levels of the gene.

Similarly, at medium to high levels of expression of gene CDC25A the use of Bevacizumab

seems highly beneficial, while at extremely low or high levels of the gene chemotherapy
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alone appears to be more effective. We note, however, that the results of this analysis are

retrospective. To confirm the medical findings, a prospective randomized clinical trial needs

to be carried out.

8 Conclusions

This paper has introduced local linear regression smoothing for set-valued data. We have

established consistency of the set-valued estimator, derived its mean squared error, and

its (pointwise) asymptotic distribution. We have extended the cross-validation method for

bandwidth selection to the case of set-valued local linear regression, and examined the finite

sample properties of our estimator in a Monte Carlo exercise. We have illustrated the

usefulness of our method in an empirical illustration studying the effect of gene expression

on cancer therapy outcomes.

Figure 2: Results of the analysis for the gene PTGS2 (log2 of the Nanostring output)
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Figure 3: Results of the analysis for the gene CDC25A (log2 of the Nanostring output)

A Proofs of Main Results

Proof of Proposition 4.1. Our proof builds on (Fan, 1993, Eqs. (6.4), (6.6) and (6.13)). Since

the kernel is assumed to have a compact support, we have
∫
z2rK(z)dz < ∞ for all r ≥ 0.

For any integer r ≥ 1,

sj = Esj + hj+1
n Or

(
1/
√
nhn

)
, j = 0, 1, 2, (15)

as n→∞, hn → 0 and nhn →∞. The expectations of sj can be calculated as follows:

Es0 = hn

∫
K(z)f(zhn + x0) dz = hn

∫
K(z)(f(x0) +O(hn)) dz = hn[f(x0) +O(hn)],

Es1 = h2n

∫
zK(z)f(zhn + x0) dz = h2n

∫
zK(z)(f(x0) +O(hn)) dz = h2nO(hn),

Es2 = h3n

∫
z2K(z)f(zhn + x0) dz = h3n

∫
z2K(z)(f(x0) +O(hn)) dz = h3n(f(x0) VarK +O(hn)).
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In view of (15), for an integer r ≥ 1,

sj = hj+1
n

(
f(x0)

∫
zjK(z) dz +Or(hn +

1√
nhn

)

)
, j = 0, 1, 2. (16)

Thus,

s0 = hnf(x0)(1 + Or(1)), (17)

s1 = h2nOr(1), (18)

s2 = h3nf(x0) VarK(1 + Or(1)). (19)

It is easy to see that
n∑
i=1

`i =
s2s0 − s21

s2s0 − s21 + n−4
.

Moreover, for a sufficiently large r,

h4n
s2s0 − s21 + n−4

=
1

f(x0)2 VarK
+ Or(1), (20)

cf. (Fan, 1993, Eq. (6.6)). In view of (17), (18), and (19),

s2s0 − s21 = h4nf(x0)
2 VarK(1 + Or(1)). (21)

By (8),

n∑
i=1

`2i =

∑n
i=1 κ

2
in(s2 − (xi − x0)s1)2

n2(s2s0 − s21 + n−4)2
=

s22s
∗
0

n(s2s0 − s21 + n−4)2
+

(−2s2s1s
∗
1 + s21s

∗
2)

n(s2s0 − s21 + n−4)2
, (22)

where

s∗j =
1

n

n∑
i=1

κ2
in(xi − x0)j = hj+1

n

(
f(x0)

∫
zjK2(z) dz + Or(1)

)
, j = 0, 1, 2.
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Furthermore, (16) implies that

s22s
∗
0 = h7nf

3(x0)(VarK)2
∫
K2(z) dz + h7nOr/2(1).

Combining this with (20) and letting r = 4, we obtain

E

(
s22s

∗
0

n(s2s0 − s21 + n−4)2

)
=
h7nf

3(x0)(VarK)2
∫
K2(z) dz

nh8nf
4(x0)(VarK)2

+
h7n
nh8n

O(1)

=

∫
K2(z) dz

nhnf(x0)
+ O

(
1

nhn

)
.

Since
∫
zK(z) dz = 0,

−2s2s1s
∗
1 = h7n(f(x0) VarK +O8(1))O8(1)(f(x0)

∫
zjK2(z) dz + O4(1)) = h7nO2(1).

Analogously, s21s
∗
2 = h7nO2(1). Both these terms are as small as the minor term of s22s

∗
0.

Therefore, (22) is dominated by its first term, whence (9) holds.

Proof of Proposition 4.2. By definition, `i < 0 if and only if s2 − (xi − x0)s1 < 0. Hence,

E

( n∑
i=1

`−i

)2

= E

( n∑
i=1

−`i1{s2 − (xi − x0)s1 < 0}
)2

≤ nE

( n∑
i=1

`2i1{s2 − (xi − x0)s1 < 0}
)

≤ nE

( n∑
i=1

`2i1{s2 < cKhn|s1|}
)

= nE

(
1{s2 < cKhn|s1|}

n∑
i=1

`2i

)

≤ n
√

P(s2 < cKhn|s1|)

(
E

( n∑
i=1

`2i

)2
)1/2

, (23)

where the second inequality relies on Assumption A and the last one follows from the Cheby-
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shev inequality. Using (16), we have, for an integer r ≥ 1,

s1 = h2n

(
O(hn) +Or

(
1/
√
nhn

))
,

s2 = h3n

(
f(x0) VarK +O(hn) +Or

(
1/
√
nhn

))
.

Hence,

P(s2 < cKhn|s1|) (24)

≤ P
(
f(x0) VarK +O(hn) +Or

(
1/
√
nhn

)
< |O(hn)|+

∣∣∣Or(1/√nhn
)∣∣∣ )

= P
(
f(x0) VarK < |O(hn)|+

∣∣∣Or(1/√nhn
)∣∣∣ ). (25)

For sufficiently large n, there exist a ξ with 0 < ξ < f(x0) VarK so that |O(hn)| ≤ ξ for all

sufficiently large n. Building on (25), the Markov inequality and the definition of Or(an)

yield that

P(s2 < cKhn|s1|) ≤ P
(
f(x0) VarK < ξ +

∣∣∣Or(1/√nhn
)∣∣∣ )

= P
( ∣∣∣Or(1/√nhn

)∣∣∣ > f(x0) VarK −ξ
)

≤
supf∈H(1,γ) E

∣∣Or(1/√nhn)∣∣r
(f(x0) VarK −ξ)r

=
cr
(
1/
√
nhn

)r
(f(x0) VarK −ξ)r

for a positive constant cr. Therefore,

P(s2 < cKhn|s1|) = O
((

1/
√
nhn

)r)
. (26)

From the proof of Proposition 4.1 with r = 8, squaring and taking expectation,

E
( n∑
i=1

`2i

)2
=

1

n2h2n

(∫
K2(z)dz

)2

(1 + O(1)). (27)
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Substituting (26) and (27) into (23),

E
( n∑
i=1

`−i

)2
≤ 1

hn

∫
K2(z)dz

√
1 + O(1)O

((
1/
√
nhn

)r)
,

which converges to 0 by choosing a sufficiently large r.

Proof of Theorem4.3. The squared bias can be written as

b2x0(v) = E[(b1 + b2)
2],

for b1 =
∑n

i=1 `i(s(M(xi), v)− s(M(x0), v)) and b2 =
∑n

i=1 `
−
i w(M(xi), v). We have

1

n

n∑
i=1

κin(s2 − (xi − x0)s1)(s(M(xi), v)− s(M(x0), v))

=
1

n

n∑
i=1

κin(s2 − (xi − x0)s1)(s(M(xi), v)− s(M(x0), v) + s′(M(x0), v)(xi − x0))

= h6nf(x0) VarK an + O4(h
6
n),

where

an = h−3n E

(
s(M(x), v)− s(M(x0), v)− s′(M(x0), v)(x− x0)K

(x− x0
hn

))
.

By (20), and using the definition of Or, we have

Eb21 = E

( 1
n

∑n
i=1 κin(s2 − (xi − x0)s1)(mv(xi)−mv(x0))

s2s0 − s21 + n−4

)2

=

(
Un
f(x0)

)2

h4n + O(h4n),

where, taking a Taylor expansion,

Un = h−2n

(
1

2
s′′(M(x0), v) VarK f(x0)h

2
n + O(h2n)

)
.
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Therefore,

Eb21 =
1

4
s′′(M(x0), v)2(VarK)2h4n + O(h4n), (28)

cf. the proof of (Fan, 1993, Theorem 3).

By Proposition 4.2,

Eb22 ≤ w2
maxE

( n∑
i=1

`−i

)2
=

1

hn
O
((

1/
√
nhn

)r)
, (29)

where wmax is a finite deterministic bound on the width of M(x) in any direction v ∈ Sd−1

resulting from Assumption B. By the Cauchy-Schwarz inequality, (29) and (28),

E(b1b2) ≤
√

Eb21Eb
2
2 =

1

2

(
s′′(M(x0), v)2(VarK)2h4n + O(h4n)

)1/2
h−1/2n O

((
1/
√
nhn

)r/2)
,

which, for sufficiently large r and given that hn = cn−β, is of a smaller order than h4n. Thus,

∫
Sd−1

b2x0(v) dv =
1

4

∫
Sd−1

s′′(M(x0), v)2 dv(VarK)2h4n + O

(
h4n +

1

nhn

)
. (30)

Now we bound the variance of the estimator splitting (7) into the sum of three terms.

By Proposition 4.1, the first term is

E
( n∑
i=1

`iεi(v)
)2

= E
n∑
i=1

`2iC(v, v) =
1

nhnf(x0)
C(v, v)

∫
K2(z) dz + O

(
1

nhn

)
.

The second term is

E
∑

1≤i<j≤n

`i`
−
j εi(v)(εj(v) + εj(−v)) = 0.
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Finally, consider

E
( n∑
i=1

`−i (εi(v) + εi(−v))
)2

= (C(v, v) + 2C(v,−v) + C(−v,−v))E
n∑
i=1

(`−i )2

≤ 4σ2
maxE

n∑
i=1

(`−i )2 ≤ 4σ2
maxE

( n∑
i=1

`−i

)2
= 4σ2

max h
−1
n O

((
1/
√
nhn

)r)
.

For a large r, (nhn)(−r/2) is of smaller order than (nhn)−1. Hence,

∫
Sd−1

σ2
x0

(v) dv =
1

nhnf(x0)

∫
Sd−1

C(v, v) dv

∫
K2(z) dz + O

(
1

nhn

)
,

and the result follows by adding (30) to it.

Proof of Theorem 4.4. It suffices to establish the convergence of one-dimensional distribu-

tions; the weak convergence of finite dimensional distributions follows from the Cramér–Wold

device, and the functional convergence is established by bounding the Lipschitz constants of

the processes as in Molchanov (2017, Theorem 3.2.1).

First, decompose

s(M̂ , v)− s(M(x0), v) =
n∑
i=1

`is(Yi, v) +
n∑
i=1

`−i w(Yi, v)− s(M(x0), v)

=
n∑
i=1

`is(M(xi), v) +
n∑
i=1

`iεi(v) +
n∑
i=1

`−i w(Yi, v)− s(M(x0), v). (31)

By Proposition 4.2, noticing that the L2-convergence implies the convergence in probability,

and choosing r large enough, we have that

n∑
i=1

`−i w(Yi, v) ≤ wmax

n∑
i=1

`−i = Op
(
1/
√
nhn

)
.
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Using a Taylor expansion,

s(M(xi), v) = s(M(x0), v) + (xi − x0)s′(M(x0), v) +
1

2
(xi − x0)2s′′(M(x0), v) +R(x0,xi, v),

where the remainder term R(x0,xi, v) is of a smaller order than 1
2
(xi − x0)

2s′′(M(x0), v).

Since the local linear estimator satisfies
∑n

i=1 `i(xi − x0) = 0, we have

n∑
i=1

`is(M(xi), v) +
n∑
i=1

`iεi(v)− s(M(x0), v)

=
n∑
i=1

`i(s(M(xi), v)− s(M(x0), v))− n−4

s2s0 − s21 + n−4
s(M(x0), v) +

n∑
i=1

`iεi(v)

=
n∑
i=1

`i

(
1

2
(xi − x0)2s′′(M(x0), v) +R(x0,xi, v) + εi(v)

)
− n−4

s2s0 − s21 + n−4
s(M(x0), v).

Since for a sequence of {Zn, n ≥ 1} of square-integrable random variables

Zn = EZn +Op(
√

VarZn),

(16) yields that

sj = hj+1
n f(x0)

∫
zjK(z) dz (1 + Op(1)), j = 0, 1, 2, 3. (32)

By (21) and since nhn →∞, we have

s2s0 − s21 + n−4 = h4n VarK f
2(x0) (1 + Op(1)). (33)

Therefore,

n−4

s2s0 − s21 + n−4
s(M(x0), v) = Op

(
n−4h−4n

)
= Op

(
n−3h−3n

)
.
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Combining (32) and (33), we have

n∑
i=1

`i

(
1

2
(xi − x0)2s′′(M(x0), v) +R(x0,xi, v) + εi(v)

)

=

(
1

2
(s22 − s3s1)s′′(M(x0), v) +

1

n

n∑
i=1

κin(s2 − (xi − x0)s1)εi(v)

)
(s2s0 − s21 + n−4)−1

=
1

2
VarK s

′′(M(x0), v)h2n(1 + Op(1)) +
1

nhnf(x0)

n∑
i=1

κinεi(v)(1 + Op(1)). (34)

By the central limit theorem,

1√
nhn

n∑
i=1

κinεi (35)

converges in distribution to the centered normal random variable with variance equal to that

of ζ(v). The combination of (31), (33), (34) and (35) yields the result.

B Deterministic design points

When the design points xi = xi, i = 1, . . . , n, are deterministic5, (6) turns into

b2x0(v) =

(
n∑
i=1

`i(s(M(xi), v)− s(M(x0), v)) +
n∑
i=1

`−i w(M(xi), v)

)2

.

Since K(·) has compact support in [−cK , cK ], we have `i = 0 if |xi − x0| > cKhn. It is

easy to see that all weights are nonnegative if and only if

∑
κin

(
xi − x0
hn

)2

≥
∣∣∣∣∑κin

xi − x0
hn

∣∣∣∣ .
This assumption means that the sample rescaled around each point to lie in the range [−1, 1]

has the variance that dominates the absolute value of the expectation. For this, the rescaled

5Because with deterministic design xi = xi, i = 1, . . . , n, sj , j = 0, 1, 2 and κin, i = 1, . . . , n are also
deterministic and we write sj = sj and κin = κin.
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points should be sufficiently balanced on the left and on the right of x0. The assumption

can be alternatively expressed as

s2
h3n
≥ cK

∣∣∣∣ s1h2n
∣∣∣∣ .

It holds when s1/h
2
n → 0 as n→∞.

By a direct computation, it is possible to show that, in the regular design case, the

weights are nonnegative for all n.

Proposition B.1. Consider the local linear setting with uniform kernel supported on [−cK , cK ]

and equally spaced (regular) design points x1, . . . , xn on a bounded interval I. If 1/n ≤

cKhn ≤ 1, then `i(x0) ≥ 0 for all i, n and each

x0 ∈ In = {x ∈ I : [x− cKhn, x+ cKhn] ⊂ I}.

In case of deterministic design points in a bounded interval I, the following assumptions

are often imposed; they appear as (LP1)-(LP2) in Tsybakov (2009).

Assumption E (Design points). The design points x1, . . . , xn are such that:

(i) There exists λ0 > 0 such that all eigenvalues of Bnx0 are greater than or equal to λ0 for

all sufficiently large n and all x0 ∈ I.

(ii) There exists a0 > 0 such that, for any interval J ⊂ I and all n > 1,

1

n

n∑
i=1

1xi∈J ≤ a0 max(Leb(J)/Leb(I), 1/n),

where Leb(·) denotes the Lebesgue measure.

We impose the following assumption on the response function.
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Assumption F (Theoretical response function). The function M(x), x ∈ I, is defined on

a bounded closed interval I ⊂ R, and there exists γ > 0 such that, for all v ∈ Sd−1, the

derivative of s(M(x), v) with respect to x is Lipschitz with constant γ.

The following result is similar to (Tsybakov, 2009, Prop. 1.13) in the singleton-valued

data framework.

Proposition B.2. If x0 ∈ In, `i ≥ 0 for all i, and Assumptions A, B, E and F are satisfied,

then

|bx0(v)| ≤ c2KC∗γh
2
n, σ2

x0
(v) ≤ σ2

maxC
2
∗

nhn

for sufficiently large n and hn ≥ 1/(2n).

Proposition B.2 implies

MSE(x0) ≤ c4KC
2
∗γ

2h4n +
σ2
maxC

2
∗

nhn
.

Therefore, the upper bound is minimized for the bandwidth given by

h∗n =

(
σ2
max

4c4Kγ
2

) 1
5

n−
1
5 ,

and the following result holds.

Theorem B.3. If the bandwidth is chosen to be hn = αn−
1
5 for α > 0 and Assump-

tions A, B, E hold, then

lim sup
n→∞

sup
x0∈In

E[n
2
5L(M̂(x),M(x))] ≤ C1 <∞,

uniformly over all response functions satisfying Assumption F, where C1 is a constant de-

pending only on γ, a0, λ0, σ
2
max, Kmax and α.
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C Local constant regression

In the local constant case, the weights `i = κin/(ns0) are always nonnegative. Then the

estimator M̂ (x0) can be constructed as the convex set whose support functions is obtained

by calculating the Nadaraya–Watson estimator for the sample s(Yi, v), i = 1, . . . , n, in each

particular direction v. In other words, M̂(x0) is the sum of the observed sets Yi multiplied by

nonnegative coefficients `i. Therefore, the bias and variance of the set-valued local constant

estimator can be obtained similarly to the singleton-valued data case. For this, it suffices to

assume that the function s(M(x), v) is Lipschitz in x with the same constant for all v, which

is equivalent to requiring that M(x), x ∈ I, is Lipschitz in the Hausdorff metric.

D Basic definitions from random set theory

A random compact set Y is a map from (Ω,F,P) to K(Rd) such that

{ω : Y (ω) ∩K 6= ∅} ∈ F, (36)

for each compact set K ⊂ Rd. Random sets Y1, . . . ,Yn are said to be independently and

identically distributed if

P(Y1 ∩K1 6= ∅, . . . ,Yn ∩Kn 6= ∅) =
n∏
i=1

P(Yi ∩Ki 6= ∅),

for all K1, . . . , Kn ∈ K(Rd) and

P(Yi ∩K 6= ∅) = P(Yj ∩K 6= ∅),

for all i 6= j ∈ {1, . . . , n} and K ∈ K(Rd).
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We define the (Minkowski) sum of two compact sets A1 and A2 in Rd elementwise as

A+B = {x+ y : x ∈ A, y ∈ B}.

We let cA = {cx : x ∈ A} denote the scaling of A by c ∈ R. Given a compact convex set (a

convex body) A ⊂ Rd, the support function of A is

s(A, v) = sup
a∈A

v>a, v ∈ Rd,

where v>a denotes the scalar product. If A is convex, its support function uniquely identifies

A, because

A =
⋂

v∈Sd−1

{a ∈ Rd : v>a ≤ s(A, v)}. (37)

Because s(tA, v) = ts(A, v) for t ≥ 0, the support function is often restricted to v ∈ Sd−1.

Note that

s(A1 + A2, v) = s(A1, v) + s(A2, v).

The width function of A is defined by

w(A, v) = s(A, v) + s(A,−v) = w(A,−v), v ∈ Sd−1,

and it is easy to see that the width function is nonnegative. If d = 1, then A is a closed

interval in R, and the unit sphere Sd−1 = {−1, 1} consists of two points. In this case, the

width function is the length of the interval.

A random convex compact set Y is a map from (Ω,F,P) to KC(Rd) satisfying equation

(36). Its measurability is equivalent to the fact that s(Y , v) is a random variable for each

v ∈ Rd.
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