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SHARP IDENTIFICATION REGIONS IN MODELS WITH CONVEX
MOMENT PREDICTIONS

BY ARIE BERESTEANU, ILYA MOLCHANOV, AND FRANCESCA MOLINARI1

We provide a tractable characterization of the sharp identification region of the pa-
rameter vector θ in a broad class of incomplete econometric models. Models in this
class have set-valued predictions that yield a convex set of conditional or unconditional
moments for the observable model variables. In short, we call these models with con-
vex moment predictions. Examples include static, simultaneous-move finite games of
complete and incomplete information in the presence of multiple equilibria; best lin-
ear predictors with interval outcome and covariate data; and random utility models of
multinomial choice in the presence of interval regressors data. Given a candidate value
for θ, we establish that the convex set of moments yielded by the model predictions can
be represented as the Aumann expectation of a properly defined random set. The sharp
identification region of θ, denoted ΘI , can then be obtained as the set of minimizers
of the distance from a properly specified vector of moments of random variables to
this Aumann expectation. Algorithms in convex programming can be exploited to effi-
ciently verify whether a candidate θ is inΘI�We use examples analyzed in the literature
to illustrate the gains in identification and computational tractability afforded by our
method.

KEYWORDS: Partial identification, random sets, Aumann expectation, support func-
tion, finite static games, multiple equilibria, random utility models, interval data, best
linear prediction.

1. INTRODUCTION

Overview

THIS PAPER PROVIDES a simple, novel, and computationally feasible procedure
to determine the sharp identification region of the parameter vector θ that
characterizes a broad class of incomplete econometric models. Models in this
class have set-valued predictions which yield a convex set of conditional or un-
conditional moments for the model observable variables. In short, throughout
the paper, we call these models with convex moment predictions. Our use of the
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term “model” encompasses econometric frameworks ranging from structural
semiparametric models to nonparametric best predictors under square loss. In
the interest of clarity of exposition, in this paper we focus on the semiparamet-
ric case. We exemplify our methodology by applying it to static, simultaneous-
move finite games of complete and incomplete information in the presence
of multiple equilibria; best linear predictors with interval outcome and covari-
ate data; and random utility models of multinomial choice in the presence of
interval regressors data.

Models with convex moment predictions can be described as follows. For a
given value of the parameter vector θ and realization of (a subset of) model
variables, the economic model predicts a set of values for a vector of vari-
ables of interest. These are the model set-valued predictions, which are not
necessarily convex. No restriction is placed on the manner in which, in the data
generating process, a specific model prediction is selected from this set. When
the researcher takes conditional expectations of the resulting elements of this
set, the unrestricted process of selection yields a convex set of moments for
the model variables—this is the model’s convex set of moment predictions. If
this set were almost surely single valued, the researcher would be able to iden-
tify θ by matching the model-implied vector of moments to the one observed
in the data. When the model’s moment predictions are set-valued, one may
find many values for the parameter vector θ which, when coupled with specific
selection mechanisms picking one of the model set-valued predictions, gener-
ate the same conditional expectation as the one observed in the data. Each of
these values of θ is observationally equivalent, and the question becomes how
to characterize the collection of observationally equivalent θ’s in a tractable
manner.

Although previous literature has provided tractable characterizations of the
sharp identification region for certain models with convex moment predictions
(see, e.g., Manski (2003) for the analysis of nonparametric best predictors un-
der square loss with interval outcome data), there exist many important prob-
lems, including the examples analyzed in this paper, in which such a character-
ization is difficult to obtain. The analyzes of Horowitz, Manski, Ponomareva,
and Stoye (2003; HMPS henceforth), and Andrews, Berry, and Jia (2004; ABJ
henceforth), and Ciliberto and Tamer (2009; CT henceforth) are examples of
research studying, respectively, the identified features of best linear predic-
tors with missing outcome and covariate data, and finite games with multiple
pure strategy Nash equilibria. HMPS provided sharp identification regions, but
these may have prohibitive computational cost. To make progress not only on
identification analysis, but also on finite sample inference, ABJ and CT pro-
posed regions of parameter values which are not sharp.

Establishing whether a conjectured region for the identified features of an
incomplete econometric model is sharp is a key step in identification analysis.
Given the joint distribution of the observed variables, a researcher asks herself
what parameters θ are consistent with this distribution. The sharp identifica-
tion region is the collection of parameter values that could generate the same
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distribution of observables as the one in the data, for some data generating
process consistent with the maintained assumptions. Examples of sharp iden-
tification regions for parameters of incomplete models are given in Manski
(1989, 2003), Manski and Tamer (2002), and Molinari (2008), among others.
In some cases, researchers are only able to characterize a region in the para-
meter space that includes all the parameter values that may have generated
the observables, but may include other (infeasible) parameter values as well.
These larger regions are called outer regions. The inclusion in the outer regions
of parameter values which are infeasible may weaken the researcher’s ability
to make useful predictions and to test for model misspecification.

Using the theory of random sets (Molchanov (2005)), we provide a general
methodology that allows us to characterize the sharp identification region for
the parameters of models with convex moment predictions in a computation-
ally tractable manner. Our main insight is that for a given candidate value of θ,
the (conditional or unconditional) Aumann expectation of a properly defined
θ-dependent random closed set coincides with the convex set of model moment
predictions. That is, this Aumann expectation gives the convex set, implied by
the candidate θ� of moments for the relevant variables which are consistent
with all the model’s implications.2 This is a crucial advancement compared to
the related literature, where researchers are often unable to fully exploit the
information provided by the model that they are studying and work with just
a subset of the model’s implications. In turn, this advancement allows us to
characterize the sharp identification region of θ, denotedΘI� through a simple
necessary and sufficient condition. Assume that the model is correctly speci-
fied. Then θ is in ΘI if and only if the conditional Aumann expectation (a con-
vex set) of the properly defined random set associated with θ contains the con-
ditional expectation of a properly defined vector of random variables observed
in the data (a point). This is because when such a condition is satisfied, there
exists a vector of conditional expectations associated with θ that is consistent
with all the implications of the model and that coincides with the vector of con-
ditional expectations observed in the data. The methodology that we propose
allows us to verify this condition by checking whether the support function of
such a point is dominated by the support function of the θ-dependent convex
set.3 The latter can be evaluated exactly or approximated by simulation, de-
pending on the complexity of the model. Showing that this dominance holds
amounts to checking whether the difference between the support function of a
point (a linear function) and the support function of a convex set (a sublinear

2We formally define the notion of random closed set in Appendix A and the notion of condi-
tional Aumann expectation in Section 2.

3“The support function [of a nonempty closed convex set B in direction u] h(B�u) is the signed
distance of the support plane to B with exterior normal vector u from the origin; the distance
is negative if and only if u points into the open half space containing the origin” (Schneider
(1993, p. 37)). See Rockafellar (1970, Chapter 13) or Schneider (1993, Section 1.7) for a thorough
discussion of the support function of a closed convex set and its properties.



1788 A. BERESTEANU, I. MOLCHANOV, AND F. MOLINARI

function) in a direction given by a vector u attains a maximum of zero as u
ranges in the unit ball of appropriate dimension. This amounts to maximizing
a superlinear function over a convex set, a task which can be carried out effi-
ciently using algorithms in convex programming (e.g., Boyd and Vandenberghe
(2004), Grant and Boyd (2008)).

It is natural to wonder which model with set-valued predictions may not be-
long to the class of models to which our methodology applies. Our approach
is specifically tailored toward frameworks where ΘI can be characterized via
conditional or unconditional expectations of observable random vectors and
model predictions. Within these models, if restrictions are imposed on the se-
lection process, nonconvex sets of moments may result. We are chiefly inter-
ested in the case that no untestable assumptions are imposed on the selection
process; therefore, exploring identification in models with nonconvex moment
predictions is beyond the scope of this paper.

There are no precedents for our general characterization of the sharp iden-
tification region of models with convex moment predictions. However, there
is one precedent for the use of the Aumann expectation as a key tool to de-
scribe fundamental features of partially identified models. This is the work
of Beresteanu and Molinari (2006, 2008), who were the first to illustrate the
benefits of using elements of the theory of random sets to conduct identifi-
cation analysis and statistical inference for incomplete econometric models in
the space of sets in a manner which is the exact analog of how these tasks are
commonly performed for point identified models in the space of vectors.

In important complementary work, Galichon and Henry (2009a) studied fi-
nite games of complete information with multiple pure strategy Nash equilib-
ria. For this class of models, they characterized the sharp identification re-
gion of θ through the capacity functional (i.e., the “probability distribution”)
of the random set of pure strategy equilibrium outcomes by exploiting a result
due to Artstein (1983).4 They also established that powerful tools of optimal
transportation theory can be employed to obtain computational simplifications
when the model satisfies certain monotonicity conditions. With pure strategies
only, the characterization based on the capacity functional is “dual” to ours, as
we formally establish in the Supplemental Material (Beresteanu, Molchanov,
and Molinari (2011, Appendix D.2)). It cannot, however, be extended to the
general case where mixed strategies are allowed for, as discussed by Galichon
and Henry (2009a, Section 4), or to other solution concepts such as, for exam-

4Galichon and Henry (2006) used the notion of capacity functional of a properly defined ran-
dom set and the results of Artstein (1983) to provide a specification test for partially identified
structural models, thereby extending the Kolmogorov–Smirnov test of correct model specifica-
tion to partially identified models. They then defined the notion of “core determining” classes of
sets to find a manageable class of sets for which to check that the dominance condition is satisfied.
Beresteanu and Molinari (2006, 2008) used Artstein’s (1983) result to establish sharpness of the
identification region of the parameters of a best linear predictor with interval outcome data.
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ple, correlated equilibrium. Our methodology can address these more general
game theoretic models.

While our main contribution lies in the identification analysis that we carry
out, our characterization leads to an obvious sample analog counterpart which
can be used when the researcher is confronted with a finite sample of obser-
vations. This sample analog is given by the set of minimizers of a sample cri-
terion function. In the Supplemental Material (Beresteanu, Molchanov, and
Molinari (2011, Appendix B)), we establish that the methodology of Andrews
and Shi (2009) can be applied in our context to obtain confidence sets that
uniformly cover each element of the sharp identification region with a pre-
specified asymptotic probability. Related methods for statistical inference in
partially identified models include, among others, Chernozhukov, Hong, and
Tamer (2004, 2007), Pakes, Porter, Ho, and Ishii (2006), Beresteanu and Moli-
nari (2008), Rosen (2008), Chernozhukov, Lee, and Rosen (2009), Galichon
and Henry (2009b), Kim (2009), Andrews and Soares (2010), Bugni (2010),
Canay (2010), Romano and Shaikh (2010), and Ponomareva (2010).

Structure of the Paper

In Section 2, we describe formally the class of econometric models to which
our methodology applies and we provide our characterization of the sharp
identification region. In Section 3, we analyze in detail the identification prob-
lem in static, simultaneous-move finite games of complete information in the
presence of multiple mixed strategy Nash equilibria (MSNE), and show how
the results of Section 2 can be applied. In Section 4, we show how our method-
ology can be applied to best linear prediction with interval outcome and co-
variate data. Section 5 concludes. Appendix A contains definitions taken from
random set theory, proofs of the results appearing in the main text, and de-
tails concerning the computational issues associated with our methodology (for
concreteness, we focus on the case of finite games of complete information).

Appendices B–F are given in the Supplemental Material (Beresteanu,
Molchanov, and Molinari (2011)). Appendix B establishes applicability of the
methodology of Andrews and Shi (2009) for statistical inference in our class
of models. Appendix C shows that our approach easily applies also to finite
games of incomplete information, and characterizes ΘI through a finite num-
ber of moment inequalities. Appendix D specializes our results, in the context
of complete information games, to the case that players are restricted to use
pure strategies only and Nash equilibrium is the solution concept. Also in this
case, ΘI is characterized through a finite number of moment inequalities and
further insights are provided on how to reduce the number of inequalities to
be checked so as to compute it. Appendix E shows that our methodology is
applicable to static simultaneous-move finite games regardless of the solution
concept used. Specifically, we illustrate this by looking at games where rational-
ity of level 1 is the solution concept (a problem first studied by Aradillas-Lopez
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and Tamer (2008)) and by looking at games where correlated equilibrium is the
solution concept. Appendix F applies the results of Section 2 to the analysis of
individual decision making in random utility models of multinomial choice in
the presence of interval regressors data.

2. SEMIPARAMETRIC MODELS WITH CONVEX MOMENT PREDICTIONS

Notation: Throughout the paper, we use capital Latin letters to denote sets
and random sets. We use lowercase Latin letters for random vectors. We de-
note parameter vectors and sets of parameter vectors, respectively, by θ and
Θ. For a given finite setW� we denote by κW its cardinality. We denote by Δd−1

the unit simplex in �d� Given two nonempty sets A�B ⊂ �d� we denote the
directed Hausdorff distance from A to B, the Hausdorff distance between A
and B, and the Hausdorff norm of B� respectively, by

dH(A�B)= sup
a∈A

inf
b∈B

‖a− b‖�

ρH(A�B)= max{dH(A�B)�dH(B�A)}� ‖B‖H = sup
b∈B

‖b‖�

Outline: In this section, we describe formally the class of econometric models
to which our methodology applies and we provide our characterization of the
sharp identification region. In Sections 3 and 4, we illustrate how empirically
relevant models fit into this general framework. In particular, we show how to
verify, for these models, the assumptions listed below.

2.1. Framework

Consider an econometric model which specifies a vector z of random vari-
ables observable by the researcher, a vector ξ of random variables unobserv-
able by the researcher, and an unknown parameter vector θ ∈Θ⊂ �p� with Θ
the parameter space. Maintain the following assumptions:

ASSUMPTION 2.1—Probability Space: The random vectors (z�ξ) are defined
on a probability space (Ω�F�P)� The σ-algebra F is generated by (z�ξ). The
researcher conditions her analysis on a sub-σ-algebra of F, denoted G, which
is generated by a subvector of z� The probability space contains no G atoms.
Specifically, for all A ∈ F having positive measure, there is a B ⊆ A such that
0< P(B|G) < P(A|G) with positive probability.

ASSUMPTION 2.2—Set-Valued Predictions: For a given value of θ� the model
maps each realization of (z�ξ) to a nonempty closed setQθ(z�ξ) which is a subset
of the finite dimensional Euclidean space �d� The functional form of this map is
known to the researcher.
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ASSUMPTION 2.3 —Absolutely Integrable Random Closed Set: For every
compact set C in �d and all θ ∈Θ,{

ω ∈Ω :Qθ(z(ω)�ξ(ω))∩C �= ∅} ∈ F�

Moreover, E(‖Qθ(z�ξ)‖H) <∞�

Assumption 2.1 requires the probability space to be nonatomic with respect
to the σ-algebra G on which the researcher conditions her analysis. This tech-
nical assumption is not restrictive for most economic applications, as we show
in Sections 3 and 4. For example, it is satisfied whenever the distribution of ξ
conditional on G is continuous.

Assumption 2.2 requires the model to have set-valued predictions (models
with singleton predictions are a special case of the more general ones analyzed
here). As we further explain below, the set Qθ(z�ξ) is the fundamental object
that we use to relate the convex set of model moment predictions to the ob-
servable moments of random vectors. In Sections 3 and 4, we provide examples
of how Qθ(z�ξ) needs to be constructed in specific applications to exploit all
the model information.

Assumption 2.3 is a measurability condition, requiring Qθ(z�ξ) to be an
integrably bounded random closed set; see Definitions A.1 and A.2 in Ap-
pendix A. It guarantees that any (F-measurable) random vector q such that
q(ω) ∈Qθ(z(ω)�ξ(ω)) a.s. is absolutely integrable.

In what follows, for ease of notation, we write the set Qθ(z�ξ) and its re-
alizations, respectively, as Qθ and Qθ(ω) ≡Qθ(z(ω)�ξ(ω))� ω ∈Ω� omitting
the explicit reference to z and ξ� The researcher wishes to learn θ from the
observed distribution of z� Because the model makes set-valued predictions,
we maintain the following assumption:

ASSUMPTION 2.4 —Selected Prediction: The econometric model can be aug-
mented with a selection mechanism which selects one of the model predictions,
yielding a map ψ which depends on z and ξ� may depend on θ, and satisfies the
following conditions:

(i) ψ(z(ω)�ξ(ω)�θ) ∈Qθ(ω) for almost all ω ∈Ω.
(ii) ψ(z(ω)�ξ(ω)�θ) is F-measurable for all θ ∈Θ�
Assumption 2.4 requires that the econometric model can be “completed”

with an unknown selection mechanism. Economic theory often provides no
guidance on the form of the selection mechanism, which therefore we leave
completely unspecified. For each ω ∈ Ω� the process of selection results in a
random element ψ which takes values in Qθ� that is, is a model’s selected pre-
diction.5 The map ψ is unknown and constitutes a nonparametric component

5For expository clarity, we observe that even for ω1 �=ω2 such that z(ω1)= z(ω2) and ξ(ω1)=
ξ(ω2)� ψ(z(ω1)�ξ(ω1)�θ) may differ from ψ(z(ω2)�ξ(ω2)�θ).
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of the model; it may depend on unobservable variables even after conditioning
on observable variables. We insert θ as an argument of ψ to reflect the fact that
Assumption 2.4(i) requires ψ to belong to the θ-dependent set Qθ�

In this paper, we restrict attention to models where the set of observationally
equivalent parameter vectors θ� denoted ΘI� can be characterized by a finite
number of conditional expectations of observable random vectors and model
predictions. One may find many values for the parameter vector θ which, when
coupled with maps ψ satisfying Assumption 2.4, generate the same moments
as those observed in the data. Hence, we assume that ΘI can be characterized
through selected predictions as follows.

ASSUMPTION 2.5—Sharp Identification Region: Given the available data and
Assumptions 2.1–2.3, the sharp identification region of θ is

ΘI = {θ ∈Θ :∃ψ(z�ξ�θ) satisfying Assumption 2.4,(2.1)

s.t. E(w(z)|G)= E(ψ(z�ξ�θ)|G) a.s.
}
�

where w(·) is a known function mapping z into vectors in �d and E(w(z)|G) is
identified by the data.

The process of “unrestricted selection” yielding ψ’s satisfying Assump-
tion 2.4 builds all possible mixtures of elements of Qθ� When one takes ex-
pectations of these mixtures, the resulting set of expectations is the convex set
of moment predictions:{

E(ψ(z�ξ�θ)|G) :ψ(z�ξ�θ) satisfies Assumption 2.4
}
�

Convexity of this set is formally established in the next section.
Using the notion of selected prediction, Assumption 2.5 characterizes ab-

stractly the sharp identification region of a large class of incomplete economet-
ric models in a fairly intuitive manner. This characterization builds on previous
ones given by Berry and Tamer (2007) and Tamer (2010, Section 3). However,
because ψ is a rather general random function, it may constitute an infinite
dimensional nuisance parameter, which creates great difficulties for the com-
putation of ΘI and for inference. In this paper, we provide a complementary
approach based on tools of random set theory. We characterize ΘI by avoiding
altogether the need to deal with ψ� thereby contributing to a stream of previ-
ous literature which has provided tractable characterizations of sharp identifi-
cation regions without making any reference to the selection mechanism or the
selected prediction (see, e.g., Manski (2003) and Manski and Tamer (2002)).

2.2. Representation Through Random Set Theory

As suggested by Aumann (1965), one can think of a random closed set (or
correspondence in Aumann’s work) as a bundle of random variables—its mea-
surable selections (see Definition A.3 in Appendix A). We follow this idea and
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denote by Sel(Qθ) the collection of F-measurable random elements q with val-
ues in �d such that q(ω) ∈Qθ(ω) for almost all ω ∈Ω� As it turns out, there
is not just a simple assonance between “selected prediction” and “measurable
selection.” Our first result establishes a one-to-one correspondence between
them.

LEMMA 2.1: Let Assumptions 2.1–2.3 hold. For any given θ ∈Θ� q ∈ Sel(Qθ)
if and only if there exists a selected predictionψ(z�ξ�θ) satisfying Assumption 2.4,
such that q(ω)=ψ(z(ω)�ξ(ω)�θ) for almost all ω ∈Ω�

The definition of the sharp identification region in Assumption 2.5 indicates
that one needs to take conditional expectations of the elements of Sel(Qθ)�
Observe that by Assumption 2.3, Qθ is an integrably bounded random closed
set and, therefore, all its selections are integrable. Hence, we can define the
conditional Aumann expectation (Aumann (1965)) of Qθ as

E(Qθ|G)= {E(q|G) :q ∈ Sel(Qθ)}�
where the notation E(·|G) denotes the conditional Aumann expectation of
the random set in parentheses, while we reserve the notation E(·|G) for the
conditional expectation of a random vector. By Theorem 2.1.46 in Molchanov
(2005), the conditional Aumann expectation exists and is unique. Because F

contains no G atoms, and because the random set Qθ takes its realizations in
a subset of the finite dimensional space �d , it follows from Theorem 1.2 of
Dynkin and Evstigneev (1976) and from Theorem 2.1.24 of Molchanov (2005)
that E(Qθ|G) is a closed convex set a.s., such that E(Qθ|G) = E(co[Qθ]|G),
with co[·] the convex hull of the set in square brackets.

Our second result establishes that E(Qθ|G) coincides with the convex set of
the model’s moment predictions:

LEMMA 2.2: Let Assumptions 2.1–2.3 hold. For any given θ ∈Θ�
E(Qθ|G)= {E(ψ(z�ξ�θ)|G) :ψ(z�ξ�θ) satisfies Assumption 2.4

}
�

and therefore the latter set is convex.

Hence, the set of observationally equivalent parameter values in Assump-
tion 2.5 can be written as

ΘI = {θ ∈Θ : E(w(z)|G) ∈ E(Qθ|G) a.s.
}
�

The fundamental result of this paper provides two tractable characterizations
of the sharp identification region ΘI�
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THEOREM 2.1: Let Assumptions 2.1–2.5 be satisfied. Let h(Qθ�u) ≡
supq∈Qθ u

′q denote the support function of Qθ in direction u ∈ �d� Then

ΘI =
{
θ ∈Θ : max

u∈B
(
u′E(w(z)|G)− E[h(Qθ�u)|G])= 0 a.s.

}
(2.2)

=
{
θ ∈Θ :

∫
B

(
u′E(w(z)|G)− E[h(Qθ�u)|G])+ dU = 0 a.s.

}
�(2.3)

where B = {u ∈ �d :‖u‖ ≤ 1}� U is any probability measure on B with support
equal to B� and, for any a ∈ �� (a)+ = max{0� a}�

PROOF: The equivalence between equations (2.2) and (2.3) follows imme-
diately, observing that the integrand in equation (2.3) is continuous in u and
both conditions inside the curly brackets are satisfied if and only if

u′E(w(z)|G)− E[h(Qθ�u)|G] ≤ 0 ∀u ∈ B a.s.(2.4)

To establish sharpness, it suffices to show that for a given θ ∈ Θ, expres-
sion (2.4) holds if and only if θ ∈ ΘI as defined in equation (2.1). Take θ ∈ Θ
such that expression (2.4) holds. Theorem 2.1.47(iv) in Molchanov (2005) as-
sures that

E[h(Qθ�u)|G] = h(E(Qθ|G)�u) ∀u ∈ �d a.s.(2.5)

Recalling that the support function is positive homogeneous, equation (2.4)
holds if and only if

u′E(w(z)|G)≤ h(E(Qθ|G)�u) ∀u ∈ �d a.s.(2.6)

Standard arguments in convex analysis (see, e.g., Rockafellar (1970, Theo-
rem 13.1)) assure that equation (2.6) holds if and only if E(w(z)|G) ∈ E(Qθ|G)
a.s., and, therefore, by Lemma 2.2, θ ∈ΘI� Conversely, take θ ∈ΘI as defined
in equation (2.1). Then there exists a selected prediction ψ satisfying Assump-
tion 2.4, such that E(w(z)|G)= E(ψ(z�ξ�θ)|G). By Lemma 2.2 and the above
argument, it follows that expression (2.4) holds. Q.E.D.

It is well known (e.g., Rockafellar (1970, Chapter 13), Schneider (1993, Sec-
tion 1.7)) that the support function of a nonempty closed convex set is a con-
tinuous convex sublinear function.6 This holds also for the support function of

6In particular, for a given set A⊂ �d� h(A�u+ v) ≤ h(A�u)+ h(A�v) for all u�v ∈ �d and
h(A�cu)= ch(A�u) for all c > 0 and for all u ∈ �d� Additionally, one can show that the support
function of a bounded set A ⊂ �d is Lipschitz with Lipschitz constant ‖A‖H ; see Molchanov
(2005, Theorem F.1).
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the convex set of moment predictions. However, calculating this set is com-
putationally prohibitive in many cases. The fundamental simplification comes
from equation (2.5), which assures that one can work directly with the con-
ditional expectation of h(Qθ�u). This expectation is quite straightforward to
compute. Hence, the characterization in equation (2.2) is computationally very
attractive, because for each candidate θ ∈Θ, it requires maximizing an easy-to-
compute superlinear, hence concave, function over a convex set and checking
whether the resulting objective value is equal to zero. This problem is com-
putationally tractable and several efficient algorithms in convex programming
are available to solve it; see, for example, the book by Boyd and Vandenberghe
(2004) and the MatLab software for disciplined convex programming CVX by
Grant and Boyd (2010). Similarly, the characterization in equation (2.3) can
be implemented by calculating integrals of concave functions over a convex
set, a task which can be carried out in random polynomial time (see, e.g., Dyer,
Frieze, and Kannan (1991) and Lovász and Vempala (2006)).

REMARK 2.1: Using the method proposed by Andrews and Shi (2009), ex-
pression (2.4) can be transformed, using appropriate instruments, into a set of
unconditional moment inequalities indexed by the instruments and by u ∈ B�
even when the conditioning variables have a continuous distribution. Equa-
tions (2.2) and (2.3) can be modified accordingly to yield straightforward cri-
terion functions which are minimized by every parameter in the sharp iden-
tification region. When faced with a finite sample of data, one can obtain
a sample analog of these criterion functions by replacing the unconditional
counterpart of the moment u′E(w(z)|G)− E[h(Qθ�u)|G] with its sample ana-
log. The resulting statistics can be shown to correspond, respectively, to the
Kolmogorov–Smirnov (KS) and the Cramér–von Mises (CvM) statistics intro-
duced by Andrews and Shi (2009; see their equations (3.6), (3.7), and (3.8),
and their Section 9). When the assumptions imposed by Andrews and Shi are
satisfied, one can obtain confidence sets that have correct uniform asymptotic
coverage probability for the true parameter vector by inverting the KS or the
CvM tests. Under mild regularity conditions, these assumptions are satisfied
using our characterization, because our moment function in expression (2.4)
is Lipschitz in u� In Appendix B of the Supplemental Material, we formally
establish this for the models in Sections 3 and 4.

3. APPLICATION I: FINITE GAMES OF COMPLETE INFORMATION

3.1. Model Setup

We consider simultaneous-move games of complete information (normal
form games) in which each player has a finite set of actions (pure strategies)
Yj� j = 1� � � � � J� with J the number of players. Let t = (t1� � � � � tJ) ∈ Y denote
a generic vector specifying an action for each player, with Y =×J

j=1 Yj and
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Y−j =×i �=j Yi� Let y = (y1� � � � � yJ) denote a (random) vector specifying the
action chosen by each player; observe that the realizations of y are in Y . Let
πj(tj� t−j� xj� εj� θ) denote the payoff function for player j� where t−j is the vec-
tor of player j’s opponents’ actions, xj ∈ X is a vector of observable payoff
shifters, εj is a payoff shifter observed by the players but unobserved by the
econometrician, and θ ∈Θ ⊂ �p is a vector of parameters of interest, with Θ
the parameter space. Let σj : Yj → [0�1] denote the mixed strategy for player j
that assigns to each action tj ∈ Yj a probability σj(tj)≥ 0 that it is played, with∑

tj∈Yj σj(tj)= 1 for each j = 1� � � � � J� Let Σ(Yj) denote the mixed extension of
Y j and let Σ(Y)=×J

j=1Σ(Yj)� With the usual slight abuse of notation, denote
by πj(σj�σ−j� xj� εj� θ) the expected payoff associated with the mixed strat-
egy profile σ = (σ1� � � � �σJ)� With respect to the general notation used in Sec-
tion 2, z = (y� ¯x), ξ= ε� F is the σ-algebra generated by (y� ¯x�ε)� and G is the
σ-algebra generated by ¯x. We formalize our assumptions on the games and
sampling processes as follows. These assumptions are fairly standard in the
literature.7

ASSUMPTION 3.1: (i) The set of outcomes of the game Y is finite. Each player j
has κYj ≥ 2 pure strategies to choose from. The number of players is J ≥ 2�

(ii) The observed outcome of the game results from static, simultaneous-move,
Nash play.

(iii) The parametric form of the payoff functions πj(tj� t−j� xj� εj� θ)� j =
1� � � � � J� is known and for a known action t̄, it is normalized to πj(t̄j� t̄−j� xj� εj�
θ)= 0 for each j. The payoff functions are continuous in xj and εj . The parameter
space Θ is compact.

In the above assumptions, continuity is needed to establish measurability
and closedness of certain sets. A location normalization is needed because if
we add a constant to the payoff of each action, the set of equilibria does not
change.

ASSUMPTION 3.2: The econometrician observes data that identify P(y|¯x). The
observed matrix of payoff shifters ¯x comprises the nonredundant elements of xj�
j = 1� � � � � J� The unobserved random vector ε = (ε1� � � � � εJ) has a continuous
conditional distribution function Fθ(ε|¯x) that is known up to a finite dimensional
parameter vector that is part of θ.

7We assume that players’ actions and the outcomes observable by the econometrician coin-
cide. This is a standard assumption in the literature; see, for example, ABJ, CT, Berry and Tamer
(2007), and Bajari, Hong, and Ryan (2010). Our results, however, apply to the more general case
that the strategy profiles determine the outcomes observable by the econometrician through an
outcome rule known by the econometrician, as we illustrate with a simple example in Appen-
dix D.1 in the Supplemental Material. Of course, the outcome rule needs to satisfy assumptions
guaranteeing that it conveys some information about players’ actions.
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REMARK 3.1: Under Assumption 3.2, Assumption 2.1 is satisfied.

It is well known that the games and sampling processes satisfying Assump-
tions 3.1 and 3.2 may lead to multiple MSNE and partial identification of the
model parameters; see, for example, Berry and Tamer (2007) for a thorough
discussion of this problem. To achieve point identification, Bjorn and Vuong
(1985), Bresnahan and Reiss (1987, 1990, 1991), Berry (1992), Mazzeo (2002),
Tamer (2003), and Bajari, Hong, and Ryan (2010), for example, add assump-
tions concerning the nature of competition, heterogeneity of firms, availability
of covariates with sufficiently large support and/or instrumental variables, and
restrictions on the selection mechanism which, in the data generating process,
determines the equilibrium played in the regions of multiplicity.8

We show that the models considered in this section satisfy Assumptions 2.1–
2.5 and, therefore, our methodology gives a computationally feasible charac-
terization of ΘI . Our approach does not impose any assumption on the nature
of competition, on the form of heterogeneity across players, or on the selection
mechanism. It does not require availability of covariates with large support or
instruments, but fully exploits their identifying power if they are present.

3.2. The Sharp Identification Region

For a given realization of (¯x�ε)� the mixed strategy profile σ = (σ1� � � � �σJ)
constitutes a Nash equilibrium if πj(σj�σ−j� xj� εj� θ) ≥ πj(σ̃j�σ−j� xj� εj� θ)
for all σ̃j ∈ Σ(Yj) and j = 1� � � � � J� Hence, for a given realization of (¯x�ε),we define the θ-dependent set of MSNE as

Sθ(¯x�ε)= {σ ∈ Σ(Y) :πj(σj�σ−j� xj� εj� θ)≥ πj(σ̃j�σ−j� xj� εj� θ)(3.1)

∀σ̃j ∈ Σ(Yj) ∀j}�

EXAMPLE 3.1: Consider a simple two player entry game similar to the one in
Tamer (2003), omit the covariates, and assume that players’ payoffs are given
by πj = tj(t−jθj + εj), where tj ∈ {0�1} and θj < 0, j = 1�2. Let σj ∈ [0�1] de-
note the probability that player j enters the market, with 1 −σj the probability
that he does not. Figure 1(a) plots the set of mixed strategy equilibrium profiles
Sθ(ε) resulting from the possible realizations of ε1� ε2.

For ease of notation, we write the set Sθ(¯x�ε) and its realizations, respec-
tively, as Sθ and Sθ(ω) ≡ Sθ(¯x(ω)�ε(ω))� ω ∈ Ω� omitting the explicit refer-
ence to ¯x and ε� Proposition 3.1 establishes that the set Sθ is a random closed
set in Σ(Y).

8Tamer (2003) first suggested an approach to partially identify the model’s parameters when
no additional assumptions are imposed.
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(a)

(b)

(c)

FIGURE 1.—Two player entry game. (a) The random set of mixed strategy NE profiles, Sθ� as a
function of ε1, ε2. (b) The random set of probability distributions over outcome profiles implied
by mixed strategy NE, Qθ, as a function of ε1, ε2. (c) The support function in direction u of
the random set of probability distributions over outcome profiles implied by mixed strategy NE,
h(Qθ�u), as a function of ε1, ε2�

PROPOSITION 3.1: Let Assumption 3.1 hold. Then the set Sθ is a random closed
set in Σ(Y) as per Definition A.1 in Appendix A.

For a given θ ∈ Θ and ω ∈ Ω� with some abuse of notation, we denote by
σj(ω) : Yj → [0�1] the mixed strategy that assigns to each action tj ∈ Yj a prob-
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ability σj(ω� tj)≥ 0 that it is played, with
∑

tj∈Yj σj(ω� tj)= 1� j = 1� � � � � J� We
let σ(ω) ≡ (σ1(ω)� � � � �σJ(ω)) ∈ Sθ(ω) denote one of the admissible mixed
strategy Nash equilibrium profiles (taking values in Σ(Y)) associated with the
realizations ¯x(ω) and ε(ω). The resulting random elements σ are the selec-
tions of Sθ. We denote the collection of these selections by Sel(Sθ); see Defini-
tion A.3 in Appendix A.

EXAMPLE 3.1—Continued: Consider the set Sθ plotted in Figure 1(a). Let
ΩM = {ω ∈ Ω :ε(ω) ∈ [0�−θ1] × [0�−θ2]}� Then for ω /∈ ΩM , the set Sθ has
only one selection, since the equilibrium is unique. For ω ∈ΩM� Sθ contains a
rich set of selections, which can be obtained as

σ(ω)= (σ1(ω)�σ2(ω))=

⎧⎪⎪⎨
⎪⎪⎩
(1�0)� if ω ∈ΩM

1 ,(
ε2(ω)

−θ2
�
ε1(ω)

−θ1

)
� if ω ∈ΩM

2 �

(0�1)� if ω ∈ΩM
3 �

for all measurable disjoint ΩM
i ⊂ΩM� i = 1�2�3� such that ΩM

1 ∪ΩM
2 ∪ΩM

3 =
ΩM�

Index the set Y =×J

j=1 Yj in some (arbitrary) way such that Y = {t1� � � � �
tκY } and tk ≡ (tk1 � � � � � t

k
J )� k = 1� � � � �κY . Then for a given parameter value

θ ∈ Θ and realization σ(ω)� ω ∈ Ω� of a selection σ ∈ Sel(Sθ)� the implied
probability that y is equal to tk is given by

∏J

j=1σj(ω� t
k
j ). Hence, we can use a

selection σ ∈ Sel(Sθ) to define a random vector q(σ) whose realizations have
coordinates([

q(σ(ω))
]
k
=

J∏
j=1

σj(ω� t
k
j )� k= 1� � � � � κY

)
�

By construction, the random point q(σ) is an element of ΔκY −1. For given
ω ∈ Ω� each vector ([q(σ(ω))]k�k = 1� � � � � κY) is the multinomial distrib-
ution over outcomes of the game (a J-tuple of actions) determined by the
mixed strategy equilibrium σ(ω)� Repeating the above construction for each
σ ∈ Sel(Sθ), we obtain

Qθ = {([q(σ)]k�k= 1� � � � � κY
)

:σ ∈ Sel(Sθ)
}
�

REMARK 3.2: The set Qθ ≡ Qθ(¯x�ε) satisfies Assumption 2.2 by construc-
tion. By Proposition 3.1, Qθ is a random closed set in ΔκY −1� because it is given
by a continuous map applied to the random closed set Sθ� Because every real-
ization of q ∈ Sel(Qθ) is contained in ΔκY −1, Qθ is integrably bounded. Hence,
Assumption 2.3 is satisfied.
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EXAMPLE 3.1—Continued: Consider the set Sθ plotted in Figure 1(a). Index
the set Y so that Y = {(0�0)� (1�0)� (0�1)� (1�1)}� Then

Qθ =

⎧⎪⎪⎨
⎪⎪⎩q(σ)=

⎡
⎢⎢⎣
(1 − σ1)(1 − σ2)

σ1(1 − σ2)

(1 − σ1)σ2

σ1σ2

⎤
⎥⎥⎦ :σ ∈ Sel(Sθ)

⎫⎪⎪⎬
⎪⎪⎭ �

Figure 1(b) plots the set Qθ resulting from the possible realizations of ε1 and
ε2�

BecauseQθ is an integrably bounded random closed set, all its selections are
integrable and its conditional Aumann expectation is

E(Qθ|¯x)= {E(q|¯x) :q ∈ Sel(Qθ)}
= {(E([q(σ)]k|¯x

)
�k= 1� � � � � κY

)
:σ ∈ Sel(Sθ)

}
�

EXAMPLE 3.1—Continued: Consider the set Qθ plotted in Figure 1(b). Let
ΩM = {ω ∈ Ω :ε(ω) ∈ [0�−θ1] × [0�−θ2]}� Then for ω /∈ ΩM , the set Qθ has
only one selection, since the equilibrium is unique. For ω ∈ΩM� the selections
of Qθ are

q(σ(ω))=

⎧⎪⎪⎨
⎪⎪⎩

[0 1 0 0]′� if ω ∈ΩM
1 ,

q

(
ε2(ω)

−θ2
�
ε1(ω)

−θ1

)
� if ω ∈ΩM

2 ,

[0 0 1 0]′� if ω ∈ΩM
3 ,

for all measurable partitions {ΩM
i }3

i=1 of ΩM� In the above expression,

q

(
ε2(ω)

−θ2
�
ε1(ω)

−θ1

)

=
[(

1 − ε2(ω)

−θ2

)(
1 − ε1(ω)

−θ1

)
ε2(ω)

−θ2

(
1 − ε1(ω)

−θ1

)
(

1 − ε2(ω)

−θ2

)
ε1(ω)

−θ1

ε2(ω)

−θ2

ε1(ω)

−θ1

]′
�

The expectations of the selections of Qθ build the set E(Qθ), which is a convex
subset of Δ3 with infinitely many extreme points.

The set E(Qθ|¯x) collects vectors of probabilities with which each outcome of
the game can be observed. It is obtained by integrating the probability distrib-
ution over outcomes of the game implied by each mixed strategy equilibrium
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σ given ¯x and ε (that is, by integrating each element of Sel(Qθ)) against the
probability measure of ε|¯x. We emphasize that in case of multiplicity, a differ-
ent mixed strategy equilibrium σ(ω) ∈ Sθ(ω) may be selected (with different
probability) for each ω� By construction, E(Qθ|¯x) is the set of probability dis-
tributions over action profiles conditional on ¯x which are consistent with the
maintained modeling assumptions, that is, with all the model’s implications. In
other words, it is the convex set of moment predictions.

If the model is correctly specified, there exists at least one value of θ ∈ Θ
such that the observed conditional distribution of y given ¯x� P(y|¯x)� is a point
in the set E(Qθ|¯x) for ¯x-a.s., where P(y|¯x)≡ [P(y = tk|¯x)�k= 1� � � � � κY ]. This
is because by the definition of E(Qθ|¯x)� P(y|¯x) ∈ E(Qθ|¯x), ¯x-a.s., if and only
if there exists q ∈ Sel(Qθ) such that E(q|¯x) = P(y|¯x), ¯x-a.s. Hence, the set of
observationally equivalent parameter values that form the sharp identification
region is given by

ΘI = {θ ∈Θ : P(y|¯x) ∈ E(Qθ|¯x)� ¯x-a.s.}�(3.2)

THEOREM 3.2: Let Assumptions 3.1 and 3.2 hold. Then

ΘI =
{
θ ∈Θ : max

u∈B
(
u′P(y|¯x)− E[h(Qθ�u)|¯x]

)= 0� ¯x-a.s.
}

(3.3)

=
{
θ ∈Θ :

∫
B

(
u′P(y|¯x)− E[h(Qθ�u)|¯x]

)
+ dU = 0� ¯x-a.s.

}
�(3.4)

where h(Qθ�u) = maxq∈Qθ u
′q = maxσ∈Sθ

∑κY
k=1 uk

∏J

j=1σj(t
k
j ) and u′ =

[u1 u2 · · · uκY ].9

Theorem 3.2 follows immediately from Theorem 2.1, because Assump-
tions 2.1–2.5 are satisfied for this application, as summarized in Remarks 3.1,
3.2, and 3.3 (the latter given below).

By Wilson’s (1971) result, the realizations of the set of MSNE, Sθ� are almost
surely finite sets. Therefore, the same holds for Qθ. Hence, for given ω ∈ Ω�
h(Qθ(ω)�u) is given by the maximum among the inner product of u with a
finite number of vectors, the elements of Qθ(ω)� These elements are known
functions of (¯x(ω)�ε(ω)). Hence, givenQθ� the expectation of h(Qθ�u) is easy
to compute.

EXAMPLE 3.1 —Continued: Consider the set Qθ plotted in Figure 1(b).
Pick a direction u ≡ [u1 u2 u3 u4]′ ∈ B. Then for ω ∈ Ω such that ε(ω) ∈
(−∞�0] × (−∞�0]� we have Qθ(ω)= {[1 0 0 0]′} and h(Qθ(ω)�u)= u1� For

9Recall that B is the unit ball in �κY and U is any probability measure on B with support
equal to B� Recall also that Y = {t1� t2� � � � � tκY } is the set of possible outcomes of the game, and
tk ≡ (tk1 � � � � � tkJ ) is a J-tuple specifying one action in Yj for each player j = 1� � � � � J.
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ω ∈ Ω such that ε(ω) ∈ [0�−θ1] × [0�−θ2]� we have Qθ(ω) = {[0 1 0 0]′�
q(ε2(ω)

−θ2
� ε1(ω)

−θ1
)� [0 0 1 0]′}, and h(Qθ(ω)�u) = max(u2�u

′q(ε2(ω)

−θ2
� ε1(ω)

−θ1
)�u3)�

Figure 1(c) plots h(Qθ(ω)�u) against the possible realizations of ε1� ε2.

By a way of comparison with the previous literature, and to show how As-
sumptions 2.4 and 2.5 can be verified, we provide the abstract definition of ΘI

given by Berry and Tamer (2007, equation (2.21), p. 67) for the case of a two
player entry game, extending it to finite games with potentially more than two
players and two actions. A finite game with multiple equilibria can be com-
pleted by a random vector which has almost surely nonnegative entries that
sum to 1 and which gives the probability with which each equilibrium in the
regions of multiplicity is played when the game is defined by (¯x�ε�θ). Denote
such (random) discrete distribution by λ(·; ¯x�ε�θ) :Sθ → ΔκSθ−1. Notice that
λ(·; ¯x�ε�θ) is left unspecified and can depend on market unobservables even
after conditioning on market observables. By definition, the sharp identifica-
tion region includes all the parameter values for which one can find a random
vector λ(·; ¯x�ε�θ) satisfying the above conditions, such that the model aug-
mented with this selection mechanism generates the joint distribution of the
observed variables. Hence,

ΘI =
{
θ ∈Θ :∃λ(·; ¯x�ε�θ) :Sθ → ΔκSθ−1 for (¯x�ε)-a.s.�(3.5)

such that ∀k= 1� � � � � κY�

P(y = tk|¯x)=
∫ ( ∑

σ∈Sθ(¯x�ε)
λ(σ; ¯x�ε�θ)

×
J∏
j=1

σj(t
k
j )

)
dF(ε|¯x)� ¯x-a.s.

}
�

Compared with this definition, our characterization in Theorem 3.2 has the
advantage of avoiding altogether the need to deal with the specification of a
selection mechanism. The latter may constitute an infinite dimensional nui-
sance parameter and may, therefore, create difficulties for the computation of
ΘI and for inference.

Notice that with respect to the general notation used in Section 2, w(z) =
[1(y = tk)�k= 1� � � � � κY ]. Finally, observe that using λ(·; ¯x�ε�θ) one can con-
struct a selected prediction ψ(¯x�ε�θ) as a random vector whose realizations
given ¯x and ε are equal to[

J∏
j=1

σj(t
k
j )�k= 1� � � � �κY

]

with probability λ(σ; ¯x�ε�θ)� σ ∈ Sel(Sθ)�
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REMARK 3.3: The random vector ψ(¯x�ε�θ) is a selected prediction satisfy-
ing Assumption 2.4. Observing that

E(ψ(¯x�ε�θ)|¯x)=
∫ [ ∑

σ∈Sθ(¯x�ε)
λ(σ; ¯x�ε�θ)

×
J∏
j=1

σj(t
k
j )� k= 1� � � � � κY

]
dF(ε|¯x)�

where the integral is taken coordinatewise, Assumption 2.5 is verified.

REMARK 3.4: Appendix B in the Supplemental Material verifies Andrews
and Shi’s (2009) regularity conditions for models satisfying Assumptions 3.1
and 3.2 under the additional assumption that the researcher observes an i.i.d.
sequence of equilibrium outcomes and observable payoff shifters {yi� ¯xi}

n
i=1.

Andrews and Shi’s (2009) generalized moment selection procedure with in-
finitely many conditional moment inequalities can, therefore, be applied to
obtain confidence sets that have correct uniform asymptotic coverage.

REMARK 3.5: We conclude this section by observing that static finite games
of incomplete information with multiple equilibria can be analyzed using our
methodology in a manner which is completely analogous to how we have ad-
dressed the case of complete information. Moreover, our methodology char-
acterizes the sharp identification region for this class of models through a fi-
nite number of conditional moment inequalities. We establish this formally in
Appendix C in the Supplemental Material. Grieco (2009) introduced an im-
portant model, where each player has a vector of payoff shifters that are un-
observable by the researcher. Some of the elements of this vector are private
information to the player, while the others are known to all players. Our results
in Section 2 apply to this setup as well, by the same arguments as in Section 3
and in Appendix C in the Supplemental Material.

3.3. Comparison With the Outer Regions of ABJ and CT

While ABJ and CT discuss only the case that players are restricted to use
pure strategies, it is clear and explained in Berry and Tamer (2007, pp. 65–
70) that their insights can be extended to the case that players are allowed to
randomize over their strategies. Here we discuss the relationship between such
extensions and the methodology that we propose. Beresteanu, Molchanov, and
Molinari (2009, Section 3.3) revisited Example 3.1 in light of this comparison.

In the presence of multiple equilibria, ABJ observed that an implication of
the model is that for a given tk ∈ Y� P(y = tk|¯x) cannot be larger than the
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probability that tk is a possible equilibrium outcome of the game. This is be-
cause for given θ ∈Θ and realization of (¯x�ε) such that tk is a possible equilib-
rium outcome of the game, there can be another outcome tl ∈ Y which is also
a possible equilibrium outcome of the game, and when both are possible, tk is
selected only part of the time. CT pointed out that additional information can
be learned from the model. In particular, P(y = tk|¯x) cannot be smaller than
the probability that tk is the unique equilibrium outcome of the game. This is
because tk is certainly realized whenever it is the only possible equilibrium out-
come, but it can additionally be realized when it belongs to a set of multiple
equilibrium outcomes.

The following proposition rewrites the outer regions originally proposed by
ABJ and CT, denoted ΘABJ

O and ΘCT
O , using our notation. It then establishes

their connection with ΘI�

PROPOSITION 3.3: Let Assumptions 3.1 and 3.2 hold. Then the outer regions
proposed by ABJ and CT are, respectively,

ΘABJ
O =

{
θ ∈Θ :(3.6)

P(y = tk|¯x)≤ max
(∫

[q(σ)]k dFθ(ε|¯x) :σ ∈ Sel(Sθ)
)
�

for k= 1� � � � �κY� ¯x-a.s.
}

and

ΘCT
O =

{
θ ∈Θ : min

(∫
[q(σ)]k dFθ(ε|¯x) :σ ∈ Sel(Sθ)

)
(3.7)

≤ P(y = tk|¯x)≤ max
(∫

[q(σ)]k dFθ(ε|¯x) :σ ∈ Sel(Sθ)
)
�

for k= 1� � � � �κY� ¯x-a.s.
}
�

ΘABJ
O can be obtained by solving the maximization problem in equation (3.3) over

the restricted set of u’s equal to the canonical basis vectors in �κY . ΘCT
O can be

obtained by solving the maximization problem in equation (3.3) over the restricted
set of u’s equal to the canonical basis vectors in �κY and each of these vectors
multiplied by −1.

Hence, the approaches of ABJ and CT can be interpreted on the basis of
our analysis as follows. For each θ ∈ Θ, ABJ’s inequalities give the closed
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half-spaces delimited by hyperplanes that are parallel to the axis and that sup-
port E(Qθ|¯x). Θ

ABJ
O is the collection of θ’s such that P(y|¯x) is contained in

the nonnegative part of such closed half-spaces ¯x-a.s. CT used a more refined
approach and for each θ ∈ Θ, their inequalities give the smallest hypercube
containing E(Qθ|¯x). Θ

CT
O is the collection of θ’s such that P(y|¯x) is contained

in such a hypercube ¯x-a.s. The more E(Qθ|¯x) differs from the hypercubes used
by ABJ and CT, the more likely it is that a candidate value θ belongs to ΘABJ

O

and ΘCT
O � but not to ΘI . A graphical intuition for this relationship is given in

Figure 2.

FIGURE 2.—A comparison between the logic behind the approaches of ABJ, CT, and ours ob-
tained by projecting in �2 :�κY −1� E(Qθ|¯x), and the hypercubes used by ABJ and CT. A candidate
θ ∈Θ is in ΘI if P(y|¯x), the white dot in the picture, belongs to the black ellipse E(Qθ|¯x)� which
gives the set of probability distributions consistent with all the model’s implications. The same θ is
inΘCT

O if P(y|¯x) belongs to the red region or to the black ellipse, which gives the set of probability
distributions consistent with the subset of the model’s implications used by CT. The same θ is in
ΘABJ
O if P(y|¯x) belongs to the yellow region or to the red region or to the black ellipse, which gives

the set of probability distributions consistent with the subset of the model’s implications used by
ABJ.
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3.4. Two Player Entry Game—An Implementation

This section presents an implementation of our method and a series of nu-
merical illustrations of the identification gains that it affords in the two player
entry game in Example 3.1, both with and without covariates in the payoff
functions. The set Sθ for this example (omitting ¯x) is plotted in Figure 1. Ap-
pendix A.3 provides details on the method used to computeΘABJ

O � ΘCT
O , andΘI�

For all the data generating processes (DGPs), we let (ε1� ε2)
i�i�d�∼ N(0�1). The

DGPs without covariates are designed as follows. We build a grid of 36 equally
spaced values for θ�1� θ

�
2 on [−1�8�−0�8]× [−1�7�−0�7], yielding multiple equi-

libria with a probability that ranges from substantial (0.21) to small (0.07). We
match each point on the θ�1� θ

�
2 grid, with each point on a grid of 10 values for

λ� =
[

P((0�1) is chosen|ε ∈ EM
θ� ) P((1�0) is chosen|ε ∈ EM

θ� )

P
((

ε2

−θ2
�
ε1

−θ1

)
is chosen

∣∣∣ε ∈ EM
θ�

)]′
�

where EM
θ� ≡ [0�−θ�1] × [0�−θ�2]. The grid of values for λ� is

λ� ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[0

0
1

]
�

⎡
⎢⎢⎢⎣

1
4
0
3
4

⎤
⎥⎥⎥⎦ �
⎡
⎢⎢⎢⎣

1
2
0
1
2

⎤
⎥⎥⎥⎦ �
⎡
⎢⎢⎢⎣

3
4
0
1
4

⎤
⎥⎥⎥⎦ �
⎡
⎢⎢⎢⎣

0
1
4
3
4

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎢⎢⎣

1
4
1
4
1
2

⎤
⎥⎥⎥⎥⎥⎦ �
⎡
⎢⎢⎢⎢⎢⎣

1
2
1
4
1
4

⎤
⎥⎥⎥⎥⎥⎦ �
⎡
⎢⎢⎢⎣

0
1
2
1
2

⎤
⎥⎥⎥⎦ �
⎡
⎢⎢⎢⎢⎢⎣

1
4
1
2
1
4

⎤
⎥⎥⎥⎥⎥⎦ �
⎡
⎢⎢⎢⎣

0
3
4
1
4

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
�

This results in 360 distinct DGPs, each with a corresponding vector [P(y =
t)� t ∈ {(0�0)� (1�0)� (0�1)� (1�1)}]� We compute ΘI , ΘCT

O , and ΘABJ
O for each

DGP, letting the parameter space be Θ= [−4�995�−0�005]2�We then rank the
results according to

length(Proj(ΘI|1))+ length(Proj(ΘI |2))
length(Proj(ΘCT

O |1))+ length(Proj(ΘCT
O |2))�

where Proj(·|i) is the projection of the set in parentheses on dimension i� and
length(Proj(·|i)) is the length of such projection. To conserve space, in Table I,
we report only the results of our “top 15% reduction,” “median reduction,”
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TABLE I

THE PARAMETERS USED TO GENERATE THE DISTRIBUTION P(y|¯x) AND THE RESULTSa

DGP
Projectionsb

% Width % Region
True Valuesc ΘABJ

O ΘCT
O ΘI Reductiond Reductione

θ�1 = −1�0 [−3�22�−0�22] [−3�22�−0�28] [−2�21�−0�30] 35.03% 63�81%
θ�2 = −1�3 [−3�22�−1�05] [−3�22�−1�15] [−2�32�−1�16] 43.96%
λ� = [0 3

4
1
4 ]′

θ�1 = −0�8 [−1�82�−0�53] [−1�82�−0�57] [−1�51�−0�58] 25.60% 56�87%
θ�2 = −1�1 [−1�82�−0�59] [−1�82�−0�64] [−1�55�−0�64] 22.88%
λ� = [ 1

2
1
4

1
4 ]′

θ�1 = −1�2 [−2�19�−0�75] [−2�19�−0�90] [−2�11�−1�05] 17.83% 26�02%
θ�2 = −1�5 [−2�19�−0�75] [−2�19�−0�79] [−2�13�−0�90] 12.14%
λ� = [ 1

4 0 3
4 ]′

aThe results reported are selected from a set of 360 DGPs as described in Section 3.4 for a two player entry game
with mixed strategy Nash equilibrium as solution concept.

bProjections of ΘABJ
O � ΘCT

O , and ΘI are on each dimension (hence yielding bounds for θ1 and θ2).
cλ� = [P((0�1) is chosen|ε ∈ EM

θ�
) P((1�0) is chosen|ε ∈ EM

θ�
) P((

ε2−θ2
�
ε1−θ1

) is chosen|ε ∈ EM
θ�
)]′ , EM

θ�
=

[0�−θ�1] × [0�−θ�2].
dThe reduction in width of the sharp bounds compared to CT’s outer bounds. Calculated as

Proj(ΘCT
O

|j)−Proj(ΘI |j)
Proj(ΘCT

O
|j) , where Proj(·|j) is the projection of the set in parentheses on dimension j.

eThe reduction in area of ΘI compared to ΘCT
O . Calculated as

Area(ΘCT
O
)−Area(ΘI )

Area(ΘCT
O
)

� where Area(·) is the area of

the set in parenthesis).

and “bottom 15% reduction.”10 Figure 3 plots ΘI� Θ
CT
O , and ΘABJ

O for each of
these DGPs.

To further illustrate the computational feasibility of our methodology,
we allow for covariates in the payoff functions. Specifically, we let πj =
tj(t−jθj+β0j+x1jβ1j+x2jβ2j+εj)� j = 1�2� where [x11 x21]� the covariates for
player 1, take four different values, {[−2 1]� [1 −1�5]� [0 0�75]� [−1�5 −1]},
and [x12 x22]� the covariates for player 2, take five different values, {[1 −1�75]�
[−1�25 1]� [0 0]� [0�6 0�5]� [0�5 −0�5]}. The parameter vector of interest is
θ = [(θj β0j β1j β2j)j=1�2]� In generating P(y|¯x)� we use the values of λ�
and θ�1� θ

�
2 which yield the top 15% reduction, median reduction, and bot-

tom 15% reduction in the DGPs with no x variables, and pair them with
[β�01 β

�
11 β

�
21] = [0 1/2 1/3] and [β�02 β

�
12 β

�
22] = [0 − 1/3 − 1/2]� This re-

sults in three different DGPs. Compared to the case with no covariates, for
each of these DGPs, the computational time required to verify whether a can-

10The full set of results is available from the authors on request. Our best result has a 97%
reduction in size of ΘI compared to ΘCT

O � Our worst result has a 20% reduction in size of ΘI

compared to ΘCT
O � Only 6% of the DGPs yield a reduction in size of ΘI compared to ΘCT

O of less
than 25%.
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TABLE II

PROJECTIONS OF ΘABJ
O � ΘCT

O , AND ΘI AND REDUCTION IN VOLUME OF ΘI COMPARED TO ΘCT
O . TWO PLAYER ENTRY GAME WITH MIXED

STRATEGY NASH EQUILIBRIUM AS SOLUTION CONCEPT

Projections of DGP 1a Projections of DGP 2b Projections of DGP 3c

ΘABJ
O

ΘCT
O

ΘI ΘABJ
O

ΘCT
O

ΘI ΘABJ
O

ΘCT
O

ΘI

Player 1
θ1 [−3�81�−0�50] [−3�78�−0�60] [−3�18�−0�63] [−1�51�−0�45] [−1�47�−0�61] [−1�41�−0�62] [−2�37�−0�46] [−1�99�−0�69] [−1�77�−0�80]
β01 [−0�09�0�43] [−0�02�0�41] [−0�01�0�35] [−0�16�0�17] [−0�05�0�15] [−0�04�0�12] [−0�24�0�19] [−0�13�0�12] [−0�12�0�08]
β11 [0�37�0�66] [0�42�0�64] [0�44�0�62] [0�41�0�61] [0�46�0�58] [0�47�0�57] [0�37�0�57] [0�44�0�56] [0�45�0�55]
β21 [0�20�0�49] [0�25�0�47] [0�27�0�44] [0�24�0�43] [0�29�0�40] [0�30�0�39] [0�21�0�42] [0�27�0�40] [0�29�0�38]
% Region Reductiond 64% 38% 52%

Player 2
θ2 [−3�87�−0�95] [−3�86�−1�23] [−3�24�−1�25] [−1�65�−0�60] [−1�58�−0�77] [−1�47�−0�79] [−2�34�−0�65] [−2�25�−0�78] [−2�14�−0�92]
β02 [−0�13�0�11] [−0�06�0�09] [−0�06�0�06] [−0�06�0�06] [−0�03�0�05] [−0�03�0�05] [−0�09�0�04] [−0�05�0�04] [−0�04�0�03]
β12 [−0�48�−0�20] [−0�45�−0�28] [−0�43�−0�29] [−0�41�−0�26] [−0�38�−0�31] [−0�37�−0�31] [−0�39�−0�25] [−0�38�−0�29] [−0�36�−0�30]
β22 [−0�65�−0�38] [−0�64�−0�46] [−0�61�−0�48] [−0�57�−0�43] [−0�54�−0�48] [−0�54�−0�48] [−0�57�−0�41] [−0�55�−0�46] [−0�53�−0�47]
% Region Reductiond 63% 33% 46%

aλ� = [0 3
4

1
4 ]� θ�1 = −1�0� θ�2 = −1�3� β�1 = [0 1/2 1/3]� β�2 = [0 − 1/3 − 1/2]�

bλ� = [ 1
2

1
4

1
4 ]� θ�1 = −0�8� θ�2 = −1�1� β�1 = [0 1/2 1/3]� β�2 = [0 −1/3 −1/2]�

cλ� = [ 1
4 0 3

4 ]� θ�1 = −1�2� θ�2 = −1�5� β�1 = [0 1/2 1/3]� β�2 = [0 −1/3 −1/2].
dCalculated as

Vol(ΘCT
O

|j)−Vol(ΘI |j)
Vol(ΘCT

O
|j) � where Vol(·|j) is the volume of the set in parentheses projected on the parameters for player j (approximated by the box-grid).
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didate θ is in ΘI is linear in the number of values that ¯x can take. The reduc-
tions in size of ΘI compared to the outer regions of ABJ and CT is of similar
magnitude to the case with no covariates. Table II reports the results.

4. APPLICATION II: BEST LINEAR PREDICTION WITH INTERVAL OUTCOME AND
COVARIATE DATA

Here we consider the problem of best linear prediction under square loss,
when both outcome and covariate data are interval valued. When thinking
about best linear prediction (BLP), no “model” is assumed in any substan-
tive sense. However, with some abuse of terminology, for a given value of the
BLP parameter vector θ� we refer to the set of prediction errors associated
with each logically possible outcome and covariate variables in the observable
random intervals as the “model set-valued predictions.” HMPS studied the re-
lated problem of identification of the BLP parameters with missing data on
outcome and covariates, and provided a characterization of the identification
region of each component of the vector θ. While their characterization is sharp,
we emphasize that the computational complexity of the problem in the HMPS
formulation grows with the number of points in the support of the outcome
and covariate variables, and becomes essentially unfeasible if these variables
are continuous, unless one discretizes their support quite coarsely. Using the
same approach as in the previous part of the paper, we provide a characteriza-
tion of ΘI which remains computationally feasible regardless of the support of
outcome and covariate variables.11

We let y� and x� denote the unobservable outcome and covariate variables.
To simplify the exposition, we let x� be scalar, although this assumption can be
relaxed and is not essential for our methodology. We maintain the following
assumption:

ASSUMPTION 4.1: The researcher does not observe the realizations of (y��x�)�
but rather the realizations of real-valued random variables yL� yU� xL� and xU
such that P(yL ≤ y� ≤ yU) = 1 and P(xL ≤ x� ≤ xU) = 1� E(|yi|)� E(|xj|)�
E(|yixj|)� and E(x2

j ) are all finite for each i� j =L�U . One of the following state-
ments holds: (i) at least one of yL� yU�xL�xU� y��x� has a continuous distribution
or (ii) (Ω�F�P) is a nonatomic probability space.

With respect to the general notation used in Section 2, z = (yL� yU�xL�xU),
ξ = (y��x�)� and F is the σ-algebra generated by (yL� yU�xL�xU� y��x�)� The
researcher works with unconditional moments.

11Beresteanu and Molinari (2008) studied identification and statistical inference for the BLP
parameters θ ∈Θ when only the outcome variable is interval valued. See also Bontemps, Magnac,
and Maurin (2011) for related results. Here we significantly generalize their identification results
by allowing also for interval-valued covariates. This greatly complicates computation of ΘI and
inference, because ΘI is no longer a linear transformation of an Aumann expectation.
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REMARK 4.1: Under Assumption 4.1, Assumption 2.1 is satisfied.

When y� and x� are perfectly observed, it is well known that the BLP prob-
lem can be expressed through a linear projection model, where the prediction
error associated with the BLP parameters θ� and given by ε� = y� − θ�1 − θ�2x�
satisfies E(ε�) = 0 and E(ε�x�) = 0� For any candidate θ ∈ Θ� we extend the
construction of the prediction error to the case of interval valued data. We
let Y = [yL� yU ] and X = [xL�xU ]. It is easy to show that these are random
closed sets in � as per Definition A.1 (see Beresteanu and Molinari (2008,
Lemma A.3)). We build the set

Qθ =
{
q=

[
y − θ1 − θ2x

(y − θ1 − θ2x)x

]
: (y�x) ∈ Sel(Y ×X)

}
�(4.1)

This is the not necessarily convex θ-dependent set of prediction errors and
prediction errors multiplied by covariate which are implied by the intervals Y
and X .

REMARK 4.2: The set Qθ satisfies Assumption 2.2 by construction. Because
it is given by a continuous map applied to the random closed sets Y and X�
Qθ is a random closed set in �2� By Assumption 4.1, the set Qθ is integrably
bounded; see Beresteanu and Molinari (2008, Proof of Theorem 4.2). By the
fundamental selection theorem (Molchanov (2005, Theorem 1.2.13)) and by
Lemma 2.1, there exist selected predictionsψ(yL� yU�xL�xU� y��x�� θ) that sat-
isfy Assumption 2.4. The last step in the proof of Theorem 4.1, given in Appen-
dix A, establishes that Assumption 2.5 holds.

Given the set Qθ� one can relate conceptually our approach in Section 2 to
the problem that we study here, as follows. For a candidate θ ∈ Θ� each se-
lection (y�x) from the random intervals Y and X yields a moment for the
prediction error ε = y − θ1 − θ2x and its product with the covariate x. The
collection of such moments for all (y�x) ∈ Sel(Y × X) is equal to the (un-
conditional) Aumann expectation E(Qθ) = {E(q) :q ∈ Sel(Qθ)}. Because the
probability space is nonatomic and Qθ belongs to a finite dimensional space,
E(Qθ) is a closed convex set. If E(Qθ) contains the vector [0 0]′ as one of its
elements, then the candidate value of θ is one of the observationally equiva-
lent parameters of the BLP of y� given x� (hence, with respect to the general
notation used in Section 2, w(z)= [0 0]′). This is because if the condition just
mentioned is satisfied, then for the candidate θ ∈Θ, there exists a selection in
Sel(Y ×X)� that is, a pair of admissible random variables y and x� which im-
plies a prediction error that has mean zero and is uncorrelated with x� hence
satisfying the requirements for the BLP prediction error. This intuition is for-
malized in Theorem 4.1.
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THEOREM 4.1: Let Assumption 4.1 hold. Then

ΘI =
{
θ ∈Θ : max

u∈B
(−E[h(Qθ�u)]

)= 0
}

=
{
θ ∈Θ :

∫
B

(
E[h(Qθ�u)]

)
− dU = 0

}
�

The support function of Qθ can be easily calculated. In particular, for any
u= [u1 u2]′ ∈ B�

h(Qθ�u)= max
q∈Qθ

u′q= max
y∈Y�x∈X

[u1(y−θ1 −θ2x)+u2(yx−θ1x−θ2x
2)]�(4.2)

For given θ ∈Θ and u ∈ B� this maximization problem can be efficiently solved
using the gradient method, regardless of whether (yi� xi)i=L�U� (y��x�) are con-
tinuous or discrete random variables. Hence, h(Qθ�u) is an easy-to-calculate
continuous-valued convex sublinear function of u. Membership of a candidate
θ to the set ΘI can be verified by using efficient algorithms in convex program-
ming or by taking integrals of concave functions.

REMARK 4.3: Appendix B in the Supplemental Material verifies Andrews
and Shi’s (2009) regularity conditions for models that satisfy Assumption 4.1,
under the additional assumption that the researcher observes an i.i.d. sequence
{yiL� yiU�xiL�xiU}ni=1 and that these have finite fourth moments.

5. CONCLUSIONS

This paper introduces a computationally feasible characterization for the
sharp identification region ΘI of the parameters of incomplete econometric
models with convex moment predictions. Our approach is based on charac-
terizing, for each θ ∈ Θ� the set of moments which are consistent with all the
model’s implications, as the (conditional) Aumann expectation of a properly
defined random set. If the model is correctly specified, one can then build ΘI

as follows. A candidate θ is in ΘI if and only if it yields a conditional Aumann
expectation which, for ¯x-a.s., contains the relevant expectations of random
variables observed in the data. Because, in general, for each θ ∈ Θ� the con-
ditional Aumann expectation may have infinitely many extreme points, charac-
terizing the setΘI entails checking that an infinite number of moment inequal-
ities are satisfied. However, we show that this computational hardship can be
avoided, and the sharp identification region can be characterized as the set of
parameter values for which the maximum of an easy-to-compute superlinear
(hence concave) function over the unit ball is equal to zero. We exemplify our
methodology by applying it to empirically relevant models for which a feasible
characterization of ΘI was absent in the literature.
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We acknowledge that the method proposed in this paper may, for some mod-
els, be computationally more intensive than existing methods (e.g., ABJ and
CT in the analysis of finite games of complete information with multiple equi-
libria). However, advanced computational methods in convex programming
made available in recent years, along with the use of parallel processing, can
substantially alleviate this computational burden. On the other hand, the ben-
efits in terms of identification yielded by our methodology may be substantial,
as illustrated in our examples.

APPENDIX A: PROOFS AND AUXILIARY RESULTS FOR SECTIONS 3 AND 4

A.1. Definitions

The theory of random closed sets generally applies to the space of closed
subsets of a locally compact Hausdorff second countable topological space F

(e.g., Molchanov (2005)). For the purposes of this paper, it suffices to consider
F = �d� which simplifies the exposition. Denote by F the family of closed sub-
sets of �d .

DEFINITION A.1: A mapZ :Ω→ F is called a random closed set, also known
as a closed set-valued random variable, if for every compact set K in �d� {ω ∈
Ω :Z(ω)∩K �= ∅} ∈ F.

DEFINITION A.2: A random closed set Z :Ω → F is called integrably
bounded if ‖Z‖H has a finite expectation.

DEFINITION A.3: Let Z be a random closed set in �d . A random element
z with values in �d is called a (measurable) selection of Z if z(ω) ∈ Z(ω) for
almost all ω ∈Ω� The family of all selections of Z is denoted by Sel(Z).

A.2. Proofs

PROOF OF LEMMA 2.1: For any given θ ∈Θ� if ψ(z�ξ�θ) is a selected pre-
diction, then ψ(z�ξ�θ) is a random element as a composition of measurable
functions and it belongs to Qθ for almost all ω ∈Ω by Assumption 2.4(i). Con-
versely, for any given θ ∈ Θ, let q ∈ Sel(Qθ). Because q is F-measurable, by
the Doob–Dynkin lemma (see, e.g., Rao and Swift (2006, Proposition 3, Chap-
ter 1)), q can be represented as a measurable function of z and ξ, which is
then the selected prediction, and satisfies conditions (i) and (ii) in Assump-
tion 2.4. This selected prediction can also be obtained using a selection mech-
anism which picks a prediction equal to q(ω) for each ω ∈Ω� Q.E.D.

PROOF OF LEMMA 2.2: For any given θ ∈Θ� let μ ∈ E(Qθ|G)� Then by the
definition of the conditional Aumann expectation, there exists a q ∈ Sel(Qθ)
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such that E(q|G) = μ� By Lemma 2.1, there exists a ψ(z�ξ�θ) satisfying As-
sumption 2.4 such that q(ω) = ψ(z(ω)�ξ(ω)�θ) for almost all ω ∈ Ω� and,
therefore, μ ∈ {E(ψ(z�ξ�θ)|G) :ψ(z�ξ�θ) satisfies Assumption 2.4}�A similar
argument yields the reverse conclusion. Q.E.D.

PROOF OF PROPOSITION 3.1: Write the set

Sθ =
J⋂
j=1

{σ ∈ Σ(Y) :πj(σj�σ−j� xj� εj� θ)≥ π̃j(σ−j� xj� εj� θ)}�

where π̃j(σ−j� xj� εj� θ) = supσ̃j∈Σ(Yj ) πj(σ̃j�σ−j� xj� εj� θ)� Since πj(σj�σ−j� xj�
εj� θ) is a continuous function of σ , xj , and εj , its supremum π̃j(σ−j� xj� εj� θ) is
a continuous function. Continuity in xj and εj follows from Assumption 3.1(iii).
Continuity in σ follows because, by definition,

πj(σ�xj� εj� θ)≡
∑
tk∈Y

[
J∏
j=1

σj(t
k
j )

]
πj(t

k�xj� εj� θ)�

where tk ≡ (tk1 � � � � � tkJ )� k= 1� � � � � κY and Y can be ordered arbitrarily so that
Y = {t1� � � � � tκY }. Therefore Sθ is the finite intersection of sets defined as solu-
tions of inequalities for continuous (random) functions. Thus, Sθ is a random
closed set; see Molchanov (2005, Section 1.1). Q.E.D.

PROOF OF PROPOSITION 3.3: To see that the expression in equation (3.6) is
the outer region proposed by ABJ, observe that max(

∫ [q(σ)]k dF(ε|¯x) :σ ∈
Sel(Sθ)) gives the probability that tk is a possible equilibrium outcome of
the game according to the model. It is obtained by selecting with probabil-
ity 1, in each region of multiplicity, the mixed strategy profile which yields
the highest probability that tk is the outcome of the game. To see that the
expression in equation (3.7) is the outer region proposed by CT, observe that
min(

∫ [q(σ)]k dF(ε|¯x) :σ ∈ Sel(Sθ)) gives the probability that tk is the unique
equilibrium outcome of the game according to the model. It is obtained by
selecting with probability 1, in each region of multiplicity, the mixed strat-
egy profile which yields the lowest probability that tk is the outcome of the
game.

To obtain ΘABJ
O by solving the maximization problem in equation (3.3) over

the restricted set of u’s equal to the canonical basis vectors in �κY , take the
vector uk ∈ �κY to have all entries equal to zero except entry k, which is equal
to 1. Then

P(y = tk|¯x)= uk′P(y|¯x)≤ h(E(Qθ|¯x)�u
k)

= max
(
E
([q(σ)]k|¯x

)
:σ ∈ Sel(Sθ)

)
�
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To obtain ΘCT
O by solving the maximization problem in equation (3.3) over the

restricted set of u’s equal to the canonical basis vectors in �κY and each of these
vectors multiplied by −1, observe that the statement for the upper bound fol-
lows by the argument given above when considering ΘABJ

O � To verify the state-
ment for the lower bound, take the vector −uk ∈ �κY to have all entries equal
to zero except entry k, which is equal to −1. Then

−P(y = tk|¯x)
= −uk′P(y|¯x)
≤ h(E(Qθ|¯x)� (−u

k))

= h(−E(Qθ|¯x)�u
k)

= −min
(∫

[q(σ)]k dF(ε|¯x) :σ ∈ Sel(Sθ)
)
�

Equivalently, taking u to be a vector with each entry equal to 1, except entry k
which is set to 0, one has that

1 − P(y = tk|¯x)
= u′P(y|¯x)≤ h(E(Qθ|¯x)�u)

= max
(∑
i �=k

∫
[q(σ)]i dF(ε|¯x) :σ ∈ Sel(Sθ)

)

= max
(

1 −
∫

[q(σ)]k dF(ε|¯x) :σ ∈ Sel(Sθ)
)

= 1 − min
(∫

[q(σ)]k dF(ε|¯x) :σ ∈ Sel(Sθ)
)
� Q.E.D.

PROOF OF THEOREM 4.1: It follows from our discussion in Section 2 that
minu∈B E[h(Qθ�u)] = 0 if and only if 0 ≤ h(E(Qθ)�u) for all u ∈ B� which
in turn holds if and only if [0 0]′ ∈ E(Qθ)� By the definition of the Aumann
expectation, this holds if and only if E(q) = [0 0]′ for some q ∈ Sel(Qθ)�
This is equivalent to saying that a candidate θ belongs to ΘI if and only
if a selection (y�x) of (Y × X) yields, together with θ� a prediction error
ε = y − θ1 − θ2x such that E(ε) = 0 and E(εx) = 0� Hence, the above con-
dition is equivalent to being able to find a pair of random variables (y�x)
with a joint distribution P(y�x) that belongs to the (sharp) identification re-
gion of P(y��x�) as defined by Manski (2003, Chapter 3), such that θ =
arg minϑ∈Θ

∫
(y −ϑ1 −ϑ2x)

2 dP(y�x)� It then follows that the set ΘI is equiv-
alent to the sharp identification region characterized by Manski (2003, Com-
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plement 3B, pp. 56–58). The previous step and Lemma 2.1 also verify Assump-
tion 2.5. Q.E.D.

A.3. Computational Aspects of the Problem

In this section, we focus on games of complete information. The case of
games of incomplete information can be treated analogously, and we refer to
Grieco (2009) for a thorough discussion of how to compute the set of Bayesian
Nash equilibria. The case of BLP with interval data is straightforward.

When computing ΘI (or ΘABJ
O and ΘCT

O ), one faces three challenging tasks.
We describe them here, and note how each task is affected by the number of
players, the number of strategy profiles, and the presence of covariates in the
payoff functions. For comparison purposes, we also discuss the differences in
computational costs associated with our methodology versus those associated
with ABJ’s and CT’s methodology.

The first step in the procedure requires one to compute the set of all MSNE
for given realizations of the payoff shifters, Sθ(¯x�ε). This is a computationally
challenging problem, although a well studied one which can be performed us-
ing the Gambit software described by McKelvey and McLennan (1996).12 The
complexity of this task grows quickly with the number of players and the num-
ber of actions that each player can choose from. Notice, however, that this step
has to be performed regardless of which features of normal form games are
identified: whether sufficient conditions are imposed for point identification of
the parameter vector of interest, as in Bajari, Hong, and Ryan (2010), or this
vector is restricted to lie in an outer region, or its sharp identification region is
characterized through the methodology proposed in this paper. For example,
Bajari, Hong, and Ryan (2010) worked with an empirical application which
has a very large number of players, but they grouped the smaller ones together
to reduce the number of players to 4. Similarly, application of our method to
games with multiple mixed strategies Nash equilibria requires a limited number
of players.13

The second task involves verifying whether a candidate θ ∈ Θ is in the re-
gion of interest. The difficulty of this task varies depending on whether one
wants to check that θ ∈ ΘI� or that θ ∈ ΘABJ

O or θ ∈ ΘCT
O . As established in

Proposition 3.3, in all cases one needs to work with E[h(Qθ�u)|¯x]� so we first
describe, for a given u ∈ �κY � how to obtain this quantity by simulation (see,
e.g., McFadden (1989) and Pakes and Pollard (1989)). Recall that for given

12The Gambit software can be downloaded for free at http://www.gambit-project.org/. Bajari,
Hong, and Ryan (2010) recommend the use of this software to compute the set of mixed strategy
Nash equilibria in finite normal form games.

13On the other hand, our method is applicable to models with a larger set of players, when
players are restricted to playing pure strategies, or when the game is one of incomplete informa-
tion.

http://www.gambit-project.org/
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θ ∈Θ and realization of ¯x,

E[h(Qθ�u)|¯x] = E
[

max
σ∈Sθ(¯x�ε)

u′q(σ)
∣∣
¯x
]

=
∫

max
σ∈Sθ(¯x�ε)

κY∑
k=1

uk

J∏
j=1

σj(t
k
j ) dFθ(ε|¯x)�

where u′ = [u1 u2 · · · uκY ] and Y = {t1� � � � � tκY } is the set of possible out-
comes of the game. One can simulate this multidimensional integral using the
following procedure.14 Let X denote the support of ¯x� For any ¯x ∈ X � draw re-
alizations of ε, denoted εr� r = 1� � � � �R, according to the distribution F(ε|¯x)with identity covariance matrix. These draws stay fixed throughout the remain-
ing steps. Transform the realizations εr� r = 1� � � � �R� into draws with covari-
ance matrix specified by θ. For each εr , compute the payoffs πj(·�xj� εrj� θ),
j = 1� � � � � J� and obtain the set Sθ(¯x�ε

r)� Then compute the setQθ(¯x�ε
r) as the

set of multinomial distributions over outcome profiles implied by each element
of Sθ(¯x�ε

r)� Pick a u ∈ �κY � compute the support function h(Qθ(¯x�ε
r)�u)�

and average it over a large number of draws of εr� Call the resulting av-
erage ÊR[h(Qθ�u)|¯x]� Note that EFθ(ε|¯x)

(ÊR[h(Qθ�u)|¯x]) = E[h(Qθ�u)|¯x] be-
cause each summand is a function of εr and these are i.i.d. draws from the
distribution Fθ(ε|¯x)�Having obtained ÊR[h(Qθ�u)|¯x], to verify whether θ ∈ΘABJ

O and θ ∈ΘCT
O , it

suffices to verify conditional moment inequalities involving, respectively, κY

and 2κY evaluations of ÊR[h(Qθ�u)|¯x], which correspond to the choices of u
detailed in Proposition 3.3. As illustrated in our examples, however, using only
these inequalities may lead to outer regions which are much larger than ΘI .
Verifying whether θ ∈ ΘI using the method described in this paper involves
solving maxu∈B(u′F(y|¯x)− ÊR[h(Qθ�u)|¯x]) and checking whether the resulting
value function is equal to zero for each value of ¯x (see Theorem B.1 in the
Supplemental Material for a further reduction in the dimensionality of this
maximization problem). We emphasize that the dimensionality of u does not
depend in any way on the number of equilibria of the game (just on the number
of players and strategies) or on the number R of draws of ε taken to simulate
E[h(Qθ�u)|¯x]� As stated before, for given ¯x ∈ X , the criterion function to be
maximized is concave and the maximization occurs over a convex subset of
�κY −1. In a two player entry game with payoffs linear in ¯x, we have experienced
that efficient algorithms in convex programming, such as the CVX software for
MatLab (Grant and Boyd (2010)), can solve this maximization problem with

14The procedure described here is very similar to the one proposed by Ciliberto and Tamer
(2009). When the assumptions maintained by Bajari, Hong, and Ryan (2010, Section 3) are sat-
isfied, their algorithm can be used to significantly reduce the computational burden associated
with simulating the integral.
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a handful of iterations, on the order of 10–25, depending on the candidate θ.
We have also experienced that a simple Nelder–Mead algorithm programmed
in Fortran 90 works very well, yielding the usual speed advantages of Fortran
over MatLab. When ¯x is discrete, for each parameter candidate, the above
maximization problem needs to be solved for all possible value of ¯x ∈ X , and
one needs to check whether all required conditions are satisfied. Therefore,
it is reasonable to say that the computational burden of this stage is linear
in the number of values that ¯x takes. When ¯x is continuous, one can apply
the methodology of Andrews and Shi (2009) as detailed in the Supplemental
Material.

Finally, the region of interest needs to be computed. This means that the
researcher should search over the parameter space Θ and collect all the points
in ΘI or ΘCT

O or ΘABJ
O . This is of course a theoretical set and, in practice,

the researcher seeks to collect enough points that belong to the region of in-
terest, such that it can be covered reasonably well. While easy to program,
a grid search over Θ is highly inefficient, especially when Θ belongs to a high-
dimensional space. CT proposed to search over Θ using a method based on
simulated annealing. In this paper, we use an alternative algorithm called dif-
ferential evolution. We give here a short description of this method, focusing
mainly on its complexity. We refer to Price, Storn, and Lampinen (2004) for
further details. Differential evolution (DE) is a type of genetic algorithm that
is often used to solve optimization problems. The algorithm starts from a pop-
ulation ofNp points picked randomly from the setΘ. It then updates this list of
points at each stage, creating a new generation ofNp points to replace the pre-
vious one. A candidate to replace a current member of the population (child)
is created by combining information from members of the current population
(parents). This new candidate is accepted into the population as a replace-
ment for a current member if it satisfies a certain criterion. In our application,
the criterion for being admitted into the new generation is to be a member of
ΘI (or ΘCT

O or ΘABJ
O � when computing each of these regions). The process of

finding a replacement for each of the current Np points is repeated N times,
yielding N ·Np maximizations of the criterion function (respectively, evalua-
tion of the conditional inequalities for CT and ABJ). During this process, we
record the points which were found to belong to the regions of interest. In
our simulations, we experienced that this method explores Θ in a very effi-
cient way. Price, Storn, and Lampinen (2004) recommended for Np to grow
linearly with the dimensionality of Θ. The number of iterations (generations)
N depends on how well one wants to cover the region of interest. For example,
in a two player entry game with Θ ⊂ �4, we found that setting Np = 40 and
N = 1000 gave satisfactory results, and when N was increased to 5000, the re-
gions of interest seemed to be very well covered, while the projections on each
component of θ remained very similar to what we obtained with N = 1000.
Creating candidates to replace members of the population involves trivial al-
gebraic operations whose number grows linearly with the dimensionality of Θ.
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These operations involve picking two tuning parameters, but satisfactory rules
of thumb exist in the literature; see Price, Storn, and Lampinen (2004).
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OUTLINE

THIS SUPPLEMENT INCLUDES four appendices. Appendix B establishes that the
methodology of Andrews and Shi (2009) can be applied in our context to ob-
tain confidence sets that uniformly cover each element of the sharp identifica-
tion region with a prespecified asymptotic probability. Appendix C shows that
our approach easily applies also to finite games of incomplete information and
characterizes ΘI through a finite number of moment inequalities. Appendix D
specializes our results in the context of complete information games, to the
case that players are restricted to use pure strategies only and Nash equilib-
rium is the solution concept. In this case, ΘI is characterized through a finite
number of moment inequalities, and further insights are provided on how to
reduce the number of inequalities to be checked so as to compute it. Appen-
dix E shows that our methodology is applicable to static simultaneous-move
finite games regardless of the solution concept used.1 Appendix F applies the
results in Section 2 of the main paper to the analysis of individual decision mak-
ing, looking at random utility models of multinomial choice in the presence of
interval regressors data.

APPENDIX B: APPLICABILITY OF ANDREWS AND SHI’S GENERALIZED
MOMENT SELECTION PROCEDURE2

B.1. Finite Games of Complete and Incomplete Information

Andrews and Shi (2009, Section 9; AS henceforth) considered conditional
moment inequality problems of the form E(md(y� ¯x�θ�u)|¯x)≥ 0 for all u ∈ B,

¯x-a.s., d = 1� � � � �D� They showed that the conditional moment inequalities can
be transformed into equivalent unconditional moment inequalities, by choos-
ing appropriate weighting functions (instruments) g ∈ G , with G a collection of
instruments and g that depend on ¯x� This yields E(md(y� ¯x�θ�g�u)) ≥ 0 for
all u ∈ B� g = [g1� � � � � gD]′ ∈ G , and d = 1� � � � �D� where md(y� ¯x�θ�g�u) =
md(y� ¯x�θ�u)g(¯x)� In the models that we analyzed in Section 3 and in Appen-
dix C below, the conditional moment inequalities are of the ≤ type, and

m(y� ¯x�θ�u)= u′[1(y = tk)�k= 1� � � � � κY ] − E[h(Qθ�u)|¯x]�
1Specifically, we illustrate this by looking at games where rationality of level 1 is the solution

concept (a problem first studied by Aradillas-Lopez and Tamer (2008)) and by looking at games
where correlated equilibrium is the solution concept.

2We are grateful to Xiaoxia Shi for several discussions that helped us develop this section.
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m(y� ¯x�θ�g�u)= (u′[1(y = tk)�k= 1� � � � � κY ]
− E[h(Qθ�u)|¯x]

)
g(¯x)�

Notice that E[h(Qθ�u)|¯x] is a known (or simulated) function of θ, u, and ¯x�and that for each u ∈ B� we have only one inequality. Notice also that by the
positive homogeneity of the support function, our moment inequalities can be
written equivalently as E(m(y� ¯x�θ�g�u)) ≤ 0 for all g ∈ G and u ∈ S ≡ {u ∈
�κY :‖u‖ = 1}� Hence, they are invariant to rescaling of the moment function,
which is important for finite sample inference (see, e.g., Andrews and Soares
(2010)).

In all that follows, to simplify the exposition, we abstract from the choice
of G� Once we establish that our problem fits into the general framework of
AS, we can choose instruments g as detailed in Section 3 of AS. To avoid ambi-
guity, in this section we denote F(y|¯x)≡ [P(y = tk|¯x)�k= 1� � � � �κY ]. We first
establish that ΘI can be equivalently defined using only the first κY − 1 entries
of Y� thereby avoiding the problems for inference associated with linear de-
pendence among the entries of F(y|¯x) and also lowering the dimension over
which the maximization is performed. Let F̃(y|¯x) denote the first κY − 1 rows
of F(y|¯x), B

κY −1 = {u ∈ �κY −1 :‖u‖ ≤ 1}, SκY −1 = {u ∈ �κY −1 :‖u‖ = 1}, and

Q̃θ = {q̃= [[q(σ)]k�k= 1� � � � � κY − 1]�σ ∈ Sel(Sθ)
}
�

THEOREM B.1: Let Assumptions 3.1 (or C.1 below) and 3.2 hold. Then

Θ̃I ≡
{
θ ∈Θ : max

u∈BκY −1

(
u′F̃(y|¯x)− E[h(Q̃θ�u)|¯x]

)= 0� ¯x-a.s.
}

=
{
θ ∈Θ :

[
max

u∈SκY −1

(
u′F̃(y|¯x)− E[h(Q̃θ�u)|¯x]

)]
+

= 0� ¯x-a.s.
}

=ΘI�

PROOF: The equality between the two representations above follows by
standard arguments; see, for example, Beresteanu and Molinari (2008, Lem-
ma A.1). To establish that Θ̃I =ΘI , observe that θ ∈ Θ̃I if and only if F̃(y|¯x) ∈
E(Q̃θ|¯x). Pick θ ∈ ΘI� Then F(y|¯x) = E(q|¯x) for some q ∈ Sel(Qθ)� Notice
that this implies F̃(y|¯x)= E(q̃|¯x) for q̃ ∈ (Q̃θ); hence, θ ∈ Θ̃I� Conversely, pick
θ ∈ Θ̃I� Then F̃(y|¯x)= E(q̃|¯x) for some q̃ ∈ Sel(Q̃θ)� which in turn implies that
q= [q̃;1 −∑κY −1

k=1 q̃] ∈ Sel(Qθ) and F(y|¯x)= E(q|¯x); hence, θ ∈ΘI� Q.E.D.

AS proposed a confidence set with nominal value 1 −α for the true parame-
ter vector as

CSn = {θ ∈Θ :Tn(θ)≤ cn�1−α(θ)}�
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where Tn(θ) is a test statistic and cn�1−α(θ) is a corresponding critical value
for a test with nominal significance level α. AS established that, under certain
assumptions, this confidence set has correct uniform asymptotic size.3 To apply
the construction in AS, we maintain the following assumption:

ASSUMPTION B.1: The researcher observes an i.i.d. sequence of equilibrium
outcomes and observable payoff shifters {yi� ¯xi}

n
i=1� Define Σ̃

¯x
= diag(F̃(y|¯x))−

F̃(y|¯x)F̃(y|¯x)
′ and let Σ̃

¯x
be nonsingular with a < ‖Σ̃

¯x
‖< b, ¯x-a.s. for some con-

stants 0 < a < b <∞� where ‖Σ̃
¯x
‖ is a matrix norm for Σ̃

¯x
compatible with the

Euclidean norm.

AS proposed various criterion functions Tn: some of the Cramér–von Mises
type, some of the Kolmogorov–Smirnov type. Here, we work with a mix of
Cramér–von Mises and Kolmogorov–Smirnov statistic using a modification of
the function S1 on page 10 of AS. Specifically, we use

Tn(θ)=
∫ (

max
u∈BκY −1

√
nm̄n(θ�g�u)

)2
dΓ(B.1)

=
∫ (

max
u∈SκY −1

√
nm̄n(θ�g�u)

)2

+
dΓ

=
∫

max
u∈SκY −1

(
√
nm̄n(θ�g�u))

2
+ dΓ�

where Γ denotes a probability measure on G whose support is G as detailed in
Section 3 of AS, the second equality follows from the proof of Theorem B.1,
and

m̄n(θ�g�u)= 1
n

n∑
i=1

(u′w(yi)− f (¯xi� θ�u))g(¯xi)�

f (¯xi� θ�u)= E[h(Q̃θ�u)|¯xi]�
w(yi)= [1(yi = tk)�k= 1� � � � � κY − 1]�

3Imbens and Manski (2004) discussed the difference between confidence sets that uniformly
cover the true parameter vector with a prespecified asymptotic probability, and confidence sets
that uniformly coverΘI (see also Stoye (2009)). Providing methodologies to obtain asymptotically
valid confidence sets of either type when the conditioning variables have a continuous distribu-
tion is a developing area of research, to which the method of AS belongs. In certain empirically
relevant models (see, for example, Appendix C and Appendix D), the characterization in Theo-
rem 2.1 yields a finite number of (conditional) moment inequalities. In such cases, the methods of
Chernozhukov, Hong, and Tamer (2007) and Romano and Shaikh (2010) can be applied after dis-
cretizing the conditioning variables to obtain confidence sets which cover ΘI with a prespecified
asymptotic probability, uniformly in the case of Romano and Shaikh (2010). Ciliberto and Tamer
(2009) verified the required regularity conditions for finite games of complete information.
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so that m̄n(θ�g�u) is the sample analog of a version of E(m(y� ¯x�θ�g�u)),which is based on the first κY − 1 entries of Y and on Q̃θ. Note that by the
same argument which follows, our problem specified as in equation (3.6) corre-
sponds to the Cramér–von Mises test statistic of AS, with modified function S1.

Below we show that our modified function S1 satisfies Assumptions S1–S4
of AS and that Assumption M2 of AS is also satisfied. This establishes that
their generalized moment selection procedure with infinitely many conditional
moment inequalities is applicable. We note that one can take the confidence
set CSn applied with confidence level 1/2 to obtain half-median-unbiased es-
timated sets; see AS and Chernozhukov, Lee, and Rosen (2009). Finally, one
can also take the criterion function in Theorem B.1, replace there F̃(y|¯x) with
its sample analog, and construct a Hausdorff-consistent estimator of ΘI using
the methodology proposed by Chernozhukov, Hong, and Tamer (2007, equa-
tion (3.2) and Theorem 3.1). To see that their results are applicable, recall
that the payoff functions are assumed to be continuous in (xj� εj). Hence, the
Nash equilibrium correspondence has a closed graph; see Fudenberg and Ti-
role (1991, Section 1.3.2). This implies that Qθ has a closed graph and, there-
fore, the same is true for E(Qθ|¯x); see Aumann (1965, Corollary 5.2). In turn,
this yields lim supθn→θ E(Qθn |¯x)⊆ E(Qθ|¯x)� Observe that

max
u∈BκY −1

(
u′F̃(y

¯
|x)− E[h(Q̃θ�u)|¯x]

)= dH(F̃(y|¯x)�E(Q̃θ|¯x))�

The criterion function s(θ) ≡ ∫ dH(F̃(y|¯x)�E(Q̃θ|¯x))dF¯x
� with F

¯x
the proba-

bility distribution of ¯x (or a probability measure which dominates it), is there-
fore lower semicontinuous in θ� because

lim inf
θn→θ

s(θn) ≥
∫

lim inf
θn→θ

dH(F̃(y|¯x)�E(Q̃θn |¯x))dF¯x

≥
∫
dH(F̃(y|¯x)� lim sup E(Q̃θn |¯x))dF¯x

≥
∫
dH(F̃(y|¯x)�E(Q̃θ|¯x))dF¯x

= s(θ)�

Conditions (c)–(e) in Assumption C1 of Chernozhukov, Hong, and Tamer
(2007) are verified by standard arguments.

We now verify AS’s assumptions.

THEOREM B.2: Let Assumption B.1 hold. Then Assumptions S1–S4 and M2
of AS are satisfied.

PROOF: Assumption S1(a) follows because the moment inequalities are de-
fined for u ∈ SκY −1; hence any rescaling of the moment function is absorbed
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by a corresponding rescaling in u� The rest of Assumption S1 and Assump-
tions S2–S4 are verified by AS. To verify Assumption M2, observe that

m̃(y� ¯x�θ�u)≡ u′w(y)− f (¯x�θ�u)
is given by the sum of a linear function of u and a Lipschitz function of u� with
Lipschitz constant equal to 1. It is immediate that the processes {u′w(yin)� u ∈
SκY −1� i≤ n� n≥ 1} satisfy Assumption M2. We now show that the same holds
for the processes {f (¯xin� θn�u)� u ∈ SκY −1� i ≤ n� n ≥ 1}� Assumption M2(a)
holds because for all u ∈ SκY −1�∣∣∣∣ f (¯x�θ�u)

Var(m̃(y� ¯x�θ�u))
∣∣∣∣ ≤
∣∣∣∣f (¯x�θ�u)

E(u′Σ̃
¯x
u)

∣∣∣∣≤ c∣∣E[h(Q̃θ�u)|¯x]
∣∣

≤ cE(‖Q̃θ‖H |¯x)≤ c� ¯x-a.s.�

where the first inequality follows from the variance decomposition formula, c is
a constant that depends on a and b from Assumption B.1, and the last inequal-
ity follows by recalling that Q̃θ takes its realizations in the unit simplex which is
a subset of the unit ball. Assumption M2(b) follows immediately because the
envelope function is a constant. Assumption M2(c) is verified by observing that
f (¯x�θ�u) is Lipschitz in u� with Lipschitz constant equal to 1. By Lemma 2.13
in Pakes and Pollard (1989), the class of functions {f (·�u)� u ∈ SκY −1} is Euclid-
ean with envelope equal to a constant and, therefore, is manageable. Assump-
tion M2 for the processes {(u′w(yin)− f (¯xin� θn�u))� u ∈ SκY −1� i ≤ n� n ≥ 1}
then follows by Lemma E1 of AS. Q.E.D.

B.2. BLP With Interval Outcome and Covariate Data

We maintain the following assumption:

ASSUMPTION B.2: The researcher observes an i.i.d. sequence of tuples {yiL� yiU�
xiL�xiU}ni=1. E(|yi|2)� E(|xj|2)� E(|yixj|2)� and E(x4

j ) are all finite for each i� j =
L�U�

Let Qθi be the mapping defined as in equation (5.1) using (yiL� yiU�xiL�xiU).
Beresteanu and Molinari (2008, Lemmas A.4 and A.5, and proof of Theo-
rem 4.2) established that {Qθi}ni=1 is a sequence of i.i.d. random closed sets,
such that E(‖Qθi‖2

H) <∞� Define Tn(θ) similarly to the previous section,

Tn(θ)=
(

max
u∈B

(−√
nm̄n(θ�u))

)2 =
(

max
u∈S

−√
nm̄n(θ�u)

)2

+

= max
u∈S
(−√

nm̄n(θ�u))
2
+�
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m̄n(θ�u)= 1
n

n∑
i=1

h(Qθi�u)�

where, again, the fact that u ∈ S guarantees that the above test statistic is in-
variant to rescaling of the moment function. This preserves concavity of the
objective function. We then have the following result:

THEOREM B.3: Let Assumptions 5.1 and B.2 hold. Then Assumption EP of
AS (p. 37) is satisfied.

PROOF: Let m(yiL� yiU�xiL�xiU� θ�u) = h(Qθi�u)� Following AS notation,
define

√
nm̄n(θ�u)= 1√

n

n∑
i=1

h(Qθi�u)�

γ1�n(θ�u)= √
nE[h(Qθi�u)]�

γ2(θ�u�u
∗)= E[h(Qθi�u)h(Qθi�u

∗)] − E[h(Qθi�u)]E[h(Qθi�u
∗)]�

νn(θ�u)= 1√
n

n∑
i=1

[
h(Qθi�u)− E(h(Qθi�u))

]
�

Given the above definitions, we have
√
nm̄n(θ�u)= νn(θ�u)+ γ1�n(θ�u)�

By the central limit theorem for i.i.d. sequences of random sets (Molchanov
(2005, Theorem 2.2.1)),

νn(θ� ·)�⇒ νγ2(θ)(·)�
a Gaussian process with mean zero, covariance kernel γ2(θ�u�u

∗)� and contin-
uous sample paths. It follows from the strong law of large numbers in Banach
spaces of Mourier (1955) that the sample analog estimator γ̂2�n(θ�u�u

∗) which
replaces population moments with sample averages, satisfies γ̂2�n(θ� ·� ·) a�s�→
γ2(θ� ·� ·) uniformly in u�u∗� Q.E.D.

APPENDIX C: ENTRY GAMES OF INCOMPLETE INFORMATION

We now consider the case that players have incomplete information (see,
e.g. Aradillas-López (2010), Brock and Durlauf (2001, 2007), Seim (2006),
Sweeting (2009)). We retain the notation introduced in the main paper, but we
substitute for Assumption 3.1 the following assumption, which is fairly stan-
dard in the literature. We continue to maintain Assumption 3.2.



SHARP IDENTIFICATION REGIONS 7

ASSUMPTION C.1: (i) The set of outcomes of the game Y is finite. The observed
outcome of the game results from simultaneous-move, pure strategy Bayesian
Nash play.

(ii) All players and the researcher observe payoff shifters xj� j = 1� � � � � J� The
payoff shifter εj is private information to player j = 1� � � � � J� and unobservable
to the researcher. Conditional on {xj� j = 1� � � � � J}� εj is independent of {εi}i �=j�
Players have correct common prior Fθ(ε|¯x)�(iii) The payoffs are additively separable in ε :πj(yj� y−j� xj� εj;θ)= π̃j(yj� y−j�
xj;θ)+ εj� Assumption 3.1(iii) holds.

The independence condition in Assumption C.1(iii) substantially simplifies
the task of calculating the set of Bayesian Nash equilibria (BNE). Conceptu-
ally, however, our methodology applies also when players’ types are correlated.
The resulting difficulties associated with calculating the set of BNE are to be
faced with any methodology for inference in this class of games. The correct-
common-prior condition in Assumption C.1(iii) can be relaxed, but we main-
tain it here for simplicity.

For the sake of brevity, we restrict attention to two player entry games. How-
ever, this restriction is not necessary. Our results easily extend, with appropri-
ate modifications to the notation and the definition of the set of pure strategy
Bayesian Nash equilibria, to the case of J ≥ 2 players, each with 2 ≤ κYj <∞
strategies. In what follows, we characterize the set of BNE of the game, bor-
rowing from the treatment in Grieco (2009, Section 4), and then apply our
methodology to this set.4 To conserve space, we do not explicitly verify Assump-
tions 2.1–2.5. Assumptions 2.1–2.3 follow by similar arguments as in Section 3.
Assumptions 2.4 and 2.5 follow by the same construction that we provide at the
end of Section 3, replacing equation (3.7) with equation (8) in Grieco (2009,
Theorem 4).

With incomplete information, players’ strategies are decision rules yj : E →
{0�1}� with E the support of ε. The set of outcomes of the game is Y =
{(0�0)� (1�0)� (0�1)� (1�1)}�Given θ ∈Θ and a realization of ¯x and εj� player j
enters the market if and only if his expected payoff is nonnegative. There-
fore, equilibrium mappings (decision rules) are step functions determined
by a threshold: yj(εj) = 1(εj ≥ tj)� j = 1�2� As a result, player j’s beliefs
about player −j’s probability of entry under the common prior assumption
is
∫
y−j(ε−j) dFθ(ε−j|¯x)= 1 −Fθ(t−j|¯x) and, therefore, player j’s best response

4We refer to Grieco (2009) for a thorough discussion of the related literature and of identifica-
tion problems in games of incomplete information with multiple BNE. See also Berry and Tamer
(2007, Section 3).
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cutoff is5

tbj (t−j� ¯x;θ)= −π̃j(1�0�xj;θ)Fθ(t−j|¯x)− π̃j(1�1�xj;θ)(1 − Fθ(t−j|¯x))�
Hence, the set of equilibria can be defined as the set of cutoff rules

Tθ(¯x)= {(t1� t2) : tj = tbj (t−j� ¯x;θ) ∀j = 1�2}�
Note that the equilibrium thresholds are functions of ¯x only. The set Tθ(¯x)might contain a finite number of equilibria (e.g., if the common prior is
the Normal distribution) or a continuum of equilibria. For ease of notation
we write the set Tθ(¯x) and its realizations, respectively, as Tθ and Tθ(ω) ≡
Tθ(¯x(ω))� ω ∈Ω�

For a given realization of the random variables that characterize the model,
that is, for given ω ∈Ω� we need to map the set of equilibrium decision rules
of each player into outcomes of the game. Consider the realization t(ω) of
t ∈ Sel(Tθ)� Through the threshold decision rule, such a realization implies the
action profile

q(t(ω))=

⎡
⎢⎢⎣

1(ε1(ω)≤ t1(ω)�ε2(ω)≤ t2(ω))
1(ε1(ω)≥ t1(ω)�ε2(ω)≤ t2(ω))
1(ε1(ω)≤ t1(ω)�ε2(ω)≥ t2(ω))
1(ε1(ω)≥ t1(ω)�ε2(ω)≥ t2(ω))

⎤
⎥⎥⎦ ∈ Δ3�(C.1)

with Δ3 the simplex in �4� The vector q(t(ω)) indicates which of the four possi-
ble pairs of actions is played with probability 1, when the realization of (¯x�ε) is
(¯x(ω)�ε(ω)) and the equilibrium threshold is t(ω) ∈ Tθ(¯x(ω)). Applying this
construction to all measurable selections of Tθ� we construct a random closed
set in Δ3:

Qθ = {q(t) : t ∈ Sel(Tθ)}�
For given ¯x and θ ∈Θ� define the conditional Aumann expectation

E(Qθ|¯x)= {E(q(t)|¯x) : t ∈ Sel(Tθ)
}
�

Notice that for a specific selection t ∈ Sel(Tθ)� given the independence assump-
tion on ε1� ε2� the first entry of the vector E(q(t)|¯x) is

E(1(ε1 ≤ t1� ε2 ≤ t2)|¯x)= (1 − Fθ(t1|¯x))(1 − Fθ(t2|¯x))�
5For example, with payoffs linear in ¯x and given by π(yj� y−j� ¯x�εj;θ)= yj(y−jθ1j +xjθ2j +εj),

we have that player 1 enters if and only if (ε1 +x1θ21)Fθ(t2|¯x)+ (ε1 +x1θ21 +θ11)(1−Fθ(t2|¯x))≥
0� Therefore, the cutoff is tbj (t−j� ¯x;θ)= −x1θ21Fθ(t2|¯x)− (x1θ21 +θ11)(1 −Fθ(t2|¯x))= −x1θ21 −
θ11(1 − Fθ(t2|¯x))�
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and similarly for other entries of E(q(t)|¯x)� This yields the multinomial distri-
bution over outcome profiles determined by equilibrium threshold t ∈ Sel(Tθ).
By the same logic as in Section 3, E(Qθ|¯x) is the set of probability distributions
over action profiles conditional on ¯x which are consistent with the maintained
modeling assumptions, that is, with all the model’s implications. By the same
results that we applied in the main papers, the set E(Qθ|¯x) is closed and con-
vex.

Observe that regardless of whether Tθ contains a finite number of equilibria
or a continuum, Qθ can take on only a finite number of realizations that corre-
spond to each of the vertices of Δ3, because the vectors q(t) in equation (C.1)
collect threshold decision rules.6 As we show in the proof of Theorem C.1, this
implies that E(Qθ|¯x) is a closed convex polytope ¯x-a.s., fully characterized by a
finite number of supporting hyperplanes. In turn, this allows us to characterize
ΘI through a finite number of moment inequalities and to compute it using
efficient algorithms in linear programming.

THEOREM C.1: Let Assumptions C.1 and 3.2 hold. Then

ΘI =
{
θ ∈Θ : max

u∈B
(
u′P(y|¯x)− E[h(Qθ�u)|¯x]

)= 0� ¯x-a.s.
}

= {θ ∈Θ :u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈D� ¯x-a.s.
}
�

where D= {u= [u1 · · · uκY ]′ :ui ∈ {0�1}� i= 1� � � � � κY }�
PROOF: By the same argument as in the proof of Theorem 2.1,

ΘI = {θ ∈Θ : P(y|¯x) ∈ E(Qθ|¯x)� ¯x-a.s.}
=
{
θ ∈Θ : max

u∈B
(
u′P(y|¯x)− E[h(Qθ�u)|¯x]

)= 0� ¯x-a.s.
}

= {θ ∈Θ :u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈ B� ¯x-a.s.
}
�

It remains to show equivalence of the conditions

(i) u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈ B�
(ii) u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈D�

By the positive homogeneity of the support function, condition (i) is equivalent
to u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈ �κY � It is obvious that this condition implies
condition (ii). To see why condition (ii) implies condition (i), observe that be-
cause the setQθ and the set co[Qθ] are simple, one can find a finite measurable

6Hence, the set Qθ is a “simple” random closed set in Δ3, in the sense that there exists a finite
measurable partition Ω1� � � � �Ωm of Ω and sets K1� � � � �Km ∈ F such that Qθ(ω) = Ki for all
ω ∈Ωi� 1 ≤ i≤m�
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partition Ω1� � � � �Ωm of Ω and convex sets K1� � � � �Km ∈ ΔκY −1, such that by
Theorem 2.1.21 in Molchanov (2005),

E(Qθ|¯x)=K1P(Ω1|¯x)⊕K2P(Ω2|¯x)⊕ · · · ⊕KmP(Ωm|¯x)�
withKi the value that co[Qθ(ω)] takes forω ∈Ωi� i= 1� � � � �m (see Molchanov
(2005, Definition 1.2.8)). By the properties of the support function (see
Schneider (1993, Theorem 1.7.5)),

h(E(Qθ|¯x)�u)=
m∑
i=1

P(Ωi|¯x)h(Ki�u)�

Finally, for each i = 1� � � � �m� the vertices of Ki are a subset of the vertices
of ΔκY −1. Hence the supporting hyperplanes of Ki� i = 1� � � � �m� are a subset
of the supporting hyperplanes of the simplex ΔκY −1� which in turn are obtained
through its support function evaluated in directions u ∈D� Therefore, the sup-
porting hyperplanes of E(Qθ|¯x) are a subset of the supporting hyperplanes
of ΔκY −1� Q.E.D.

REMARK 1: Grieco (2009) introduced an important model, where each
player has a vector of payoff shifters that are unobservable by the researcher.
Some of the elements of this vector are private information to the player, while
the others are known to all players. Our results in Section 2 apply to this setup
as well, by the same arguments as in Section 3 and in this appendix.

REMARK 2: Appendix B verifies the regularity conditions required by AS for
models that satisfy Assumptions C.1 and 3.2 under the additional assumption
that the researcher observes an i.i.d. sequence of equilibrium outcomes and
observable payoff shifters {yi� ¯xi}

n
i=1.

APPENDIX D: PURE STRATEGIES ONLY: FURTHER SIMPLIFICATIONS

We now assume that players in each market do not randomize across their
actions. In a finite game, when restricting attention to pure strategies, one nec-
essarily contends with the issue of the possible nonexistence of an equilibrium
for certain parameter values θ ∈Θ and realizations of (¯x�ε)� To deal with this
problem, one can impose Assumption D.1 below:

ASSUMPTION D.1: One of the following statements holds:
(i) For a subset of values of θ ∈Θ which includes the values of θ that have gen-

erated the observed outcomes y� a pure strategy Nash equilibrium exists (¯x�ε)-a.s.
(ii) For each θ ∈ Θ and realizations of ¯x�ε such that a pure strategy Nash

equilibrium does not exist, Sθ(¯x�ε)= vert(Σ(Y))� with vert(·) the vertices of the
set in parentheses.
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Assumption D.1(i) requires an equilibrium always to exist for the values of
θ that have generated the observed outcomes y� If the model is correctly spec-
ified and players in fact follow pure strategy Nash behavior, then this assump-
tion is satisfied. However, the assumption implicitly imposes strong restrictions
on the parameter vector θ� the payoff functions, and the payoff shifters ¯x�ε�On the other hand, Assumption D.1(ii) posits that if the model does not have
an equilibrium for a given θ ∈Θ and realization of (¯x�ε)� then the model has
no prediction on what should be the action taken by the players, and “anything
can happen.” In this respect, one may argue that Assumption D.1(ii) is more
conservative than Assumption D.1(i). We do not take a stand here on which
solution to the existence problem the applied researcher should follow. Either
way, the approach that we propose delivers the sharp identification region ΘI ,
although the set ΘI will differ depending on whether Assumption D.1(i) or
D.1(ii) is imposed. Moreover, one may choose not to impose Assumption D.1
at all and to use a different solution concept. In that case as well, as we illus-
trate in Appendix E, our approach can be applied to characterize the sharp
identification region.

When players play only pure strategies, the set Sθ takes its realizations as
subsets of the vertices of Σ(Y)� because each pure strategy Nash equilibrium is
equivalent to a degenerate mixed strategy Nash equilibrium placing probability
1 on a specific pure strategy profile. Hence, the realizations of the set Qθ lie in
the subsets of the vertices of ΔκY −1�

EXAMPLE 1: Consider a simple two player entry game similar to the one in
Tamer (2003), omit the covariates, and assume that players’ payoffs are given
by πj = yj(y−jθj + εj)� where yj ∈ {0�1} and θj < 0� j = 1�2� Assume that play-
ers do not randomize across their actions, so that each σj� j = 1�2� can take
only values 0 and 1. Figure S.1 plots the set Sθ resulting from the possible real-
izations of ε1� ε2� In this case, Sθ assumes only five values:

Sθ(ε)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0�0)} if ε ∈ E (0�0)
θ ≡ (−∞�0] × (−∞�0]�

{(1�0)} if ε ∈ E (1�0)
θ ≡ [−θ1�+∞)× (−∞�−θ2]

∪ [0�−θ1] × (−∞�0]�
{(0�1)} if ε ∈ E (0�1)

θ ≡ (−∞�0] × [0�+∞)
∪[0�−θ1] × [−θ2�+∞)�

{(1�1)} if ε ∈ E (1�1)
θ ≡ [−θ1�+∞)× [−θ2�+∞)�

{(0�1)� (1�0)} if ε ∈ EM
θ ≡ [0�−θ1] × [0�−θ2]�

where, in the above expressions, E (·�·)
θ denotes a region of values for ε such

that the game admits the pair in the superscript as a unique equilibrium
and EM

θ denotes the region of values for ε such that the game has multi-
ple equilibria. Consequently, also the set Qθ assumes only five values, equal,
respectively, to {[1 0 0 0]′}� {[0 1 0 0]′}� {[0 0 1 0]′}� {[0 0 0 1]′}� and
{[0 1 0 0]′� [0 0 1 0]′}�



12 A. BERESTEANU, I. MOLCHANOV, AND F. MOLINARI

FIGURE S.1.—The random set of pure strategy Nash equilibrium profiles Sθ and the random
set of pure strategy Nash equilibrium outcomes Yθ as a function of ε1� ε2 in a two player entry
game. In this simple example, the two sets coincide.

Hence, the sets Sθ and Qθ are “simple” random closed sets in Σ(Y) and
ΔκY −1, respectively. Because the probability space is nonatomic and Qθ is sim-
ple, E(Qθ|¯x) is a closed convex polytope, fully characterized by a finite number
of supporting hyperplanes.

EXAMPLE 1—Continued: Consider again the simple two player entry game
with pure strategies only in Example 1. Then for ε ∈ EM

θ , the set Qθ contains
only two points, [0 1 0 0]′ and [0 0 1 0]′� and for ε /∈ EM

θ it is a singleton.
Therefore, the expectations of the selections of Qθ are given by

E(q)=
[
P
(
ε ∈ E (0�0)

θ

)
P
(
ε ∈ E (1�0)

θ

)
P
(
ε ∈ E (0�1)

θ

)
P
(
ε ∈ E (1�1)

θ

)]′
+ [0 p1 1 −p1 0]′P(ε ∈ EM

θ )�

where p1 = P(ΩM
1 |ω :ε(ω) ∈ EM

θ ) for all measurable ΩM
1 ⊂ {ω :ε(ω) ∈ EM

θ }�
i = 1�2� If the probability space has no atoms, then the possible values for p1

fill in the whole [0�1] segment. Hence, E(Qθ) is a segment in Δ3.

Hence, checking whether P(y|¯x) ∈ E(Qθ|¯x) amounts to checking whether a
point belongs to a polytope, that is, whether a finite number of moment in-
equalities hold ¯x-a.s. In Theorem D.1, we show that these inequalities are ob-
tained by checking inequality u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] for the 2κY possible u
vectors whose entries are either equal to 0 or to 1.

THEOREM D.1: Assume that players use only pure strategies, that Assump-
tions 3.1 and 3.2 in BMM and Assumption D.1 are satisfied. Then for ¯x-a.s. these
two conditions are equivalent:

(i) u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈ �κY .
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(ii) u′P(y|¯x) ≤ E[h(Qθ�u)|¯x] ∀u ∈ D = {u = [u1 · · · uκY ]′ :ui ∈ {0�1}� i =
1� � � � � κY }�

The proof follows using the same argument as in the proof of Theorem C.1.
In Appendix D.2, we connect this result to a related notion in the theory

of random sets—that of a capacity functional (the “probability distribution”
of a random closed set)—and we provide an equivalent characterization of
the sharpness result which gives further insights into our approach. In Appen-
dix D.2, we provide results that significantly reduce the number of inequalities
to be checked, by showing that, depending on the model under consideration,
many of the 2κY inequalities in Theorem D.1 are redundant.

To conclude this appendix, it is important to discuss why the sharp identifica-
tion region cannot, in general, be obtained through a finite number of moment
inequalities. When players are not allowed to randomize over their actions, the
family of possible equilibria is finite. Hence, the range of values that ε takes
can be partitioned into areas in which the set of equilibria remains constant,
that is, does not depend on ε any longer. However, when players randomize
across their actions, in equilibrium they must be indifferent among the actions
over which they place positive probability. This implies that there exist regions
in the sample space where the equilibrium mixed strategy profiles are a func-
tion of ε directly.7 When the distribution of ε is continuous, Qθ may take a
continuum of values as a function of ε� and E(Qθ|¯x) may have infinitely many
extreme points. Therefore, one needs an infinite number of moment inequali-
ties to determine whether P(y|¯x) belongs to it. In this case, the most practical
approach to obtain the sharp identification region is by solving the maximiza-
tion problem in Theorem 3.2.

D.1. Example: Two Type, Four Player Entry Game With Pure Strategies Only

Consider a game where in each market there are four potential entrants,
two of each type. The two types differ from each other by their payoff func-
tion. This model is an extension of the seminal papers by Bresnahan and Reiss
(1990, 1991). An empirical application of a version of this model appears in
Ciliberto and Tamer (2009, CT henceforth). We adopt the version of this model
described in Berry and Tamer (2007, pp. 84 and 85), and for illustration pur-
poses we simplify it by omitting the observable payoff shifters ¯x and by setting
to zero the constant in the payoff function.

Let ajm ∈ {0�1} be the strategy of firm j = 1�2 of type m = 1�2. Entry is
denoted by ajm = 1� with ajm = 0 denoting staying out. Players j = 1�2 of type 1

7For example, in the two player entry game in Example 1, for ε ∈ Eθ
M� Sθ = {(0�1)�

( ε2
−θ2
� ε1

−θ1
)� (1�0)}� However, if one restricts players to use pure strategies, then for ε ∈ Eθ

M�

Sθ = {(0�1)� (1�0)}� with no additional dependence of the equilibria on ε�
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and type 2 have, respectively, the payoff functions

πj1(aj1� a−j1� a12� a22� ε1)= yj1(θ11(a−j1 + a12 + a22)− ε1)�(D.1)

πj2(aj2� a−j2� a11� a21� ε2)= aj2(θ21(a11 + a21)+ θ22a−j2 − ε2)�(D.2)

We assume that θ11, θ21, and θ22 are strictly negative and that θ22 > θ21. This
means that a type 2 firm is worried more about rivals of type 1 than of rivals of
its own type. Since firms of a given type are indistinguishable to the econome-
trician, the observable outcome is the number of firms of each type which enter
the market. Let y1 = a11 + a21 denote the number of entrants of type 1 and let
y2 = a12 + a22 denote the number of entrants of type 2 that a firm faces, so that
ym ∈ {0�1�2}� m= 1�2� Then there are nine possible outcomes to this game, or-
dered as follows: Y = {(0�0)� (0�1)� (1�0)� (1�1)� (2�0)� (0�2)� (1�2)� (2�1)�
(2�2)}� Notice that here players’ actions and observable outcomes of the game
differ. Figure S.2 plots the outcomes of the game against the realizations of

FIGURE S.2.—The random set of pure strategy Nash equilibrium outcomes as a function of
ε1� ε2 in a four player, two type entry game.
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ε1� ε2. In this case, Qθ takes its realizations in the vertices of Δ8� For example,
for ω :ε1(ω)≥ θ11� ε2(ω)≥ θ22� the game has a unique equilibrium outcome,
y = (0�0)� and Qθ(ω) = {[1 0 0 0 0 0 0 0 0]′}; for ω : 2θ11 ≤ ε1(ω) ≤ θ11�
2θ22 ≤ ε2(ω) ≤ θ22� the game has two equilibrium outcomes, y = (0�1) and
y = (1�0)� and Qθ(ω) = {[0 1 0 0 0 0 0 0 0]′� [0 0 1 0 0 0 0 0 0]′}; and
so forth.

Because the set Y has cardinality 9� in principle, there are 29 = 512 inequal-
ity restrictions to consider, corresponding to each binary vector of length 9.
However, the number of inequalities to be checked is significantly smaller. Be-
cause we are allowing only pure strategy equilibria, the realizations of any
σ ∈ Sθ are vectors of 0’s and 1’s. Hence, for all ω ∈ Ω� [q(σ(ω))]k = 1 if∏J

j=1σj(ω� t
k
j ) = 1 and equals 0 otherwise. Consider two equilibria tk� tl ∈ Y�

1 ≤ k �= l ≤ κY� such that{
ω :

J∏
j=1

σj(ω� t
k
j )= 1

∣∣∣¯x
}

∩
{
ω :

J∏
j=1

σj(ω� t
l
j)= 1
∣∣∣¯x
}

= ∅�(D.3)

that is, the set of ω for which Sθ admits both tk and tl as equilibria has prob-
ability 0. Let uk be a vector with each entry equal to 0 and entry k equal to 1,
and similarly for ul� Then the inequality (uk + ul)′P(y|¯x) ≤ E[h(Q(Sθ)�uk +
ul)|¯x] does not add any information beyond that provided by the inequalities
u′P(y|¯x) ≤ E[h(Q(Sθ)�u)|¯x] for u = uk and for u = ul� The same reasoning
can be extended to tuples of pure strategy equilibria of size up to κY � Apply-
ing this simple reasoning, the sharp identification region that we give in this
example is based on 26 inequalities, whereas ΘABJ

O and ΘCT
O are based, respec-

tively, on 9 and 18 inequalities. Hence, the computational burden is essentially
equivalent.

Figure S.3 and Table S.I report ΘI� Θ
CT
O (the outer region proposed by CT),

and ΘABJ
O (the outer region proposed by Andrews, Berry, and Jia (2004, ABJ

henceforth)), in a simple example with (ε1� ε2)
i�i�d�∼ N(0�1) and Θ = [−5�0]3�

In the figure, ΘABJ
O is given by the union of the yellow, red, and black seg-

ments, and ΘCT
O is given by the union of the red and black segments; ΘI

is the black segment. Notice that the identification regions are segments
because the outcomes (0�0) and (2�2) can only occur as unique equilib-
rium outcomes, and, therefore, imply two moment equalities which make
θ21 and θ22 a function of θ11� While, strictly speaking, the approach in ABJ
does not take into account this fact, as it uses only upper bounds on the
probabilities that each outcome occurs, it is clear (and indicated in their
paper) that one can incorporate equalities into their method. Hence, we
also use the equalities on P(y = (0�0)) and P(y = (2�2)) when calculating
ΘABJ
O � We generate the data with θ�11 = −0�15� θ�21 = −0�20� and θ�22 = −0�10,

and use a selection mechanism to choose the equilibrium played in the
many regions of multiplicity. The resulting observed distribution is P(y) =
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FIGURE S.3.—Identification regions in a four player, two type entry game with pure strategy
Nash equilibrium as the solution concept.

[0�3021 0�0335 0�0231 0�0019 0�2601 0�2779 0�0104 0�0158 0�0752]′. Our
results clearly show that ΘI is substantially smaller than ΘCT

O and ΘABJ
O � The

width of the bounds on each parameter vector obtained using our method is
about 46% of the width obtained using ABJ’s method, and about 63% of the
width obtained using CT’s method.

To further illustrate the computational advantages of our characterization
of ΘI in Theorem 3.2, we also recalculated the sharp identification region for
this example solving for each candidate θ ∈Θ the problem maxu∈B(u′P(y|¯x)−
E[h(Qθ�u)|¯x]), without taking advantage of our knowledge of the structure

TABLE S.I

PROJECTIONS OF ΘABJ
O � ΘCT

O , AND ΘI , AND REDUCTION IN BOUNDS WIDTH COMPARED TO
ABJ: FOUR PLAYER, TWO TYPE ENTRY GAME WITH PURE STRATEGY NASH EQUILIBRIUM

AS THE SOLUTION CONCEPT

Projections

True Values ΘABJ
O

ΘCT
O

ΘI

θ�11 −0�15 [−0�154�−0�144] [−0�153�−0�146] [−0�152�−0�147]
(27%) (54%)

θ�21 −0�20 [−0�206�−0�195] [−0�204�−0�197] [−0�203�−0�198]
(27%) (54%)

θ�22 −0�10 [−0�106�−0�096] [−0�104�−0�097] [−0�103�−0�098]
(27%) (54%)
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of the game that reduces the number of inequalities to be checked to 26. We
modified the simple Nelder–Mead algorithm described in Section 3.4 to apply
to a minimization in �9� wrote it as a program in Fortran 90, and compiled and
ran it on a Unix machine with a single processor of 3.2 GHz. Our recalculation
of ΘI yielded exactly the same result as described above, and checking 106

candidate values for θ ∈Θ took less than 1 minute.

D.2. Dual Characterization of the Sharpness Result in the Pure Strategies Case

For a given realization of (¯x�ε) and value of θ ∈ Θ� the set of outcomes
generated by pure strategy Nash equilibria8 is

Yθ(¯x�ε)= {y ∈ Y :πj(yj� y−j� xj� εj� θ)≥ πj(ỹj� y−j� xj� εj� θ)(D.4)

∀ỹj ∈ Yj ∀j}�
As we did for Sθ� we omit the explicit reference to this set’s dependence on ¯xand ε. Given Assumption 3.1, one can easily show that Yθ is a random closed
set in Y (see Definition A.1). Because the realizations of Yθ are subsets of the
finite set Y� it immediately follows that Yθ is a random closed set in Y without
any requirement on the payoff functions.

The researcher observes the tuple (y� ¯x), and the random set Yθ is a func-
tion of ¯x (and of course ε). Under Assumptions 3.1, 3.2, and D.1, and given
the covariates ¯x� the observed outcomes y are consistent with the model if and
only if there exists at least one θ ∈Θ such that y(ω) ∈ Yθ(ω), ¯x-a.s. (i.e., y is
a selection of Yθ, ¯x-a.s.; see Definition A.3). A necessary and sufficient condi-
tion which guarantees that a random vector (y� ¯x) is a selection of (Yθ, ¯x) is
given by the results of Artstein (1983), Norberg (1992), and Molchanov (2005,
Theorem 1.2.20 and Section 1.4.8), and amounts9 to

P{(y� ¯x) ∈K ×L} ≤ P{(Yθ� ¯x)∩K ×L �= ∅}
∀K ⊂ Y for all compact sets L⊂ X �

8Restrict the set Sθ to be a set of pure strategy Nash equilibria. Then when players’ actions
and outcomes of the game coincide, Yθ coincides with Sθ. However, under the more general
assumption that y = g(a), where a ∈ A is a strategy profile and g is an outcome rule, these two
sets differ and

Yθ(¯x�ε) = {y ∈ Y :y = g(a)�a ∈ A and

πj(aj� a−j � xj� εj� θ)≥ πj(ãj� a−j� xj� εj� θ) ∀ãj ∈ Aj ∀j}�
9Beresteanu and Molinari (2006, 2008, Proposition 4.1) used this result to establish sharpness

of the identification region of the parameters of a best linear predictor with interval outcome data.
Galichon and Henry (2006) used it to define a correctly specified partially identified structural
model, and derived a Kolmogorov–Smirnov test for Choquet capacities.
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This inequality can be written as P{y ∈K|¯x ∈ L}P{¯x ∈ L} ≤ P{Yθ ∩K �= ∅|¯x ∈
L}P{¯x ∈L} for all K ⊂ Y and compact sets L⊂ X such that P{¯x ∈L}> 0� and
it is satisfied if and only if

P{y ∈K|¯x} ≤ P{Yθ ∩K �= ∅|¯x} ∀K ⊂ Y� ¯x-a.s.(D.5)

Because Y is finite, all its subsets are compact. The functional P{Yθ ∩K �= ∅|¯x}on the right-hand side of (D.5) is called the capacity functional of Yθ given ¯x�The following definitions formally introduce the unconditional version of this
functional and a few related ones:

DEFINITION D.1: Let Z be a random closed set in �d and denote by K the
family of compact subsets of �d� The functionals TZ : K → [0�1]� CZ : K →
[0�1]� and IZ : K → [0�1]� given by

TZ(K)= P{Z ∩K �= ∅}� CZ(K)= P{Z ⊂K}�
IZ(K)= P{K ⊂Z}� K ∈ K�

are said to be, respectively, the capacity functional of Z, the containment func-
tional of Z, and the inclusion functional of Z.

Denoting by Kc the complement of the set K� the following relationship
holds:

CZ(K)= 1 − TZ(K
c)�(D.6)

EXAMPLE 2: Consider again the simple two player entry game in Exam-
ple 1. Figure S.1 plots the set Yθ against the realizations of ε1� ε2� In this
case, TYθ({(0�0)}) = P(ε1 ≤ 0� ε2 ≤ 0)� TYθ({(1�0)}) = P(ε1 ≥ 0� ε2 ≤ −θ2)�
TYθ({(0�1)}) = P(ε1 ≤ −θ1� ε2 ≥ 0)� TYθ({(1�1)}) = P(ε1 ≥ −θ1� ε2 ≥ −θ2)�
and TYθ({(1�0)� (0�1)}) = TYθ({(1�0)}) + TYθ({(0�1)})− P(0 ≤ ε1 ≤ −θ1�0 ≤
ε2 ≤ −θ2)� The capacity functional of the remaining subsets of Y can be calcu-
lated similarly.

Notice that given equation (D.6), inequalities (D.5) can be equivalently writ-
ten as

CYθ|¯x
(K)≤ P{y ∈K|¯x} ≤ TYθ|¯x

(K) ∀K ⊂ Y� ¯x-a.s.�(D.7)

where the subscript Yθ|¯x denotes that the functional is for the random set Yθ
conditional on ¯x� We return to this representation of inequalities (D.5) when
discussing the relationship between our analysis and that of CT. Clearly, if one
considers allK ⊂ Y� the left-hand side inequality in (D.7) is superfluous: when
the inequalities in (D.7) are used, only subsets K ⊂ Y of cardinality up to half
of the cardinality of Y are needed.
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We can redefine the identified set of parameters θ as

ΘI = {θ ∈Θ : P{y ∈K|¯x} ≤ TYθ|¯x
(K) ∀K ⊂ Y� ¯x-a.s.

}
�(D.8)

For comparison purposes, we reformulate the definition of the outer regions
given by ABJ and CT, respectively, through the capacity functional and the
containment functional:

ΘABJ
O = {θ ∈Θ : P{y = t|¯x} ≤ TYθ|¯x

(t) ∀t ∈ Y� ¯x-a.s.
}
�(D.9)

ΘCT
O = {θ ∈Θ : CYθ|¯x

(t)≤ P{y = t|¯x} ≤ TYθ|¯x
(t) ∀t ∈ Y� ¯x-a.s.

}
�(D.10)

Both ABJ and CT acknowledged that the parameter regions they gave are not
sharp. Comparing the sets in equations (D.9) and (D.10) with the set in equa-
tion (D.8), one observes thatΘABJ

O is obtained by applying inequality (D.5) only
forK = {t} for all t ∈ Y � Similarly,ΘCT

O is obtained by applying inequality (D.7)
only for K = {t} (or, equivalently, applying inequality (D.5) for K = {t} and
K = Y \ {t} for all t ∈ Y ). Clearly both ABJ and CT do not use the information
contained in the remaining subsets of Y� while this information is used to ob-
tainΘI� Two questions arise: (i) whetherΘI as defined in equation (D.8) yields
the sharp identification region of θ and (ii) if and by how much ΘI differs from
ΘABJ
O and ΘCT

O . We answer here the first question. Appendix D.1 answers the
second question by looking at a simple example.

THEOREM D.2: Assume that players use only pure strategies, and that Assump-
tions 3.1, 3.2, and D.1 are satisfied. Then for ¯x-a.s., the following two conditions
are equivalent:

(i) u′P(y|¯x)≤ E[h(Qθ�u)|¯x] ∀u ∈ �κY .
(ii) P{y ∈K|¯x} ≤ TYθ|¯x

(K) ∀K ⊂ Y �

For the proof, see Beresteanu, Molchanov, and Molinari (2008, Theo-
rem 4.1).

D.3. On the Number of Inequalities to Be Checked in the Pure Strategies Case

As discussed in Appendix D.1, when it is assumed that players play only pure
strategies, often there is no need to verify the complete set of 2κY inequalities,
because many are redundant. Using the insight in Theorem D.2, one can show
that the result in equation (D.3) can be restated using the setYθ and its capacity
functional. In particular, if K1 and K2 are two disjoint subsets of Y such that

{ω :Yθ(ω)∩K1 �= ∅|¯x} ∩ {ω :Yθ(ω)∩K2 �= ∅|¯x} = ∅�(D.11)

that is, the set of ω for which Yθ intersects both K1 and K2 has probability 0,
then the inequality P{y ∈K1 ∪K2|¯x} ≤ P{Yθ ∩ (K1 ∪K2) �= ∅|¯x} does not add
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any information beyond that provided by the inequalities P{y ∈K1|¯x} ≤ P{Yθ∩
K1 �= ∅|¯x} and P{y ∈K2|¯x} ≤ P{Yθ ∩K2 �= ∅|¯x}. Therefore, prior knowledge of
some properties of the game can be very helpful in eliminating unnecessary
inequalities. For example, in a Bresnahan and Reiss entry model with four
players, if the number of entrants is identified, the number of inequalities to be
verified reduces from 65,536 to at most 100. Theorem D.3 below gives a general
result which may lead to a dramatic reduction in the number of inequalities to
be checked. While its proof is simple, this result is conceptually and practically
important.

THEOREM D.3: Take θ ∈Θ, and let Assumptions 3.1, 3.2, and D.1 hold. Con-
sider a partition of Ω into sets Ω1� � � � �ΩM of positive probability. Let

Yi =
⋃

{Yθ(ω) :ω ∈Ωi}

denote the range of Yθ(ω) for ω ∈Ωi� If Y1� � � � �YM are disjoint, then it suffices
to check (D.5) only for all subsets K such that there is i = 1� � � � �M for which
K ⊆ Yi.

For the proof, see Beresteanu, Molchanov, and Molinari (2008, Theo-
rem 5.1).

A simple corollary to Theorem D.3, the proof of which is omitted, follows:

COROLLARY D.4: Take θ ∈ Θ, and let Assumptions 3.1, 3.2, and D.1 hold.
Assume thatΩ=Ω1 ∪Ω2 withΩ1 ∩Ω2 = ∅� such that Yθ(ω) is a singleton almost
surely for ω ∈Ω1� Let Yi =⋃ω∈Ωi Yθ(ω)� i= 1�2� and assume that Y1 ∩ Y2 = ∅
and that κY2 ≤ 2� Then inequalities (D.5) hold if

P{Yθ = {t}|¯x} ≤ P{y = t|¯x} ≤ P{t ∈ Yθ|¯x}�(D.12)

¯x-a.s. for all t ∈ Y .

An implication of this corollary is that in a static entry game with two play-
ers in which only pure strategies are played, the outer region proposed by
CT coincides with ours and is sharp.10 In this example, Y1 = {(0�0)� (1�1)}�
Y2 = {(0�1)� (1�0)}� and Ω2 = {ω :Yθ ∩ Y2 �= ∅}� An application of equation
(D.3) shows that actually the sharp identification region can be obtained by
checking only five inequalities which have to hold for ¯x-a.s. and are given by
inequalities (D.5) for K = {(0�0)}� {(1�0)}� {(0�1)}� {(1�1)}� {(1�0)� (0�1)}�
On the other hand, the example in Section 3.4 shows that CT’s approach does
not yield the sharp identification region when mixed strategies are allowed for.

10A literal application of ABJ’s approach does not take into account the fact that in this game,
(0�0) and (1�1) only occur as unique equilibria of the game, and, therefore, does not yield the
sharp identification region, as ABJ discussed (see p. 32).
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When no prior knowledge of the game such as, for example, that required in
Theorem D.3 is available, it is still possible to use the insight in equation (D.11)
to determine which inequalities yield the sharp identification region, by de-
composing Y into subsets such that Yθ does not jointly hit any two of them
with positive probability. One may wonder whether, in general, the set of in-
equalities yielding the sharp identification region is different from the set of
inequalities used by ABJ or CT. The following result shows that, in general,
the answer to this question is “yes.”

THEOREM D.5: Let Assumptions 3.1, 3.2, and D.1 hold. Assume that there
exists θ ∈Θ with Yθ �= ∅, P-a.s., such that for all ¯x ∈ X̃ ⊂ X with P(X̃ ) > 0, there
exist t1� t2 ∈ Y with

IYθ|¯x
(t1� t2) > 0�(D.13)

(a) If P{{t1� t2} ∩ Yθ �= ∅|¯x} < 1 for all t1� t2 ∈ Y , then there exists a random
vector z which satisfies inequalities (D.5) for K = {t} for all t ∈ Y but is not a
selection of Yθ�

(b) If

P
{
κYθ > 1|¯x

}
> IYθ|¯x

(t1)+ IYθ|¯x
(t2)− CYθ|¯x

(t1)− CYθ|¯x
(t2)�(D.14)

then there exists a random vector z which satisfies inequalities (D.5) for K = {t}
and K = Y \ {t} for all t ∈ Y but is not a selection of Yθ�

See Beresteanu, Molchanov, and Molinari (2008, Theorems 5.2 and 5.3) for
a proof.

These results show that the extra inequalities matter, in general, compared
to those used by ABJ, and CT, to fully characterize Yθ and determine if
y ∈ Sel(Yθ). In fact, the assumptions of Theorem D.5(a) are satisfied when-
ever the model has multiple equilibria with positive probability, which implies
that the expected cardinality of Yθ given ¯x is strictly greater than 1, and it has at
least three different equilibria. The assumptions of Theorem D.5(b) are satis-
fied whenever (a) there are regions of the unobservables of positive probability
where two different outcomes can result from equilibrium strategy profiles and
(b) the probability that the cardinality of Yθ is greater than 1 exceeds the prob-
ability that each of these two outcomes is not a unique equilibrium. It is easy to
see that these assumptions are not satisfied in a two player entry game where
players are allowed only to play pure strategies, but they are satisfied in the
four player, two type game described in Section D.1.

APPENDIX E: EXTENSIONS TO OTHER SOLUTION CONCEPTS

While in Section 3 and Appendix D, we focus on economic models of games
in which Nash equilibrium is the solution concept employed, our approach
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easily applies to other solution concepts. Here we consider the case that players
are assumed to be only level-1 rational and the case that they are assumed to
play correlated strategies. For simplicity, we exemplify these extensions using a
two player simultaneous-move static game of entry with complete information.

E.1. Level-1 Rationality

Suppose that players are only assumed to be level-1 rational. The identifica-
tion problem under this weaker solution concept was first studied by Aradillas-
Lopez and Tamer (2008, AT henceforth). Let the econometrician observe play-
ers’ actions. A level-1 rational profile is given by a mixed strategy for each
player that is a best response to one of the possible mixed strategies of her
opponent. In this case, one can define the θ-dependent set

Rθ(¯x�ε)= {σ ∈ Σ(Y) :∀j ∃σ̃−j ∈ Σ(Y−j) s.t.

πj(σj� σ̃−j� xj� εj� θ)≥ πj(σ ′
j� σ̃−j� xj� εj� θ) ∀σ ′

j ∈ Σ(Yj)
}
�

Omitting the explicit reference to its dependence on ¯x and ε� Rθ is the set of
level-1 rational strategy profiles of the game. By arguments similar to those we
used above, this is a random closed set in Σ(Y)� Figure S.4 plots this set against
the possible realizations of ε1� ε2� in a simple two player simultaneous-move,
complete information, static game of entry in which players’ payoffs are given
by πj = yj(y−jθj + εj)� yj ∈ {0�1}� and θ1 and θ2 are assumed to be negative.

The same approach as in Section 3 allows us to obtain the sharp identifica-
tion region for θ as

ΘI = {θ ∈Θ :u′P(y|¯x)≤ E
[
h(Q(Rθ)�u)|¯x

] ∀u ∈ B� ¯x-a.s.
}
�

FIGURE S.4.—The random set of level-1 rational profiles as a function of ε1� ε2 in a two player
entry game.
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with

Q(Rθ)= {([q(σ)]k�k= 1� � � � � κY
)

:σ ∈ Sel(Rθ)
}
�

where [q(σ)]k�k= 1� � � � � κY� is defined in Section 3.
In our simple example in Figure S.4, with omitted covariates, for any ω ∈Ω

such that ε(ω) ∈ [0�−θ1] × [0�−θ2]�[
q

((
ε2(ω)

−θ2
�
ε1(ω)

−θ1

))]

∈ co
[{[q(0�0)]� [q(1�0)]� [q(0�1)]� [q(1�1)]}]�

and, therefore, it follows that E(Q(Rθ)) is equal to E(Q(R̃θ))� with R̃θ re-
stricted to be the set of level-1 rational pure strategies. Hence, by Theorem D.1
below,ΘI can be obtained by checking a finite number of moment inequalities.

For the case that ε has a discrete distribution, AT (Section 3.1) suggested
to obtain the sharp identification region as the set of parameter values that
return value 0 for the objective function of a linear programming problem.
For the general case in which ε may have a continuous distribution, AT ap-
plied the same insight of CT and characterized an outer identification region
through eight moment inequalities similar to those in equation (D.10). One
may also extend ABJ’s approach to this problem, and obtain a larger outer re-
gion through four moment inequalities similar to those in equation (D.9). Our
approach, which yields the sharp identification region, in this simple example
requires one to check just 14 inequalities.

As shown in AT (Figure 3), the model with level-1 rationality only places up-
per bounds on θ1 and θ2. Figure S.5 plots the upper contours of ΘI� Θ

CT
O � and

ΘABJ
O in a simple example with (ε1� ε2)

i�i�d�∼ N(0�1) and Θ= [−5�0]2� The data
are generated with θ�1 = −1�15 and θ�2 = −1�4� and using a selection mech-
anism which picks outcome (0�0) for 40% of ω :ε(ω) ∈ [0�−θ�1] × [0�−θ�2]�
outcome (1�1) for 10% of ω :ε(ω) ∈ [0�−θ�1] × [0�−θ�2], and each of out-
comes (1�0) and (0�1) for 25% of ω :ε(ω) ∈ [0�−θ�1] × [0�−θ�2]. Hence, the
observed distribution is P(y)= [0�5048 0�2218 0�1996 0�0738]′. Our method-
ology allows us to obtain significantly lower upper contours compared to AT
(and CT) and ABJ. The upper bounds on θ1 and θ2 resulting from the projec-
tions of ΘABJ

O � ΘCT
O , and ΘI are, respectively, (−0�02�−0�02)� (−0�15�−0�26)�

and (−0�54�−0�61).

E.2. Objective Correlated Equilibria

Suppose that players play correlated equilibria, a notion introduced by
Aumann (1974). A correlated equilibrium can be interpreted as the distribu-
tion of play instructions given by some “trusted authority” to the players. Each
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FIGURE S.5.—Upper contours of the identification regions in a two player entry game with
level-1 rationality as the solution concept.

player is given her instruction privately but does not know the instruction re-
ceived by others. The distribution of instructions is common knowledge across
all players. Then a correlated joint strategy γ ∈ ΔκY −1� where ΔκY −1 denotes
the set of probability distributions on Y� is an equilibrium if, conditional on
knowing that her own instruction is to play yj� each player j has no incentive
to deviate to any other strategy y ′

j� assuming that the other players follow their
own instructions. In this case, one can define the θ-dependent set

Cθ(¯x�ε)=
{
γ ∈ ΔκY −1 :

∑
y−j∈Y−j

γ(yj� y−j)πj(yj� y−j� xj� εj� θ)

≥
∑

y−j∈Y−j

γ(yj� y−j)πj(y ′
j� y−j� xj� εj� θ)

∀yj ∈ Yj� ∀y ′
j ∈ Yj� ∀j

}
�

Omitting the explicit reference to its dependence on ¯x and ε� Cθ is the set of
correlated equilibrium strategies of the game. By similar arguments as those
used before, it is a random closed set in ΔκY −1� Notice that Cθ is defined by a fi-
nite number of linear inequalities on the set ΔκY −1 of correlated strategies and,
therefore, it is a nonempty polytope. Yang (2008) was the first to use this fact,
along with the fact that co[Q(Sθ)] ⊂ Cθ� to develop a computationally easy-to-
implement estimator for an outer identification region of θ when the solution
concept employed is Nash equilibrium. Here we provide a simple characteriza-
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FIGURE S.6.—The random set of correlated equilibria as a function of ε1� ε2 in a two player
entry game. The correlated equilibria γ1�γ2, and γ3 are defined in Section E.2.

tion of the sharp identification region ΘI when the solution concept employed
is objective correlated equilibrium. In particular, the same approach of Sec-
tion 3 allows us to obtain the sharp identification region for θ as

ΘI = {θ ∈Θ :u′P(y|¯x)≤ E[h(Cθ�u)|¯x] ∀u ∈ B� ¯x-a.s.
}
�

In our simple two player simultaneous-move, complete information, static
game of entry, Yj = {0�1}� j = 1�2� Y = {(0�0)� (1�0)� (0�1)� (1�1)}� Again
omitting the covariates, we assume that players’ payoffs are given by πj =
yj(y−jθj + εj)� where yj ∈ {0�1} and θj is assumed to be negative (monopoly
payoffs are higher than duopoly payoffs), j = 1�2� Figure S.6 plots the set
Cθ against the possible realizations of ε1� ε2� for this example. Notice that
for ω ∈ Ω such that ε(ω) /∈ [0�−θ1] × [0�−θ2]� the game is dominance solv-
able and, therefore, Cθ(ω) is given by the singleton Qθ(ω) that results from
the unique Nash equilibrium in these regions. For ω ∈ Ω such that ε(ω) ∈
[0�−θ1] × [0�−θ2]� Cθ(ω) is given by a polytope with five vertices—three of
which are implied by Nash equilibria (see Calvó-Armengol (2006))—and is
given by

γ0(ω)= [0 0 1 0]′�

γ1(ω)=
[

1 − ε2(ω)

θ2 + ε2(ω)
− ε1(ω)

θ1 + ε1(ω)
0
]′

×
(

1 − ε1(ω)

θ1 + ε1(ω)
− ε2(ω)

θ2 + ε2(ω)

)−1

�
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FIGURE S.7.—Identification regions in a two player entry game with correlated equilibrium as
the solution concept.

γ2(ω)=
[(

1 + ε2(ω)

θ2

)(
1 + ε1(ω)

θ1

)
−ε2(ω)

θ2

(
1 + ε1(ω)

θ1

)

−
(

1 + ε2(ω)

θ2

)
ε1(ω)

θ1

ε2(ω)

θ2

ε1(ω)

θ1

]′
�

γ3(ω)=
[

0 − ε2(ω)

θ2 + ε2(ω)
− ε1(ω)

θ1 + ε1(ω)

ε1(ω)

θ1 + ε1(ω)

ε2(ω)

θ2 + ε2(ω)

]′

×
(

ε1(ω)

θ1 + ε1(ω)

ε2(ω)

θ2 + ε2(ω)
− ε1(ω)

θ1 + ε1(ω)
− ε2(ω)

θ2 + ε2(ω)

)−1

�

γ4(ω)= [0 1 0 0]′�
Also in this case, one can extend the approaches of ABJ and CT to obtain outer
regions defined, respectively, by four and eight moment inequalities.

Figure S.7 and Table S.II report ΘI� Θ
CT
O � and ΘABJ

O in a simple example
with (ε1� ε2)

i�i�d�∼ N(0�1) and Θ = [−5�0]2� In the figure, ΘABJ
O is given by the

union of the yellow, red, and black areas, and ΘCT
O is given by the union of the

red and black areas; ΘI is the black region. The data are generated with θ�1 =
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TABLE S.II

PROJECTIONS OF ΘABJ
O � ΘCT

O , AND ΘI , REDUCTION IN BOUNDS WIDTH (IN PARENTHESES), AND
AREA OF THE IDENTIFICATION REGIONS COMPARED TO ABJ: TWO PLAYER ENTRY GAME

WITH CORRELATED EQUILIBRIUM AS SOLUTION CONCEPT

Projections

True Values ΘABJ
O ΘCT

O ΘI

θ�1 −1�15 [−4�475�−0�485] [−4�475�−0�585] [−4�125�−0�595]
(2�5%) (11�5%)

θ�2 −1�40 [−4�585�−0�625] [−4�585�−0�725] [−4�425�−0�735]
(2�4%) (6�8%)

Approximate reduction in total area compared to ΘABJ
O (7�9%) (23�1%)

−1�15 and θ�2 = −1�4� and using a selection mechanism which picks each of
outcomes (0�0) and (1�1) for 10% of ω :ε(ω) ∈ [0�−θ�1] × [0�−θ�2], and each
of outcomes (1�0) and (0�1) for 40% of ω :ε(ω) ∈ [0�−θ�1] × [0�−θ�2]. Hence,
the observed distribution is P(y)= [0�26572 0�34315 0�36531 0�02582]′. Also
in this case,ΘI is smaller thanΘCT

O andΘABJ
O � although the reduction in the size

of the identification region is less pronounced than in the case where mixed
strategy Nash equilibrium is the solution concept.

APPENDIX F: MULTINOMIAL CHOICE MODELS WITH INTERVAL
REGRESSORS DATA

This section of the supplement applies the methodology introduced in Sec-
tion 2 to provide a tractable characterization of the sharp identification region
of the parameters θ that characterize random utility models of multinomial
choice when only interval information is available on regressors. In doing so,
we extend the seminal contribution of Manski and Tamer (2002), who consid-
ered the same inferential problem in the case of binary choice models. For
these models, Manski and Tamer (2002) provided a tractable characterization
of the sharp identification region and proposed set estimators which are con-
sistent with respect to the Hausdorff distance. However, their characterization
of the sharp identification region does not easily extend to models in which the
agents face more than two choices, as we illustrate below.

We assume that an agent chooses an alternative y from a finite choice set
C = {0� � � � �κC − 1} to maximize her utility. The agent possesses a vector of
socioeconomic characteristics w� Each alternative k ∈ C is characterized by an
observable vector of attributes zk and an attribute εk which is observable by the
agent but not by the econometrician. The vector (y�w� {zk�εk}κC −1

k=0 ) is defined
on a nonatomic probability space (Ω�F�P)� The agent is assumed to possess a
random utility function of known parametric form.

To simplify the exposition, we assume that the random utility is linear, and
thatw� zk, and εk� k= 0� � � � � κC −1� are all scalars. However, all these assump-
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tions can be relaxed and are in no way essential for our methodology. We let the
random utility be π(k;xk�εk�θk)= αk + zkδ+wβk + εk ≡ xkθk + εk� k ∈ C�
with xk = [1 zk w] and θk = [αk δ βk]′� We normalize π(0;x0� ε0� θ0) = ε0�
For simplicity, we assume that εk is independently and identically distributed
across choices with a continuous distribution function F(ε) that is known. We
let θ= [{αk}κC −1

k=1 δ {βk}κC −1
k=1 ]′ ∈Θ be the vector of parameters of interest, with

Θ the parameter space. We denote εk = εk − ε0� k ∈ C� and ε = [{εk}κC −1
k=1 ]�

Under these assumptions, if the econometrician observes a random sample of
choices, socioeconomic characteristics, and alternatives’ attributes, the para-
meter vector θ is point identified.

Here we consider the identification problem that arises when the econo-
metrician observes only realizations of {y� zkL� zkU�w}� but not realizations
of zk� k = 1� � � � �κC − 1� Following Manski and Tamer (2002), we assume
that for each k = 1� � � � � κC − 1� P(zkL ≤ zk ≤ zkU) = 1 and that δ > 0�
We let xkL = [1 zkL w]� xkU = [1 zkU w]� ¯xk = [1 zkL zkU w]� and ¯x =
[1 {zkL}κC −1

k=1 {zkU}κC −1
k=1 w]� Incompleteness of the data on zk� k= 1� � � � � κC −

1� implies that there are regions of values of the exogenous variables where the
econometric model predicts that more than one choice may maximize utility.
Therefore, the relationship between the outcome variable of interest and the
exogenous variables is a correspondence rather than a function. Hence, the
parameters of the utility functions may not be point identified.

In the case of binary choice, Manski and Tamer (2002) established that the
sharp identification region for θ is given by

ΘI = {θ ∈Θ : P(x1Lθ+ ε1 > 0|¯x)≤ P(y = 1|¯x)
≤ P(x1Uθ+ ε1 > 0|¯x)� ¯x-a.s.

}
�

This construction is based on the observation that if the agent chooses alterna-
tive 1, this implies that ε1 >−x1θ≥ −x1Uθ� On the other hand, ε1 >−x1Lθ≥
−x1θ implies that the agent chooses alternative 1.11 In the case of more than
two choices, one may wish to apply a similar insight as in the work of CT and
construct the region

ΘO = {θ ∈Θ :∀m ∈ C� ¯x-a.s.�(F.1)

P
(
xmθm + εm ≥ xkθk + εk ∀(xm�xk) ∈ [xmL�xmU ] × [xkL�xkU ]�

∀k ∈ C� k �=m|¯x
)

≤ P(y =m|¯x)≤ P
(∃xm ∈ [xmL�xmU ] s.t. ∀k ∈ C� k �=m�∃xk ∈ [xkL�xkU ]

with xmθm + εm ≥ xkθk + εk|¯x
)}
�

11For −x1Uθ≤ ε1 ≤ −x1Lθ� the model predicts that either alternative 0 or 1 may maximize the
agent’s utility.
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The lower bound on P(y =m|¯x) in equation (F.1) is given by the probability
that ε falls in the regions where choice m ∈ C is the only optimal alternative.
The upper bound is given by the probability that ε falls in the regions where
choicem ∈ C is one of the possible optimal alternatives. Similarly to the case of
ΘCT
O in the finite games analyzed in Section 3, ΘO is just an outer region for θ

and is not sharp in general. Appendix D.2 provides further insights to explain
the lack of sharpness of ΘO .12

We begin our treatment of the identification problem by noticing that if xk
were observed for each k ∈ C� one would conclude that a choice m ∈ C maxi-
mizes utility if

π(m;xm�εm�θm)= xmθm + εm ≥ xkθk + εk
= π(k;xk�εk�θk) ∀k ∈ C�k �=m�

Hence, for a given θ ∈ Θ, and realization of ¯x and ε� we can define the θ-
dependent set

Mθ(¯x�ε)= {m ∈ C :∃xm ∈ [xmL�xmU ] s.t. ∀k ∈ C�k �=m�(F.2)

∃xk ∈ [xkL�xkU ] with xmθm + εm ≥ xkθk + εk}�
This is the set of choices associated with a specific value of θ and realiza-
tion of ¯x and ε� which are optimal for some combination of xk ∈ [xkL�xkU ]�
k ∈ C� and, therefore, form the set of the model’s predictions. As we did in
Section 3, we write the set Mθ(¯x�ε) and its realizations, respectively, as Mθ

and Mθ(ω)≡Mθ(¯x(ω)�ε(ω))� omitting the explicit reference to ¯x and ε� Be-
cause Mθ is a subset of a discrete space and any event of the type {m ∈Mθ}
can be represented as a combination of measurable events determined by εk�
k ∈ C� Mθ is a random closed set in C ; see Definition A.1.

We now apply to the random closed setMθ the same logic that we applied to
the random closed set Sθ in Section 3. The treatment which follows is akin to
the treatment of static, simultaneous-move finite games of complete informa-
tion when players use only pure strategies.

For a given parameter value θ ∈Θ and realization m(ω)� ω ∈Ω� of a selec-
tion m ∈ Sel(Mθ)� the individual chooses alternative k = 0� � � � � κC − 1 if and
only if m(ω)= k� Hence, we can use a selection m ∈ Sel(Mθ) to define a ran-
dom point q(m) whose realizations have coordinates [q(m(ω))]k = 1(m(ω)=
k), k = 0� � � � � κC − 1� with 1(·) the indicator function of the event in paren-
theses. Clearly, the random point q(m) is an element of the unit simplex in the
space of dimension κC , denoted ΔκC −1. BecauseMθ is a random closed set in C�

12Appendix D.2 focuses on the lack of sharpness of ΘCT
O in finite games with multiple pure

strategy Nash equilibria. The same reasoning applies to the set ΘO in equation (F.1).
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the set resulting from repeating the above construction for each m ∈ Sel(Mθ)
and given by

Q(Mθ)= {([q(m)]k�k= 0� � � � � κC − 1
)

:m ∈ Sel(Mθ)
}

is a closed random set in ΔκC −1. Hence we can define the set

E(Q(Mθ)|¯x)= {E(q|¯x) :q ∈ Sel(Q(Mθ))
}

= {(E([q(m)]k|¯x
)
�k= 0� � � � � κC − 1

)
:m ∈ Sel(Mθ)

}
�

Because the probability space is nonatomic and the random setQ(Mθ) takes its
realizations in a subset of the finite dimensional space �κC � the set E(Q(Mθ)|¯x)is a closed convex set for ¯x-a.s. By construction, it is the set of probability distri-
butions over alternatives conditional on ¯x which are consistent with the main-
tained modeling assumptions, that is, with all the model implications. If the
model is correctly specified, there exists at least one value of θ ∈ Θ such that
the observed conditional distribution of y given ¯x� P(y|¯x)� is a point in the set
E(Q(Mθ)|¯x) for ¯x-a.s., where P(y|¯x)≡ [P(y = k|¯x)�k= 0� � � � � κC − 1]�

Using the same mathematical tools that lead to Theorem 3.2, we obtain that
the set of observationally equivalent parameter values which form the sharp
identification region is given by

ΘI =
{
θ ∈Θ : max

u∈B
(
u′P(y|¯x)− E

[
h(Q(Mθ)�u)|¯x

])= 0� ¯x-a.s.
}
�(F.3)

with B the unit ball in �κC �
Notice that the set Q(Mθ) assumes at most a finite number of values, and

its realizations lie in the subsets of the vertices of ΔκC −1. The conditional Au-
mann expectation of Q(Mθ) is given by the weighted Minkowski sum of the
possible realizations of co[Q(Mθ)]. Each of these realizations is a polytope
and, therefore, E(Q(Mθ)|¯x) is a closed convex polytope. By Theorem D.1, a
candidate θ belongs to ΘI as defined in equation (F.3) if and only if u′P(y|¯x)≤
E[h(Q(Mθ)�u)|¯x] for each of the 2κC possible u vectors whose entries are equal
to either 0 or 1. Hence, ΘI can be obtained through a finite set of moment in-
equalities which have to hold for ¯x-a.s.
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