Errata in “Partial Identification Using Random Set Theory”*
Arie Beresteanu† Ilya Molchanov‡ Francesca Molinari§
December 6, 2011

After our article Beresteanu, Molchanov and Molinari (Journal of Econometrics 166 (2012) 17–32, BMM henceforth) went into press, we found a non sequitur in the proof of Lemma B.2. Here we correct this lemma, and sharpen two results which use it. We also provide a list of typos that escaped us in the proof-reading stage.

Correction of Lemma B.2

Lemma B.2 Let X be a random compact set. Then a random vector x is stochastically smaller than X if and only if

\[P(x \in K_X) \geq P(X \subset K_X), \]

for all sets K_X defined as $K_X = \bigcup_{\omega \in \Omega'} \{X(\omega) : X(\omega) \subset K\}$, where K is any compact set and Ω' is a fixed set of full probability.

Proof. Take a compact set K. By construction, $P(X \subset K) = P(X \subset K_X)$ and $K_X \subset K$. Hence, $P(x \in K) \geq P(x \in K_X)$ and if the dominance condition (2.2) in BMM holds for the set K_X, it also holds for K. ■

Remark. If X is a random compact interval on the line, the set K_X is necessarily a union of disjoint intervals. In this case, $P(X \subset K_X)$ is the sum of the probabilities that X is a subset of each individual interval, and therefore it suffices to check condition (*) for K_X being any interval.

In light of the corrected Lemma B.2, the following amendments are provided:

- **Propositions 2.3 and 2.5:** $\bar{K} = \bar{K}(0) \cup \bar{K}(1) \cup \cdots \cup \bar{K}(T)$ (i.e., one should not take the convex hull of the set on the right hand side of the expression);
- **Proposition C.1:** The last sentence in the statement of the proposition needs to be deleted.

*We are grateful to Adam Rosen for comments on Beresteanu, Molchanov and Molinari (2012), that motivated us to write this note.

†Department of Economics, University of Pittsburgh, arie@pitt.edu.

‡Department of Mathematical Statistics and Actuarial Science, University of Bern, ilya@stat.unibe.ch.

§Department of Economics, Cornell University, fm72@cornell.edu.
Correction of Typos

- **Theorem 2.1**: In the statement of the theorem, “a random closed set X” should read “a random compact set X”;

- **Proposition 2.6**: In the statement of the proposition, for the general case, $H \left[P(y(t)) \right]$ should read:

$$H \left[P(y(t)) \right] = \left\{ \mu \in \Gamma_Y : \mu(K) \geq \operatorname{ess sup}_{v \in V} P \left(\overline{Y}(t) \subset K \mid v \right) \forall K \in \mathcal{K}(Y) \right\}.$$

For $Y = [0,1]$, $H \left[P(y(t)) \right]$ should read

$$H \left[P(y(t)) \right] = \left\{ \mu \in \Gamma_Y : \mu([k_1, k_2]) \geq \operatorname{ess sup}_{v \in V} P \left(y \leq k_2, z > t \mid v \right) 1(k_1 = 0) + P \left(y \in [k_1, k_2], z = t \mid v \right) \right.$$

$$+ P \left(y \geq k_1, z < t \mid v \right) 1(k_2 = 1) \forall k_1, k_2 \in Y : k_1 \leq k_2 \right\}.$$

Similar corrections apply to the proof of this result.

- **Proof of Proposition 3.3**: Second column, line 11, $E \left(\bar{w} \left(\psi - \bar{w}' \theta \right) \right)$ should be replaced by $E \left(\bar{w} \left(\psi - \bar{w}' \theta \right) \right)$.

- **Page 28**: Second column, line 25, “random closed set X” should read “random compact set X”

The authors apologize for the inconvenience caused by these errata.